effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
let t128_no_mod =
false
null
false
TD_Buffer TUInt8 TUInt128 ({ modified = false; strict_disjointness = false; taint = MS.Secret })
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Interop.Base.TD_Buffer", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "Vale.Interop.Base.Mkbuffer_qualifiers", "Vale.Arch.HeapTypes_s.Secret" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val t128_no_mod : Vale.Interop.Base.td
[]
Vale.Stdcalls.X64.GCTR.t128_no_mod
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.td
{ "end_col": 106, "end_line": 40, "start_col": 18, "start_line": 40 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let tuint64 = TD_Base TUInt64
let tuint64 =
false
null
false
TD_Base TUInt64
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Interop.Base.TD_Base", "Vale.Arch.HeapTypes_s.TUInt64" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val tuint64 : Vale.Interop.Base.td
[]
Vale.Stdcalls.X64.GCTR.tuint64
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.td
{ "end_col": 29, "end_line": 42, "start_col": 14, "start_line": 42 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let code_gctr256 = GC.va_code_Gctr_bytes_stdcall IA.win AES_256
let code_gctr256 =
false
null
false
GC.va_code_Gctr_bytes_stdcall IA.win AES_256
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.AES.X64.GCTR.va_code_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_256" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s)
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val code_gctr256 : Vale.X64.Decls.va_code
[]
Vale.Stdcalls.X64.GCTR.code_gctr256
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Decls.va_code
{ "end_col": 63, "end_line": 234, "start_col": 19, "start_line": 234 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128
let code_gctr128 =
false
null
false
GC.va_code_Gctr_bytes_stdcall IA.win AES_128
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.AES.X64.GCTR.va_code_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_128" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s)
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val code_gctr128 : Vale.X64.Decls.va_code
[]
Vale.Stdcalls.X64.GCTR.code_gctr128
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Decls.va_code
{ "end_col": 63, "end_line": 131, "start_col": 19, "start_line": 131 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr128_bytes //: normal ((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128_t s) = as_normal_t #((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128_t s) (fun (s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128 s)
let gctr128_bytes =
false
null
false
as_normal_t #(s: Ghost.erased (Seq.seq nat32) -> lowstar_gctr128_t s) (fun (s: Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128 s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Stdcalls.X64.GCTR.as_normal_t", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t", "Vale.Stdcalls.X64.GCTR.lowstar_gctr128" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s) noextract let code_gctr256 = GC.va_code_Gctr_bytes_stdcall IA.win AES_256 [@__reduce__] noextract let lowstar_gctr256_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr256 dom [] _ _ (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr256 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr256 dom (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win)) [@ (CCConv "stdcall") ]
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr128_bytes : Vale.Interop.Base.normal (s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t s)
[]
Vale.Stdcalls.X64.GCTR.gctr128_bytes
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.normal (s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t s)
{ "end_col": 134, "end_line": 258, "start_col": 4, "start_line": 258 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr256_bytes //: normal ((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr256_t s) = as_normal_t #((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr256_t s) (fun (s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr256 s)
let gctr256_bytes =
false
null
false
as_normal_t #(s: Ghost.erased (Seq.seq nat32) -> lowstar_gctr256_t s) (fun (s: Ghost.erased (Seq.seq nat32)) -> lowstar_gctr256 s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Stdcalls.X64.GCTR.as_normal_t", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t", "Vale.Stdcalls.X64.GCTR.lowstar_gctr256" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s) noextract let code_gctr256 = GC.va_code_Gctr_bytes_stdcall IA.win AES_256 [@__reduce__] noextract let lowstar_gctr256_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr256 dom [] _ _ (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr256 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr256 dom (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win)) [@ (CCConv "stdcall") ] let gctr128_bytes //: normal ((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128_t s) = as_normal_t #((s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128_t s) (fun (s:Ghost.erased (Seq.seq nat32)) -> lowstar_gctr128 s) [@ (CCConv "stdcall") ]
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr256_bytes : Vale.Interop.Base.normal (s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t s)
[]
Vale.Stdcalls.X64.GCTR.gctr256_bytes
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.Interop.Base.normal (s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t s)
{ "end_col": 134, "end_line": 262, "start_col": 4, "start_line": 262 }
Prims.Tot
val as_normal_t (#a: Type) (x: a) : normal a
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_normal_t (#a:Type) (x:a) : normal a = x
val as_normal_t (#a: Type) (x: a) : normal a let as_normal_t (#a: Type) (x: a) : normal a =
false
null
false
x
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Interop.Base.normal" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_normal_t (#a: Type) (x: a) : normal a
[]
Vale.Stdcalls.X64.GCTR.as_normal_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a -> Vale.Interop.Base.normal a
{ "end_col": 46, "end_line": 33, "start_col": 45, "start_line": 33 }
Prims.Tot
val as_t (#a: Type) (x: normal a) : a
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_t (#a:Type) (x:normal a) : a = x
val as_t (#a: Type) (x: normal a) : a let as_t (#a: Type) (x: normal a) : a =
false
null
false
x
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Vale.Interop.Base.normal" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *)
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_t (#a: Type) (x: normal a) : a
[]
Vale.Stdcalls.X64.GCTR.as_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Vale.Interop.Base.normal a -> a
{ "end_col": 39, "end_line": 31, "start_col": 38, "start_line": 31 }
Prims.Tot
val dom:dom: list td {List.length dom <= 20}
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y
val dom:dom: list td {List.length dom <= 20} let dom:dom: list td {List.length dom <= 20} =
false
null
false
let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list", "Prims.Cons", "Vale.Stdcalls.X64.GCTR.t128_no_mod", "Vale.Stdcalls.X64.GCTR.tuint64", "Vale.Stdcalls.X64.GCTR.t128_mod", "Prims.Nil" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dom:dom: list td {List.length dom <= 20}
[]
Vale.Stdcalls.X64.GCTR.dom
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
dom: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length dom <= 20}
{ "end_col": 3, "end_line": 48, "start_col": 43, "start_line": 45 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win))
let lowstar_gctr128_t (s: Ghost.erased (Seq.seq nat32)) =
false
null
false
assert_norm (List.length dom + List.length ([] <: list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win))
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Interop.X64.as_lowstar_sig_t_weak_stdcall", "Vale.Stdcalls.X64.GCTR.code_gctr128", "Vale.Stdcalls.X64.GCTR.dom", "Prims.Nil", "Vale.Interop.Base.arg", "Vale.AsLowStar.Wrapper.pre_rel_generic", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Vale.Stdcalls.X64.GCTR.gctr128_pre", "Vale.AsLowStar.Wrapper.post_rel_generic", "Vale.Stdcalls.X64.GCTR.gctr128_post", "Vale.AsLowStar.Wrapper.mk_prediction", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall", "Vale.Stdcalls.X64.GCTR.gctr128_lemma", "Vale.Interop.Assumptions.win", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lowstar_gctr128_t : s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Type0
[]
Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Type0
{ "end_col": 81, "end_line": 142, "start_col": 2, "start_line": 135 }
Prims.Tot
val lowstar_gctr256 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lowstar_gctr256 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr256 dom (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win))
val lowstar_gctr256 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s let lowstar_gctr256 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s =
false
null
false
assert_norm (List.length dom + List.length ([] <: list arg) <= 20); IX64.wrap_weak_stdcall code_gctr256 dom (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win))
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Interop.X64.wrap_weak_stdcall", "Vale.Stdcalls.X64.GCTR.code_gctr256", "Vale.Stdcalls.X64.GCTR.dom", "Vale.AsLowStar.Wrapper.pre_rel_generic", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Prims.Nil", "Vale.Interop.Base.arg", "Vale.Stdcalls.X64.GCTR.gctr256_pre", "Vale.AsLowStar.Wrapper.post_rel_generic", "Vale.Stdcalls.X64.GCTR.gctr256_post", "Vale.AsLowStar.Wrapper.mk_prediction", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall", "Vale.Stdcalls.X64.GCTR.gctr256_lemma", "Vale.Interop.Assumptions.win", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list", "Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s) noextract let code_gctr256 = GC.va_code_Gctr_bytes_stdcall IA.win AES_256 [@__reduce__] noextract let lowstar_gctr256_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr256 dom [] _ _ (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win)) (* And here's the gcm wrapper itself *) noextract
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lowstar_gctr256 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr256_t s
[]
Vale.Stdcalls.X64.GCTR.lowstar_gctr256
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t s
{ "end_col": 81, "end_line": 254, "start_col": 2, "start_line": 250 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lowstar_gctr256_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr256 dom [] _ _ (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win))
let lowstar_gctr256_t (s: Ghost.erased (Seq.seq nat32)) =
false
null
false
assert_norm (List.length dom + List.length ([] <: list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr256 dom [] _ _ (W.mk_prediction code_gctr256 dom [] ((gctr256_lemma s) code_gctr256 IA.win))
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Interop.X64.as_lowstar_sig_t_weak_stdcall", "Vale.Stdcalls.X64.GCTR.code_gctr256", "Vale.Stdcalls.X64.GCTR.dom", "Prims.Nil", "Vale.Interop.Base.arg", "Vale.AsLowStar.Wrapper.pre_rel_generic", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Vale.Stdcalls.X64.GCTR.gctr256_pre", "Vale.AsLowStar.Wrapper.post_rel_generic", "Vale.Stdcalls.X64.GCTR.gctr256_post", "Vale.AsLowStar.Wrapper.mk_prediction", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall", "Vale.Stdcalls.X64.GCTR.gctr256_lemma", "Vale.Interop.Assumptions.win", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s) noextract let code_gctr256 = GC.va_code_Gctr_bytes_stdcall IA.win AES_256 [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lowstar_gctr256_t : s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Type0
[]
Vale.Stdcalls.X64.GCTR.lowstar_gctr256_t
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Type0
{ "end_col": 81, "end_line": 245, "start_col": 2, "start_line": 238 }
Prims.Tot
val lowstar_gctr128 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win))
val lowstar_gctr128 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s let lowstar_gctr128 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s =
false
null
false
assert_norm (List.length dom + List.length ([] <: list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win))
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Interop.X64.wrap_weak_stdcall", "Vale.Stdcalls.X64.GCTR.code_gctr128", "Vale.Stdcalls.X64.GCTR.dom", "Vale.AsLowStar.Wrapper.pre_rel_generic", "Vale.Interop.X64.max_stdcall", "Vale.Interop.X64.arg_reg_stdcall", "Prims.Nil", "Vale.Interop.Base.arg", "Vale.Stdcalls.X64.GCTR.gctr128_pre", "Vale.AsLowStar.Wrapper.post_rel_generic", "Vale.Stdcalls.X64.GCTR.gctr128_post", "Vale.AsLowStar.Wrapper.mk_prediction", "Vale.Interop.X64.regs_modified_stdcall", "Vale.Interop.X64.xmms_modified_stdcall", "Vale.Stdcalls.X64.GCTR.gctr128_lemma", "Vale.Interop.Assumptions.win", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.List.Tot.Base.length", "Vale.Interop.Base.td", "Prims.list", "Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lowstar_gctr128 (s: Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s
[]
Vale.Stdcalls.X64.GCTR.lowstar_gctr128
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.Stdcalls.X64.GCTR.lowstar_gctr128_t s
{ "end_col": 81, "end_line": 151, "start_col": 2, "start_line": 147 }
Prims.Tot
val gctr128_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s)
val gctr128_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom let gctr128_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom =
false
null
false
fun (s: Ghost.erased (Seq.seq nat32)) (c: V.va_code) (in_b: b128) (num_bytes: uint64) (out_b: b128) (inout_b: b128) (keys_b: b128) (ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.AES.X64.GCTR.va_req_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_128", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.UInt64.v", "FStar.Ghost.reveal", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr128_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom
[]
Vale.Stdcalls.X64.GCTR.gctr128_pre
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Words_s.nat32) -> Vale.AsLowStar.ValeSig.vale_pre Vale.Stdcalls.X64.GCTR.dom
{ "end_col": 69, "end_line": 66, "start_col": 2, "start_line": 53 }
Prims.Tot
val gctr256_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s)
val gctr256_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom let gctr256_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom =
false
null
false
fun (s: Ghost.erased (Seq.seq nat32)) (c: V.va_code) (in_b: b128) (num_bytes: uint64) (out_b: b128) (inout_b: b128) (keys_b: b128) (ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.AES.X64.GCTR.va_req_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_256", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.UInt64.v", "FStar.Ghost.reveal", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr256_pre: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom
[]
Vale.Stdcalls.X64.GCTR.gctr256_pre
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Words_s.nat32) -> Vale.AsLowStar.ValeSig.vale_pre Vale.Stdcalls.X64.GCTR.dom
{ "end_col": 69, "end_line": 169, "start_col": 2, "start_line": 156 }
Prims.Tot
val gctr128_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f
val gctr128_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom let gctr128_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom =
false
null
false
fun (s: Ghost.erased (Seq.seq nat32)) (c: V.va_code) (in_b: b128) (num_bytes: uint64) (out_b: b128) (inout_b: b128) (keys_b: b128) (ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) (va_s1: V.va_state) (f: V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "Vale.AES.X64.GCTR.va_ens_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_128", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.UInt64.v", "FStar.Ghost.reveal", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr128_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom
[]
Vale.Stdcalls.X64.GCTR.gctr128_post
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Words_s.nat32) -> Vale.AsLowStar.ValeSig.vale_post Vale.Stdcalls.X64.GCTR.dom
{ "end_col": 77, "end_line": 86, "start_col": 2, "start_line": 71 }
Prims.Tot
val gctr256_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f
val gctr256_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom let gctr256_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom =
false
null
false
fun (s: Ghost.erased (Seq.seq nat32)) (c: V.va_code) (in_b: b128) (num_bytes: uint64) (out_b: b128) (inout_b: b128) (keys_b: b128) (ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) (va_s1: V.va_state) (f: V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "Vale.AES.X64.GCTR.va_ens_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_256", "Vale.X64.MemoryAdapters.as_vale_buffer", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.UInt64.v", "FStar.Ghost.reveal", "Prims.prop" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract
false
true
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr256_post: (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom
[]
Vale.Stdcalls.X64.GCTR.gctr256_post
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Words_s.nat32) -> Vale.AsLowStar.ValeSig.vale_post Vale.Stdcalls.X64.GCTR.dom
{ "end_col": 77, "end_line": 189, "start_col": 2, "start_line": 174 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s)
let gctr128_lemma (s: Ghost.erased (Seq.seq nat32)) =
false
null
false
as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Stdcalls.X64.GCTR.as_t", "Vale.AsLowStar.ValeSig.vale_sig_stdcall", "Vale.Stdcalls.X64.GCTR.dom", "Vale.Stdcalls.X64.GCTR.gctr128_pre", "Vale.Stdcalls.X64.GCTR.gctr128_post", "Vale.Stdcalls.X64.GCTR.gctr128_lemma'" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr128_lemma : s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.AsLowStar.ValeSig.vale_sig_stdcall (Vale.Stdcalls.X64.GCTR.gctr128_pre s) (Vale.Stdcalls.X64.GCTR.gctr128_post s)
[]
Vale.Stdcalls.X64.GCTR.gctr128_lemma
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.AsLowStar.ValeSig.vale_sig_stdcall (Vale.Stdcalls.X64.GCTR.gctr128_pre s) (Vale.Stdcalls.X64.GCTR.gctr128_post s)
{ "end_col": 135, "end_line": 128, "start_col": 53, "start_line": 128 }
Prims.Tot
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr256_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s)
let gctr256_lemma (s: Ghost.erased (Seq.seq nat32)) =
false
null
false
as_t #(VSig.vale_sig_stdcall (gctr256_pre s) (gctr256_post s)) (gctr256_lemma' s)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Stdcalls.X64.GCTR.as_t", "Vale.AsLowStar.ValeSig.vale_sig_stdcall", "Vale.Stdcalls.X64.GCTR.dom", "Vale.Stdcalls.X64.GCTR.gctr256_pre", "Vale.Stdcalls.X64.GCTR.gctr256_post", "Vale.Stdcalls.X64.GCTR.gctr256_lemma'" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr256_lemma : s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.AsLowStar.ValeSig.vale_sig_stdcall (Vale.Stdcalls.X64.GCTR.gctr256_pre s) (Vale.Stdcalls.X64.GCTR.gctr256_post s)
[]
Vale.Stdcalls.X64.GCTR.gctr256_lemma
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> Vale.AsLowStar.ValeSig.vale_sig_stdcall (Vale.Stdcalls.X64.GCTR.gctr256_pre s) (Vale.Stdcalls.X64.GCTR.gctr256_post s)
{ "end_col": 135, "end_line": 231, "start_col": 53, "start_line": 231 }
Prims.Ghost
val gctr128_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b)))
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
val gctr128_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b))) let gctr128_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b))) =
false
null
false
let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Prims.bool", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.Pervasives.Native.tuple2", "Vale.X64.State.vale_state", "Vale.AES.X64.GCTR.va_lemma_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_128", "Vale.X64.MemoryAdapters.as_vale_buffer", "FStar.UInt64.v", "FStar.Ghost.reveal", "Vale.Stdcalls.X64.GCTR.gctr128_pre", "Prims.l_and", "Vale.X64.Decls.eval_code", "Vale.AsLowStar.ValeSig.vale_calling_conventions_stdcall", "Vale.Stdcalls.X64.GCTR.gctr128_post", "Vale.X64.Memory.buffer_writeable" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr128_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b)))
[]
Vale.Stdcalls.X64.GCTR.gctr128_lemma'
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> code: Vale.X64.Decls.va_code -> _win: Prims.bool -> in_b: Vale.Stdcalls.X64.GCTR.b128 -> num_bytes: Vale.Stdcalls.X64.GCTR.uint64 -> out_b: Vale.Stdcalls.X64.GCTR.b128 -> inout_b: Vale.Stdcalls.X64.GCTR.b128 -> keys_b: Vale.Stdcalls.X64.GCTR.b128 -> ctr_b: Vale.Stdcalls.X64.GCTR.b128 -> num_blocks: Vale.Stdcalls.X64.GCTR.uint64 -> va_s0: Vale.X64.Decls.va_state -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 13, "end_line": 125, "start_col": 5, "start_line": 115 }
Prims.Ghost
val gctr256_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b)))
[ { "abbrev": true, "full_module": "Vale.AES.X64.GCTR", "short_module": "GC" }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Machine_s", "short_module": "MS" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": true, "full_module": "Vale.AsLowStar.Wrapper", "short_module": "W" }, { "abbrev": true, "full_module": "Vale.Interop.Assumptions", "short_module": "IA" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.AsLowStar.LowStarSig", "short_module": "LSig" }, { "abbrev": true, "full_module": "Vale.AsLowStar.ValeSig", "short_module": "VSig" }, { "abbrev": true, "full_module": "Vale.Interop.X64", "short_module": "IX64" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
val gctr256_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b))) let gctr256_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b))) =
false
null
false
let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f)
{ "checked_file": "Vale.Stdcalls.X64.GCTR.fst.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Interop.X64.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Interop.Assumptions.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.AsLowStar.Wrapper.fsti.checked", "Vale.AsLowStar.ValeSig.fst.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.AsLowStar.LowStarSig.fst.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.AES_s.fst.checked", "prims.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.Buffer.fst.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Vale.Stdcalls.X64.GCTR.fst" }
[]
[ "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_code", "Prims.bool", "Vale.Stdcalls.X64.GCTR.b128", "Vale.Stdcalls.X64.GCTR.uint64", "Vale.X64.Decls.va_state", "Vale.X64.Decls.va_fuel", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Arch.HeapTypes_s.TUInt128", "FStar.Pervasives.Native.tuple2", "Vale.X64.State.vale_state", "Vale.AES.X64.GCTR.va_lemma_Gctr_bytes_stdcall", "Vale.Interop.Assumptions.win", "Vale.AES.AES_common_s.AES_256", "Vale.X64.MemoryAdapters.as_vale_buffer", "FStar.UInt64.v", "FStar.Ghost.reveal", "Vale.Stdcalls.X64.GCTR.gctr256_pre", "Prims.l_and", "Vale.X64.Decls.eval_code", "Vale.AsLowStar.ValeSig.vale_calling_conventions_stdcall", "Vale.Stdcalls.X64.GCTR.gctr256_post", "Vale.X64.Memory.buffer_writeable" ]
[]
module Vale.Stdcalls.X64.GCTR open FStar.HyperStack.ST module B = LowStar.Buffer module HS = FStar.HyperStack open FStar.Mul module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up open Vale.Def.Types_s open Vale.Interop.Base module IX64 = Vale.Interop.X64 module VSig = Vale.AsLowStar.ValeSig module LSig = Vale.AsLowStar.LowStarSig module ME = Vale.X64.Memory module V = Vale.X64.Decls module IA = Vale.Interop.Assumptions module W = Vale.AsLowStar.Wrapper open Vale.X64.MemoryAdapters module VS = Vale.X64.State module MS = Vale.X64.Machine_s open Vale.AES.AES_s module GC = Vale.AES.X64.GCTR let uint64 = UInt64.t (* A little utility to trigger normalization in types *) noextract let as_t (#a:Type) (x:normal a) : a = x noextract let as_normal_t (#a:Type) (x:a) : normal a = x [@__reduce__] noextract let b128 = buf_t TUInt8 TUInt128 [@__reduce__] noextract let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq [@__reduce__] noextract let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) [@__reduce__] noextract let tuint64 = TD_Base TUInt64 [@__reduce__] noextract let (dom: list td{List.length dom <= 20}) = let y = [t128_no_mod; tuint64; t128_mod; t128_mod; t128_no_mod; t128_no_mod; tuint64] in assert_norm (List.length y = 7); y (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr128_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr128_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr128_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr128_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b) )) = let va_s1, f = GC.va_lemma_Gctr_bytes_stdcall code va_s0 IA.win AES_128 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) in Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 in_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 out_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 inout_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 keys_b; Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 ctr_b; (va_s1, f) noextract let gctr128_lemma (s:Ghost.erased (Seq.seq nat32)) = as_t #(VSig.vale_sig_stdcall (gctr128_pre s) (gctr128_post s)) (gctr128_lemma' s) noextract let code_gctr128 = GC.va_code_Gctr_bytes_stdcall IA.win AES_128 [@__reduce__] noextract let lowstar_gctr128_t (s:Ghost.erased (Seq.seq nat32)) = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.as_lowstar_sig_t_weak_stdcall code_gctr128 dom [] _ _ (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* And here's the gcm wrapper itself *) noextract let lowstar_gctr128 (s:Ghost.erased (Seq.seq nat32)) : lowstar_gctr128_t s = assert_norm (List.length dom + List.length ([]<:list arg) <= 20); IX64.wrap_weak_stdcall code_gctr128 dom (W.mk_prediction code_gctr128 dom [] ((gctr128_lemma s) code_gctr128 IA.win)) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_pre : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_pre dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) -> GC.va_req_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) (* Need to rearrange the order of arguments *) [@__reduce__] noextract let gctr256_post : (Ghost.erased (Seq.seq nat32)) -> VSig.vale_post dom = fun (s:Ghost.erased (Seq.seq nat32)) (c:V.va_code) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) (va_s1:V.va_state) (f:V.va_fuel) -> GC.va_ens_Gctr_bytes_stdcall c va_s0 IA.win AES_256 (as_vale_buffer in_b) (UInt64.v num_bytes) (as_vale_buffer out_b) (as_vale_buffer inout_b) (as_vale_buffer keys_b) (as_vale_buffer ctr_b) (UInt64.v num_blocks) (Ghost.reveal s) va_s1 f #set-options "--z3rlimit 20" [@__reduce__] noextract let gctr256_lemma' (s:Ghost.erased (Seq.seq nat32)) (code:V.va_code) (_win:bool) (in_b:b128) (num_bytes:uint64) (out_b:b128) (inout_b:b128) (keys_b:b128) (ctr_b:b128) (num_blocks:uint64) (va_s0:V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\
false
false
Vale.Stdcalls.X64.GCTR.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gctr256_lemma' (s: Ghost.erased (Seq.seq nat32)) (code: V.va_code) (_win: bool) (in_b: b128) (num_bytes: uint64) (out_b inout_b keys_b ctr_b: b128) (num_blocks: uint64) (va_s0: V.va_state) : Ghost (V.va_state & V.va_fuel) (requires gctr256_pre s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0) (ensures (fun (va_s1, f) -> V.eval_code code va_s0 f va_s1 /\ VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\ gctr256_post s code in_b num_bytes out_b inout_b keys_b ctr_b num_blocks va_s0 va_s1 f /\ ME.buffer_writeable (as_vale_buffer in_b) /\ ME.buffer_writeable (as_vale_buffer keys_b) /\ ME.buffer_writeable (as_vale_buffer ctr_b) /\ ME.buffer_writeable (as_vale_buffer inout_b) /\ ME.buffer_writeable (as_vale_buffer out_b)))
[]
Vale.Stdcalls.X64.GCTR.gctr256_lemma'
{ "file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCTR.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> code: Vale.X64.Decls.va_code -> _win: Prims.bool -> in_b: Vale.Stdcalls.X64.GCTR.b128 -> num_bytes: Vale.Stdcalls.X64.GCTR.uint64 -> out_b: Vale.Stdcalls.X64.GCTR.b128 -> inout_b: Vale.Stdcalls.X64.GCTR.b128 -> keys_b: Vale.Stdcalls.X64.GCTR.b128 -> ctr_b: Vale.Stdcalls.X64.GCTR.b128 -> num_blocks: Vale.Stdcalls.X64.GCTR.uint64 -> va_s0: Vale.X64.Decls.va_state -> Prims.Ghost (Vale.X64.Decls.va_state * Vale.X64.Decls.va_fuel)
{ "end_col": 13, "end_line": 228, "start_col": 5, "start_line": 218 }
FStar.Pervasives.Lemma
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute())
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False) let big_or'_nil (#a: Type) (f: (a -> Type)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (big_or' f [] == False) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.big_or'", "Prims.Nil", "Prims.l_False", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl ////////////////////////////////////////////////////////////////////////////////
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
[]
FStar.BigOps.big_or'_nil
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_or' f [] == Prims.l_False)
{ "end_col": 51, "end_line": 52, "start_col": 4, "start_line": 52 }
FStar.Pervasives.Lemma
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x)) let rec big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a) =
false
null
true
match l with | [] -> big_or'_nil f; () | hd :: tl -> big_or'_cons f hd tl; big_or'_exists f tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "Prims.unit", "FStar.BigOps.big_or'_nil", "FStar.BigOps.big_or'_exists", "FStar.BigOps.big_or'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
[ "recursion" ]
FStar.BigOps.big_or'_exists
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_or' f l <==> (exists (x: a). FStar.List.Tot.Base.memP x l /\ f x))
{ "end_col": 57, "end_line": 65, "start_col": 4, "start_line": 63 }
FStar.Pervasives.Lemma
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit) let big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) =
false
null
true
match l with | [] -> big_and'_nil f | hd :: tl -> big_and'_cons f hd tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.big_and'_nil", "FStar.BigOps.big_and'_cons", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
[]
FStar.BigOps.big_and'_prop
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures Prims.subtype_of (FStar.BigOps.big_and' f l) Prims.unit)
{ "end_col": 37, "end_line": 43, "start_col": 4, "start_line": 41 }
FStar.Pervasives.Lemma
val pairwise_or'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_or' f [] == False)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_or'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_or' f [] == False) by (T.compute())
val pairwise_or'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_or' f [] == False) let pairwise_or'_nil (#a: Type) (f: (a -> a -> Type0)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (pairwise_or' f [] == False) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.pairwise_or'", "Prims.Nil", "Prims.l_False", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl ////////////////////////////////////////////////////////////////////////////////
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_or'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_or' f [] == False)
[]
FStar.BigOps.pairwise_or'_nil
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> FStar.Pervasives.Lemma (ensures FStar.BigOps.pairwise_or' f [] == Prims.l_False)
{ "end_col": 56, "end_line": 108, "start_col": 4, "start_line": 108 }
FStar.Pervasives.Lemma
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute())
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True) let big_and'_nil (#a: Type) (f: (a -> Type)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (big_and' f [] == True) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.big_and'", "Prims.Nil", "Prims.l_True", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () ////////////////////////////////////////////////////////////////////////////////
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
[]
FStar.BigOps.big_and'_nil
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_and' f [] == Prims.l_True)
{ "end_col": 51, "end_line": 35, "start_col": 4, "start_line": 35 }
FStar.Pervasives.Lemma
val pairwise_and'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_and' f (hd :: tl) == (big_and' (f hd) tl /\ pairwise_and' f tl))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl())
val pairwise_and'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_and' f (hd :: tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) let pairwise_and'_cons (#a: Type) (f: (a -> a -> Type)) (hd: a) (tl: list a) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (pairwise_and' f (hd :: tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) (fun _ -> (); (T.trefl ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.pairwise_and'", "Prims.Cons", "Prims.l_and", "FStar.BigOps.big_and'", "Prims.unit", "FStar.Tactics.V2.Derived.trefl" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_and'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_and' f (hd :: tl) == (big_and' (f hd) tl /\ pairwise_and' f tl))
[]
FStar.BigOps.pairwise_and'_cons
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> hd: a -> tl: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.pairwise_and' f (hd :: tl) == FStar.BigOps.big_and' (f hd) tl /\ FStar.BigOps.pairwise_and' f tl)
{ "end_col": 22, "end_line": 73, "start_col": 4, "start_line": 72 }
FStar.Pervasives.Lemma
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute())
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) let big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.big_and'", "Prims.Cons", "Prims.l_and", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
[]
FStar.BigOps.big_and'_cons
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> hd: a -> tl: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_and' f (hd :: tl) == f hd /\ FStar.BigOps.big_and' f tl)
{ "end_col": 78, "end_line": 38, "start_col": 4, "start_line": 38 }
FStar.Pervasives.Lemma
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute())
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) let big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.big_or'", "Prims.Cons", "Prims.l_or", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a) : Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
[]
FStar.BigOps.big_or'_cons
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> hd: a -> tl: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_or' f (hd :: tl) == (f hd \/ FStar.BigOps.big_or' f tl))
{ "end_col": 76, "end_line": 55, "start_col": 4, "start_line": 55 }
FStar.Pervasives.Lemma
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit) let big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) =
false
null
true
match l with | [] -> big_or'_nil f | hd :: tl -> big_or'_cons f hd tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.big_or'_nil", "FStar.BigOps.big_or'_cons", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
[]
FStar.BigOps.big_or'_prop
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures Prims.subtype_of (FStar.BigOps.big_or' f l) Prims.unit)
{ "end_col": 36, "end_line": 60, "start_col": 4, "start_line": 58 }
FStar.Pervasives.Lemma
val pairwise_and'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_and' f [] == True)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute())
val pairwise_and'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_and' f [] == True) let pairwise_and'_nil (#a: Type) (f: (a -> a -> Type0)) =
false
null
true
FStar.Tactics.Effect.assert_by_tactic (pairwise_and' f [] == True) (fun _ -> (); (T.compute ()))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "FStar.BigOps.pairwise_and'", "Prims.Nil", "Prims.l_True", "Prims.unit", "FStar.Tactics.V2.Derived.compute" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl ////////////////////////////////////////////////////////////////////////////////
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_and'_nil (#a: Type) (f: (a -> a -> Type0)) : Lemma (pairwise_and' f [] == True)
[]
FStar.BigOps.pairwise_and'_nil
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> FStar.Pervasives.Lemma (ensures FStar.BigOps.pairwise_and' f [] == Prims.l_True)
{ "end_col": 56, "end_line": 69, "start_col": 4, "start_line": 69 }
FStar.Pervasives.Lemma
val pairwise_or'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_or' f l) `subtype_of` unit)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_or'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl
val pairwise_or'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_or' f l) `subtype_of` unit) let pairwise_or'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_or'_nil f | hd :: tl -> pairwise_or'_cons f hd tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_or'_nil", "FStar.BigOps.pairwise_or'_cons", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl //////////////////////////////////////////////////////////////////////////////// let pairwise_or'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_or' f [] == False) by (T.compute()) let pairwise_or'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_or' f (hd::tl) == (big_or' (f hd) tl \/ pairwise_or' f tl))
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_or'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_or' f l) `subtype_of` unit)
[]
FStar.BigOps.pairwise_or'_prop
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures Prims.subtype_of (FStar.BigOps.pairwise_or' f l) Prims.unit)
{ "end_col": 41, "end_line": 116, "start_col": 4, "start_line": 114 }
FStar.Pervasives.Lemma
val pairwise_or'_exists (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ anti_reflexive f) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ f x y)))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pairwise_or'_exists (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl; pairwise_or'_exists f tl; big_or'_exists (f hd) tl
val pairwise_or'_exists (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ anti_reflexive f) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ f x y))) let rec pairwise_or'_exists (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_or'_nil f | hd :: tl -> pairwise_or'_cons f hd tl; pairwise_or'_exists f tl; big_or'_exists (f hd) tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_or'_nil", "FStar.BigOps.big_or'_exists", "Prims.unit", "FStar.BigOps.pairwise_or'_exists", "FStar.BigOps.pairwise_or'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl //////////////////////////////////////////////////////////////////////////////// let pairwise_or'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_or' f [] == False) by (T.compute()) let pairwise_or'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_or' f (hd::tl) == (big_or' (f hd) tl \/ pairwise_or' f tl)) let pairwise_or'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_or'_exists (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ anti_reflexive f) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ f x y)))
[ "recursion" ]
FStar.BigOps.pairwise_or'_exists
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.BigOps.symmetric f /\ FStar.BigOps.anti_reflexive f) (ensures FStar.BigOps.pairwise_or' f l <==> (exists (x: a) (y: a). FStar.List.Tot.Base.memP x l /\ FStar.List.Tot.Base.memP y l /\ f x y ))
{ "end_col": 30, "end_line": 124, "start_col": 4, "start_line": 119 }
FStar.Pervasives.Lemma
val pairwise_and'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_and' f l) `subtype_of` unit)
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl
val pairwise_and'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_and' f l) `subtype_of` unit) let pairwise_and'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_and'_nil f | hd :: tl -> pairwise_and'_cons f hd tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_and'_nil", "FStar.BigOps.pairwise_and'_cons", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_and'_prop (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma ((pairwise_and' f l) `subtype_of` unit)
[]
FStar.BigOps.pairwise_and'_prop
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures Prims.subtype_of (FStar.BigOps.pairwise_and' f l) Prims.unit)
{ "end_col": 42, "end_line": 78, "start_col": 4, "start_line": 76 }
FStar.Pervasives.Lemma
val pairwise_and'_forall_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l /\ x =!= y ==> f x y)))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl
val pairwise_and'_forall_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l /\ x =!= y ==> f x y))) let rec pairwise_and'_forall_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_and'_nil f | hd :: tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_and'_nil", "FStar.BigOps.big_and'_forall", "Prims.unit", "FStar.BigOps.pairwise_and'_forall_no_repeats", "FStar.BigOps.pairwise_and'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_and'_forall_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l /\ x =!= y ==> f x y)))
[ "recursion" ]
FStar.BigOps.pairwise_and'_forall_no_repeats
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.BigOps.symmetric f /\ FStar.List.Tot.Base.no_repeats_p l) (ensures FStar.BigOps.pairwise_and' f l <==> (forall (x: a) (y: a). FStar.List.Tot.Base.memP x l /\ FStar.List.Tot.Base.memP y l /\ ~(x == y) ==> f x y))
{ "end_col": 31, "end_line": 104, "start_col": 4, "start_line": 99 }
FStar.Pervasives.Lemma
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x)) let rec big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a) =
false
null
true
match l with | [] -> big_and'_nil f; () | hd :: tl -> big_and'_cons f hd tl; big_and'_forall f tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "Prims.unit", "FStar.BigOps.big_and'_nil", "FStar.BigOps.big_and'_forall", "FStar.BigOps.big_and'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a) : Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
[ "recursion" ]
FStar.BigOps.big_and'_forall
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.big_and' f l <==> (forall (x: a). FStar.List.Tot.Base.memP x l ==> f x))
{ "end_col": 59, "end_line": 48, "start_col": 4, "start_line": 46 }
FStar.Pervasives.Lemma
val pairwise_or'_exists_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ x =!= y /\ f x y)))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pairwise_or'_exists_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl; pairwise_or'_exists_no_repeats f tl; big_or'_exists (f hd) tl
val pairwise_or'_exists_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ x =!= y /\ f x y))) let rec pairwise_or'_exists_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_or'_nil f | hd :: tl -> pairwise_or'_cons f hd tl; pairwise_or'_exists_no_repeats f tl; big_or'_exists (f hd) tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_or'_nil", "FStar.BigOps.big_or'_exists", "Prims.unit", "FStar.BigOps.pairwise_or'_exists_no_repeats", "FStar.BigOps.pairwise_or'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl //////////////////////////////////////////////////////////////////////////////// let pairwise_or'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_or' f [] == False) by (T.compute()) let pairwise_or'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_or' f (hd::tl) == (big_or' (f hd) tl \/ pairwise_or' f tl)) let pairwise_or'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl let rec pairwise_or'_exists (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_or'_nil f | hd::tl -> pairwise_or'_cons f hd tl; pairwise_or'_exists f tl; big_or'_exists (f hd) tl
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_or'_exists_no_repeats (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ L.no_repeats_p l) (ensures (pairwise_or' f l <==> (exists x y. L.memP x l /\ L.memP y l /\ x =!= y /\ f x y)))
[ "recursion" ]
FStar.BigOps.pairwise_or'_exists_no_repeats
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.BigOps.symmetric f /\ FStar.List.Tot.Base.no_repeats_p l) (ensures FStar.BigOps.pairwise_or' f l <==> (exists (x: a) (y: a). FStar.List.Tot.Base.memP x l /\ FStar.List.Tot.Base.memP y l /\ ~(x == y) /\ f x y))
{ "end_col": 30, "end_line": 132, "start_col": 4, "start_line": 127 }
FStar.Pervasives.Lemma
val pairwise_or'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_or' f (hd :: tl) == (big_or' (f hd) tl \/ pairwise_or' f tl))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pairwise_or'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_or' f (hd::tl) == (big_or' (f hd) tl \/ pairwise_or' f tl))
val pairwise_or'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_or' f (hd :: tl) == (big_or' (f hd) tl \/ pairwise_or' f tl)) let pairwise_or'_cons (#a: Type) (f: (a -> a -> Type)) (hd: a) (tl: list a) =
false
null
true
assert (pairwise_or' f (hd :: tl) == (big_or' (f hd) tl \/ pairwise_or' f tl))
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "Prims._assert", "Prims.eq2", "FStar.BigOps.pairwise_or'", "Prims.Cons", "Prims.l_or", "FStar.BigOps.big_or'", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *) let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl let rec pairwise_and'_forall_no_repeats (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall_no_repeats f tl; big_and'_forall (f hd) tl //////////////////////////////////////////////////////////////////////////////// let pairwise_or'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_or' f [] == False) by (T.compute())
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_or'_cons (#a: Type) (f: (a -> a -> Type0)) (hd: a) (tl: list a) : Lemma (pairwise_or' f (hd :: tl) == (big_or' (f hd) tl \/ pairwise_or' f tl))
[]
FStar.BigOps.pairwise_or'_cons
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> hd: a -> tl: Prims.list a -> FStar.Pervasives.Lemma (ensures FStar.BigOps.pairwise_or' f (hd :: tl) == (FStar.BigOps.big_or' (f hd) tl \/ FStar.BigOps.pairwise_or' f tl))
{ "end_col": 80, "end_line": 111, "start_col": 4, "start_line": 111 }
FStar.Pervasives.Lemma
val pairwise_and'_forall (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ reflexive f) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l ==> f x y)))
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pairwise_and'_forall (#a:Type) (f: a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl
val pairwise_and'_forall (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ reflexive f) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l ==> f x y))) let rec pairwise_and'_forall (#a: Type) (f: (a -> a -> Type)) (l: list a) =
false
null
true
match l with | [] -> pairwise_and'_nil f | hd :: tl -> pairwise_and'_cons f hd tl; pairwise_and'_forall f tl; big_and'_forall (f hd) tl
{ "checked_file": "FStar.BigOps.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.BigOps.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.BigOps.pairwise_and'_nil", "FStar.BigOps.big_and'_forall", "Prims.unit", "FStar.BigOps.pairwise_and'_forall", "FStar.BigOps.pairwise_and'_cons" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BigOps module T = FStar.Tactics.V2 let normal_eq (#a:Type) (f:a) = () //////////////////////////////////////////////////////////////////////////////// let map_op'_nil (#a:Type) (#b:Type) (#c:Type) (op:b -> c -> GTot c) (f:a -> GTot b) (z:c) : Lemma (map_op' op f [] z == z) = () let map_op'_cons #a #b #c (op:b -> c -> GTot c) (f:a -> GTot b) (hd:a) (tl:list a) (z:c) : Lemma (map_op' op f (hd::tl) z == f hd `op` map_op' op f tl z) = () //////////////////////////////////////////////////////////////////////////////// let big_and'_nil (#a:Type) (f:a -> Type) = assert (big_and' f [] == True) by (T.compute()) let big_and'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_and' f (hd :: tl) == (f hd /\ big_and' f tl)) by (T.compute()) let big_and'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f | hd::tl -> big_and'_cons f hd tl let rec big_and'_forall (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_and'_nil f; () | hd::tl -> big_and'_cons f hd tl; big_and'_forall f tl //////////////////////////////////////////////////////////////////////////////// let big_or'_nil (#a:Type) (f:a -> Type) = assert (big_or' f [] == False) by (T.compute()) let big_or'_cons (#a:Type) (f:a -> Type) (hd:a) (tl:list a) = assert (big_or' f (hd :: tl) == (f hd \/ big_or' f tl)) by (T.compute()) let big_or'_prop (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f | hd::tl -> big_or'_cons f hd tl let rec big_or'_exists (#a:Type) (f:a -> Type) (l:list a) = match l with | [] -> big_or'_nil f; () | hd::tl -> big_or'_cons f hd tl; big_or'_exists f tl //////////////////////////////////////////////////////////////////////////////// let pairwise_and'_nil (#a:Type) (f:a -> a -> Type0) = assert (pairwise_and' f [] == True) by (T.compute()) let pairwise_and'_cons (#a:Type) (f:a -> a -> Type) (hd:a) (tl:list a) = assert (pairwise_and' f (hd::tl) == (big_and' (f hd) tl /\ pairwise_and' f tl)) by (T.trefl()) let pairwise_and'_prop (#a:Type) (f:a -> a -> Type) (l:list a) = match l with | [] -> pairwise_and'_nil f | hd::tl -> pairwise_and'_cons f hd tl (* Note, this is good example of where the difference between the implicitly and explicitly reducing variants of the definitions makes a difference. Proving this lemma directly on the `pairwise_and` is much harder since one has to reason about many partially reduced forms. Instead, we first prove the lemma on the non-reducing primed version of the definition, and then obtain the lemma we want at the end using `normal_eq` *)
false
false
FStar.BigOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pairwise_and'_forall (#a: Type) (f: (a -> a -> Type)) (l: list a) : Lemma (requires symmetric f /\ reflexive f) (ensures (pairwise_and' f l <==> (forall x y. L.memP x l /\ L.memP y l ==> f x y)))
[ "recursion" ]
FStar.BigOps.pairwise_and'_forall
{ "file_name": "ulib/FStar.BigOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: (_: a -> _: a -> Type0) -> l: Prims.list a -> FStar.Pervasives.Lemma (requires FStar.BigOps.symmetric f /\ FStar.BigOps.reflexive f) (ensures FStar.BigOps.pairwise_and' f l <==> (forall (x: a) (y: a). FStar.List.Tot.Base.memP x l /\ FStar.List.Tot.Base.memP y l ==> f x y))
{ "end_col": 31, "end_line": 96, "start_col": 4, "start_line": 91 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qelem4 = uint64 & uint64 & uint64 & uint64
let qelem4 =
false
null
false
uint64 & uint64 & uint64 & uint64
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.uint64" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qelem4 : Type0
[]
Hacl.Spec.K256.Scalar.qelem4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 46, "end_line": 17, "start_col": 13, "start_line": 17 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL
let is_qelem_lt_pow2_128_vartime4 (a0, a1, a2, a3: qelem4) : bool =
false
null
false
let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "Lib.IntTypes.uint64", "Prims.op_AmpAmp", "Lib.IntTypes.op_Equals_Dot", "Lib.IntTypes.U64", "Lib.RawIntTypes.u64_to_UInt64", "FStar.UInt64.__uint_to_t", "Prims.bool" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_qelem_lt_pow2_128_vartime4 : _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
[]
Hacl.Spec.K256.Scalar.is_qelem_lt_pow2_128_vartime4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
{ "end_col": 52, "end_line": 106, "start_col": 2, "start_line": 105 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
let qas_nat4 (f: qelem4) =
false
null
false
let f0, f1, f2, f3 = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "Lib.IntTypes.uint64", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "Prims.int" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qas_nat4 : f: Hacl.Spec.K256.Scalar.qelem4 -> Prims.int
[]
Hacl.Spec.K256.Scalar.qas_nat4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.K256.Scalar.qelem4 -> Prims.int
{ "end_col": 59, "end_line": 24, "start_col": 25, "start_line": 22 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL
let is_qelem_zero_vartime4 (f0, f1, f2, f3: qelem4) : bool =
false
null
false
let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "Lib.IntTypes.uint64", "Prims.op_AmpAmp", "Lib.IntTypes.op_Equals_Dot", "Lib.IntTypes.U64", "Lib.RawIntTypes.u64_to_UInt64", "FStar.UInt64.__uint_to_t", "Prims.bool" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_qelem_zero_vartime4 : _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
[]
Hacl.Spec.K256.Scalar.is_qelem_zero_vartime4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
{ "end_col": 25, "end_line": 50, "start_col": 2, "start_line": 46 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3
let is_qelem_eq_vartime4 (a0, a1, a2, a3: qelem4) (b0, b1, b2, b3: qelem4) : bool =
false
null
false
let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.uint64", "Prims.op_AmpAmp", "Lib.IntTypes.op_Equals_Dot", "Lib.IntTypes.U64", "Lib.RawIntTypes.u64_to_UInt64", "Prims.bool" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_qelem_eq_vartime4 : _: Hacl.Spec.K256.Scalar.qelem4 -> _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
[]
Hacl.Spec.K256.Scalar.is_qelem_eq_vartime4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Hacl.Spec.K256.Scalar.qelem4 -> _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
{ "end_col": 38, "end_line": 100, "start_col": 2, "start_line": 96 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end
let is_qelem_le_q_halved_vartime4 (a0, a1, a2, a3: qelem4) : bool =
false
null
false
let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "Lib.IntTypes.uint64", "Lib.IntTypes.op_Less_Dot", "Lib.IntTypes.U64", "Lib.RawIntTypes.u64_to_UInt64", "FStar.UInt64.__uint_to_t", "Prims.bool", "Lib.IntTypes.op_Greater_Dot", "Lib.IntTypes.op_Less_Equals_Dot" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_qelem_le_q_halved_vartime4 : _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
[]
Hacl.Spec.K256.Scalar.is_qelem_le_q_halved_vartime4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
{ "end_col": 5, "end_line": 91, "start_col": 2, "start_line": 74 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end
let is_qelem_lt_q_vartime4 (a0, a1, a2, a3: qelem4) : bool =
false
null
false
let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem4", "Lib.IntTypes.uint64", "Lib.IntTypes.op_Less_Dot", "Lib.IntTypes.U64", "Lib.RawIntTypes.u64_to_UInt64", "FStar.UInt64.__uint_to_t", "Prims.bool", "Lib.IntTypes.op_Greater_Dot" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_qelem_lt_q_vartime4 : _: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
[]
Hacl.Spec.K256.Scalar.is_qelem_lt_q_vartime4
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Hacl.Spec.K256.Scalar.qelem4 -> Prims.bool
{ "end_col": 5, "end_line": 69, "start_col": 2, "start_line": 55 }
Prims.Tot
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qelem_lseq = lseq uint64 4
let qelem_lseq =
false
null
false
lseq uint64 4
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qelem_lseq : Type0
[]
Hacl.Spec.K256.Scalar.qelem_lseq
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 30, "end_line": 19, "start_col": 17, "start_line": 19 }
Prims.Tot
val mod_short_lseq: a:qelem_lseq -> qelem_lseq
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a
val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a =
false
null
false
let t0, t1, t2, t3 = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem_lseq", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.map2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.mask_select", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.u64", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add", "Lib.Sequence.lseq", "Lib.Sequence.create4", "Hacl.Spec.K256.Scalar.qelem4", "Hacl.Spec.K256.Scalar.make_pow2_256_minus_order_k256" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_short_lseq: a:qelem_lseq -> qelem_lseq
[]
Hacl.Spec.K256.Scalar.mod_short_lseq
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.K256.Scalar.qelem_lseq -> Hacl.Spec.K256.Scalar.qelem_lseq
{ "end_col": 34, "end_line": 117, "start_col": 22, "start_line": 111 }
Prims.Pure
val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q)
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r
val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () =
false
null
false
[@@ inline_let ]let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Hacl.Spec.K256.Scalar.qas_nat4", "Prims.op_Subtraction", "Prims.pow2", "Spec.K256.PointOps.q", "FStar.Pervasives.Native.tuple4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Pervasives.Native.Mktuple4", "Lib.IntTypes.uint64", "Lib.IntTypes.u64", "Hacl.Spec.K256.Scalar.qelem4" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q)
false
false
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q)
[]
Hacl.Spec.K256.Scalar.make_pow2_256_minus_order_k256
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> Prims.Pure Hacl.Spec.K256.Scalar.qelem4
{ "end_col": 3, "end_line": 41, "start_col": 2, "start_line": 33 }
Prims.Tot
val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_pow2_256_minus_q_lseq len resLen a = let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in // a * t01 let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in // a * t2 * pow2 128 SB.bn_add m1 m0
val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq len resLen a =
false
null
false
let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in SB.bn_add m1 m0
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.bn_add", "Lib.IntTypes.U64", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u64", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.bn_mul", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Sequence.create2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Base.carry" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a noextract val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen
false
false
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen
[]
Hacl.Spec.K256.Scalar.mul_pow2_256_minus_q_lseq
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_nat -> resLen: Lib.IntTypes.size_nat{2 + len <= resLen} -> a: Lib.Sequence.lseq Lib.IntTypes.uint64 len -> Hacl.Spec.Bignum.Base.carry Lib.IntTypes.U64 * Lib.Sequence.lseq Lib.IntTypes.uint64 resLen
{ "end_col": 17, "end_line": 133, "start_col": 44, "start_line": 125 }
Prims.Tot
val qmul_shift_384 (a b: qelem_lseq) : qelem_lseq
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qmul_shift_384 (a b:qelem_lseq) : qelem_lseq = let l = SB.bn_mul a b in let res_b = SB.bn_rshift l 6 in let res_b_padded = create 4 (u64 0) in let res_b_padded = update_sub res_b_padded 0 2 res_b in let _, res1_b = SB.bn_add1 res_b_padded (u64 1) in let flag = l.[5] >>. 63ul in let mask = u64 0 -. flag in // mask = if flag is set then ones_v U64 else 0 map2 (BB.mask_select mask) res1_b res_b_padded
val qmul_shift_384 (a b: qelem_lseq) : qelem_lseq let qmul_shift_384 (a b: qelem_lseq) : qelem_lseq =
false
null
false
let l = SB.bn_mul a b in let res_b = SB.bn_rshift l 6 in let res_b_padded = create 4 (u64 0) in let res_b_padded = update_sub res_b_padded 0 2 res_b in let _, res1_b = SB.bn_add1 res_b_padded (u64 1) in let flag = l.[ 5 ] >>. 63ul in let mask = u64 0 -. flag in map2 (BB.mask_select mask) res1_b res_b_padded
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Hacl.Spec.K256.Scalar.qelem_lseq", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.map2", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.mask_select", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.Sequence.op_String_Access", "Prims.op_Addition", "FStar.UInt32.__uint_to_t", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add1", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Prims.op_Subtraction", "Hacl.Spec.Bignum.bn_rshift", "Hacl.Spec.Bignum.bn_mul" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a noextract val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq len resLen a = let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in // a * t01 let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in // a * t2 * pow2 128 SB.bn_add m1 m0 // a * SECP256K1_N_C noextract val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq_add len resLen a e = let _, m = mul_pow2_256_minus_q_lseq len resLen a in // a * SECP256K1_N_C SB.bn_add m e // e + a * SECP256K1_N_C noextract val mod_lseq_before_final: a:lseq uint64 8 -> BB.carry U64 & qelem_lseq let mod_lseq_before_final a = // Reduce 512 bits into 385. // m[0..6] = a[0..3] + a[4..7] * SECP256K1_N_C. // Reduce 385 bits into 258. // p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. // Reduce 258 bits into 256. // c, r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. // Final reduction of r. // secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); // 385 // 64 = 7 let _, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C // 258 // 64 = 5 let _, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4) // p[0..3] + p[4] * SECP256K1_N_C noextract val mod_lseq: a:lseq uint64 8 -> qelem_lseq let mod_lseq a = let c0, r = mod_lseq_before_final a in let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c1, out = SB.bn_add r tmp in let mask = u64 0 -. (c0 +. c1) in map2 (BB.mask_select mask) out r
false
true
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qmul_shift_384 (a b: qelem_lseq) : qelem_lseq
[]
Hacl.Spec.K256.Scalar.qmul_shift_384
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.K256.Scalar.qelem_lseq -> b: Hacl.Spec.K256.Scalar.qelem_lseq -> Hacl.Spec.K256.Scalar.qelem_lseq
{ "end_col": 48, "end_line": 191, "start_col": 50, "start_line": 182 }
Prims.Tot
val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_pow2_256_minus_q_lseq_add len resLen a e = let _, m = mul_pow2_256_minus_q_lseq len resLen a in // a * SECP256K1_N_C SB.bn_add m e
val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq_add len resLen a e =
false
null
false
let _, m = mul_pow2_256_minus_q_lseq len resLen a in SB.bn_add m e
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.bn_add", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Hacl.Spec.K256.Scalar.mul_pow2_256_minus_q_lseq" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a noextract val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq len resLen a = let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in // a * t01 let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in // a * t2 * pow2 128 SB.bn_add m1 m0 // a * SECP256K1_N_C noextract val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen
false
false
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen
[]
Hacl.Spec.K256.Scalar.mul_pow2_256_minus_q_lseq_add
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_nat -> resLen: Lib.IntTypes.size_nat{2 + len <= resLen /\ 4 <= resLen} -> a: Lib.Sequence.lseq Lib.IntTypes.uint64 len -> e: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> Hacl.Spec.Bignum.Base.carry Lib.IntTypes.U64 * Lib.Sequence.lseq Lib.IntTypes.uint64 resLen
{ "end_col": 15, "end_line": 143, "start_col": 50, "start_line": 141 }
Prims.Tot
val mod_lseq_before_final: a:lseq uint64 8 -> BB.carry U64 & qelem_lseq
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_lseq_before_final a = // Reduce 512 bits into 385. // m[0..6] = a[0..3] + a[4..7] * SECP256K1_N_C. // Reduce 385 bits into 258. // p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. // Reduce 258 bits into 256. // c, r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. // Final reduction of r. // secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); // 385 // 64 = 7 let _, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C // 258 // 64 = 5 let _, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4)
val mod_lseq_before_final: a:lseq uint64 8 -> BB.carry U64 & qelem_lseq let mod_lseq_before_final a =
false
null
false
let _, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in let _, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4)
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.K256.Scalar.mul_pow2_256_minus_q_lseq_add", "Lib.Sequence.sub", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.K256.Scalar.qelem_lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a noextract val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq len resLen a = let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in // a * t01 let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in // a * t2 * pow2 128 SB.bn_add m1 m0 // a * SECP256K1_N_C noextract val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq_add len resLen a e = let _, m = mul_pow2_256_minus_q_lseq len resLen a in // a * SECP256K1_N_C SB.bn_add m e // e + a * SECP256K1_N_C noextract
false
false
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_lseq_before_final: a:lseq uint64 8 -> BB.carry U64 & qelem_lseq
[]
Hacl.Spec.K256.Scalar.mod_lseq_before_final
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.Sequence.lseq Lib.IntTypes.uint64 8 -> Hacl.Spec.Bignum.Base.carry Lib.IntTypes.U64 * Hacl.Spec.K256.Scalar.qelem_lseq
{ "end_col": 59, "end_line": 165, "start_col": 29, "start_line": 148 }
Prims.Tot
val mod_lseq: a:lseq uint64 8 -> qelem_lseq
[ { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mod_lseq a = let c0, r = mod_lseq_before_final a in let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c1, out = SB.bn_add r tmp in let mask = u64 0 -. (c0 +. c1) in map2 (BB.mask_select mask) out r
val mod_lseq: a:lseq uint64 8 -> qelem_lseq let mod_lseq a =
false
null
false
let c0, r = mod_lseq_before_final a in let t0, t1, t2, t3 = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c1, out = SB.bn_add r tmp in let mask = u64 0 -. (c0 +. c1) in map2 (BB.mask_select mask) out r
{ "checked_file": "Hacl.Spec.K256.Scalar.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Scalar.fst" }
[ "total" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.K256.Scalar.qelem_lseq", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.Sequence.map2", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Base.mask_select", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.op_Plus_Dot", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_add", "Lib.Sequence.create4", "Hacl.Spec.K256.Scalar.qelem4", "Hacl.Spec.K256.Scalar.make_pow2_256_minus_order_k256", "Hacl.Spec.K256.Scalar.mod_lseq_before_final" ]
[]
module Hacl.Spec.K256.Scalar open FStar.Mul open Lib.IntTypes open Lib.Sequence module BSeq = Lib.ByteSequence module SB = Hacl.Spec.Bignum module BB = Hacl.Spec.Bignum.Base module S = Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let qelem4 = uint64 & uint64 & uint64 & uint64 inline_for_extraction noextract let qelem_lseq = lseq uint64 4 noextract let qas_nat4 (f:qelem4) = let (f0, f1, f2, f3) = f in v f0 + v f1 * pow2 64 + v f2 * pow2 128 + v f3 * pow2 192 inline_for_extraction noextract val make_pow2_256_minus_order_k256: unit -> Pure qelem4 (requires True) (ensures fun r -> qas_nat4 r = pow2 256 - S.q) let make_pow2_256_minus_order_k256 () = [@inline_let] let r = (u64 0x402da1732fc9bebf, u64 0x4551231950b75fc4, u64 0x1, u64 0x0) in assert_norm (qas_nat4 r = pow2 256 - S.q); r inline_for_extraction noextract let is_qelem_zero_vartime4 ((f0,f1,f2,f3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 f0 =. 0uL && u64_to_UInt64 f1 =. 0uL && u64_to_UInt64 f2 =. 0uL && u64_to_UInt64 f3 =. 0uL inline_for_extraction noextract let is_qelem_lt_q_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 <. 0xfffffffffffffffeuL then true else begin if u64_to_UInt64 a2 >. 0xfffffffffffffffeuL then false else begin if u64_to_UInt64 a1 <. 0xbaaedce6af48a03buL then true else begin if u64_to_UInt64 a1 >. 0xbaaedce6af48a03buL then false else u64_to_UInt64 a0 <. 0xbfd25e8cd0364141uL end end end end inline_for_extraction noextract let is_qelem_le_q_halved_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in if u64_to_UInt64 a3 <. 0x7fffffffffffffffuL then true else begin if u64_to_UInt64 a3 >. 0x7fffffffffffffffuL then false else begin if u64_to_UInt64 a2 <. 0xffffffffffffffffuL then true else begin if u64_to_UInt64 a2 >. 0xffffffffffffffffuL then false else begin if u64_to_UInt64 a1 <. 0x5d576e7357a4501duL then true else begin if u64_to_UInt64 a1 >. 0x5d576e7357a4501duL then false else u64_to_UInt64 a0 <=. 0xdfe92f46681b20a0uL end end end end end inline_for_extraction noextract let is_qelem_eq_vartime4 ((a0,a1,a2,a3): qelem4) ((b0,b1,b2,b3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a0 =. u64_to_UInt64 b0 && u64_to_UInt64 a1 =. u64_to_UInt64 b1 && u64_to_UInt64 a2 =. u64_to_UInt64 b2 && u64_to_UInt64 a3 =. u64_to_UInt64 b3 inline_for_extraction noextract let is_qelem_lt_pow2_128_vartime4 ((a0,a1,a2,a3): qelem4) : bool = let open Lib.RawIntTypes in u64_to_UInt64 a2 =. 0uL && u64_to_UInt64 a3 =. 0uL noextract val mod_short_lseq: a:qelem_lseq -> qelem_lseq let mod_short_lseq a = let (t0,t1,t2,t3) = make_pow2_256_minus_order_k256 () in let tmp = create4 t0 t1 t2 t3 in let c, out = SB.bn_add a tmp in let mask = u64 0 -. c in map2 (BB.mask_select mask) out a noextract val mul_pow2_256_minus_q_lseq: len:size_nat -> resLen:size_nat{2 + len <= resLen} -> a:lseq uint64 len -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq len resLen a = let t0 = u64 0x402da1732fc9bebf in let t1 = u64 0x4551231950b75fc4 in let t01 = create2 t0 t1 in let m0 = SB.bn_mul a t01 in // a * t01 let m1 = create resLen (u64 0) in let m1 = update_sub m1 2 len a in // a * t2 * pow2 128 SB.bn_add m1 m0 // a * SECP256K1_N_C noextract val mul_pow2_256_minus_q_lseq_add: len:size_nat -> resLen:size_nat{2 + len <= resLen /\ 4 <= resLen} -> a:lseq uint64 len -> e:lseq uint64 4 -> BB.carry U64 & lseq uint64 resLen let mul_pow2_256_minus_q_lseq_add len resLen a e = let _, m = mul_pow2_256_minus_q_lseq len resLen a in // a * SECP256K1_N_C SB.bn_add m e // e + a * SECP256K1_N_C noextract val mod_lseq_before_final: a:lseq uint64 8 -> BB.carry U64 & qelem_lseq let mod_lseq_before_final a = // Reduce 512 bits into 385. // m[0..6] = a[0..3] + a[4..7] * SECP256K1_N_C. // Reduce 385 bits into 258. // p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. // Reduce 258 bits into 256. // c, r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. // Final reduction of r. // secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r)); // 385 // 64 = 7 let _, m = mul_pow2_256_minus_q_lseq_add 4 7 (sub a 4 4) (sub a 0 4) in // a[0..3] + a[4..7] * SECP256K1_N_C // 258 // 64 = 5 let _, p = mul_pow2_256_minus_q_lseq_add 3 5 (sub m 4 3) (sub m 0 4) in // m[0..3] + m[4..6] * SECP256K1_N_C mul_pow2_256_minus_q_lseq_add 1 4 (sub p 4 1) (sub p 0 4) // p[0..3] + p[4] * SECP256K1_N_C noextract
false
false
Hacl.Spec.K256.Scalar.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mod_lseq: a:lseq uint64 8 -> qelem_lseq
[]
Hacl.Spec.K256.Scalar.mod_lseq
{ "file_name": "code/k256/Hacl.Spec.K256.Scalar.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.Sequence.lseq Lib.IntTypes.uint64 8 -> Hacl.Spec.K256.Scalar.qelem_lseq
{ "end_col": 34, "end_line": 178, "start_col": 16, "start_line": 170 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Matrix", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let matrix_seq #c #m #r (generator: matrix_generator c m r) = seq_of_matrix (Matrix.init generator)
let matrix_seq #c #m #r (generator: matrix_generator c m r) =
false
null
false
seq_of_matrix (Matrix.init generator)
{ "checked_file": "FStar.Algebra.CommMonoid.Fold.Nested.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Matrix.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Algebra.CommMonoid.Fold.Nested.fst" }
[ "total" ]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* Here we reason about nested folds of functions over arbitrary integer intervals. We call such functions generators. *) module FStar.Algebra.CommMonoid.Fold.Nested module CF = FStar.Algebra.CommMonoid.Fold module CE = FStar.Algebra.CommMonoid.Equiv open FStar.IntegerIntervals open FStar.Matrix (* Auxiliary utility that casts (matrix c m n) to seq of length (m*n) *)
false
false
FStar.Algebra.CommMonoid.Fold.Nested.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val matrix_seq : generator: FStar.Matrix.matrix_generator c m r -> s: FStar.Seq.Base.seq c { FStar.Seq.Base.length s = m * r /\ (forall (ij: FStar.IntegerIntervals.under (m * r)). FStar.Seq.Base.index s ij == FStar.Seq.Base.index s (FStar.Matrix.get_ij m r (FStar.Matrix.get_i m r ij) (FStar.Matrix.get_j m r ij))) }
[]
FStar.Algebra.CommMonoid.Fold.Nested.matrix_seq
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Fold.Nested.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
generator: FStar.Matrix.matrix_generator c m r -> s: FStar.Seq.Base.seq c { FStar.Seq.Base.length s = m * r /\ (forall (ij: FStar.IntegerIntervals.under (m * r)). FStar.Seq.Base.index s ij == FStar.Seq.Base.index s (FStar.Matrix.get_ij m r (FStar.Matrix.get_i m r ij) (FStar.Matrix.get_j m r ij))) }
{ "end_col": 39, "end_line": 34, "start_col": 2, "start_line": 34 }
FStar.Pervasives.Lemma
val double_fold_transpose_lemma (#c:_) (#eq: _) (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : Lemma (double_fold cm offset_gen `eq.eq` double_fold cm (transpose_generator offset_gen))
[ { "abbrev": false, "full_module": "FStar.Matrix", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let double_fold_transpose_lemma #c #eq (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : Lemma (double_fold cm offset_gen `eq.eq` double_fold cm (transpose_generator offset_gen)) = let m = interval_size (ifrom_ito m0 mk) in let n = interval_size (ifrom_ito n0 nk) in let gen : matrix_generator c m n = fun i j -> offset_gen (m0+i) (n0+j) in let trans #c #a #b (f: matrix_generator c a b) = transposed_matrix_gen f in let trans_ofs #c (#a1 #a2 #b1 #b2:int) (f: ifrom_ito a1 a2 -> ifrom_ito b1 b2 -> c) = transpose_generator f in // Here, F* agrees that (n-1) == (nk-n0). // But, replace (n-1) with (nk-n0) below, and the proof will fail :) let subfold_lhs_base0 (i: under m) = CF.fold cm 0 (n-1) (gen i) in let subfold_rhs_base0 (j: under n) = CF.fold cm 0 (m-1) (trans gen j) in let subfold_lhs_precise (i: ifrom_ito m0 mk) = CF.fold cm n0 nk (offset_gen i) in let subfold_rhs_precise (j: ifrom_ito n0 nk) = CF.fold cm m0 mk (trans_ofs offset_gen j) in let lhs = CF.fold cm m0 mk subfold_lhs_precise in let rhs = CF.fold cm n0 nk subfold_rhs_precise in let aux_lhs (i: under m) : Lemma (CF.fold cm n0 nk (offset_gen (m0+i)) == CF.fold cm 0 (n-1) (gen i)) = CF.fold_offset_irrelevance_lemma cm n0 nk (offset_gen (m0+i)) 0 (n-1) (gen i) in let aux_rhs (j: under n) : Lemma (CF.fold cm m0 mk (trans_ofs offset_gen (n0+j)) == CF.fold cm 0 (m-1) (trans gen j)) = CF.fold_offset_irrelevance_lemma cm m0 mk (trans_ofs offset_gen (n0+j)) 0 (m-1) (trans gen j) in FStar.Classical.forall_intro aux_lhs; FStar.Classical.forall_intro aux_rhs; FStar.Classical.forall_intro eq.reflexivity; matrix_fold_equals_func_double_fold cm gen; matrix_fold_equals_func_double_fold cm (trans gen); let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (trans gen) in CF.fold_offset_elimination_lemma cm m0 mk subfold_lhs_precise subfold_lhs_base0; CF.fold_offset_elimination_lemma cm n0 nk subfold_rhs_precise subfold_rhs_base0; FStar.Classical.forall_intro_2 (FStar.Classical.move_requires_2 eq.symmetry); FStar.Classical.forall_intro_3 (FStar.Classical.move_requires_3 eq.transitivity); matrix_fold_equals_fold_of_transpose cm gen; matrix_fold_equals_func_double_fold cm gen; matrix_fold_equals_func_double_fold cm (transposed_matrix_gen gen); assert_norm (double_fold cm (transpose_generator offset_gen) == rhs); eq.transitivity (FStar.Seq.Permutation.foldm_snoc cm matrix_mn) lhs rhs
val double_fold_transpose_lemma (#c:_) (#eq: _) (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : Lemma (double_fold cm offset_gen `eq.eq` double_fold cm (transpose_generator offset_gen)) let double_fold_transpose_lemma #c #eq (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: (ifrom_ito m0 mk -> ifrom_ito n0 nk -> c)) : Lemma ((double_fold cm offset_gen) `eq.eq` (double_fold cm (transpose_generator offset_gen))) =
false
null
true
let m = interval_size (ifrom_ito m0 mk) in let n = interval_size (ifrom_ito n0 nk) in let gen:matrix_generator c m n = fun i j -> offset_gen (m0 + i) (n0 + j) in let trans #c #a #b (f: matrix_generator c a b) = transposed_matrix_gen f in let trans_ofs #c (#a1: int) (#a2: int) (#b1: int) (#b2: int) (f: (ifrom_ito a1 a2 -> ifrom_ito b1 b2 -> c)) = transpose_generator f in let subfold_lhs_base0 (i: under m) = CF.fold cm 0 (n - 1) (gen i) in let subfold_rhs_base0 (j: under n) = CF.fold cm 0 (m - 1) (trans gen j) in let subfold_lhs_precise (i: ifrom_ito m0 mk) = CF.fold cm n0 nk (offset_gen i) in let subfold_rhs_precise (j: ifrom_ito n0 nk) = CF.fold cm m0 mk (trans_ofs offset_gen j) in let lhs = CF.fold cm m0 mk subfold_lhs_precise in let rhs = CF.fold cm n0 nk subfold_rhs_precise in let aux_lhs (i: under m) : Lemma (CF.fold cm n0 nk (offset_gen (m0 + i)) == CF.fold cm 0 (n - 1) (gen i)) = CF.fold_offset_irrelevance_lemma cm n0 nk (offset_gen (m0 + i)) 0 (n - 1) (gen i) in let aux_rhs (j: under n) : Lemma (CF.fold cm m0 mk (trans_ofs offset_gen (n0 + j)) == CF.fold cm 0 (m - 1) (trans gen j)) = CF.fold_offset_irrelevance_lemma cm m0 mk (trans_ofs offset_gen (n0 + j)) 0 (m - 1) (trans gen j) in FStar.Classical.forall_intro aux_lhs; FStar.Classical.forall_intro aux_rhs; FStar.Classical.forall_intro eq.reflexivity; matrix_fold_equals_func_double_fold cm gen; matrix_fold_equals_func_double_fold cm (trans gen); let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (trans gen) in CF.fold_offset_elimination_lemma cm m0 mk subfold_lhs_precise subfold_lhs_base0; CF.fold_offset_elimination_lemma cm n0 nk subfold_rhs_precise subfold_rhs_base0; FStar.Classical.forall_intro_2 (FStar.Classical.move_requires_2 eq.symmetry); FStar.Classical.forall_intro_3 (FStar.Classical.move_requires_3 eq.transitivity); matrix_fold_equals_fold_of_transpose cm gen; matrix_fold_equals_func_double_fold cm gen; matrix_fold_equals_func_double_fold cm (transposed_matrix_gen gen); assert_norm (double_fold cm (transpose_generator offset_gen) == rhs); eq.transitivity (FStar.Seq.Permutation.foldm_snoc cm matrix_mn) lhs rhs
{ "checked_file": "FStar.Algebra.CommMonoid.Fold.Nested.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Matrix.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Algebra.CommMonoid.Fold.Nested.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.int", "FStar.IntegerIntervals.not_less_than", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.ifrom_ito", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Permutation.foldm_snoc", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "FStar.Algebra.CommMonoid.Fold.Nested.double_fold", "FStar.Algebra.CommMonoid.Fold.Nested.transpose_generator", "FStar.Matrix.matrix_fold_equals_func_double_fold", "FStar.Matrix.transposed_matrix_gen", "FStar.Matrix.matrix_fold_equals_fold_of_transpose", "FStar.Classical.forall_intro_3", "Prims.l_imp", "Prims.l_and", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Classical.move_requires_3", "FStar.Classical.forall_intro_2", "FStar.Classical.move_requires_2", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Algebra.CommMonoid.Fold.fold_offset_elimination_lemma", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "Prims.op_Multiply", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Algebra.CommMonoid.Fold.Nested.matrix_seq", "FStar.Classical.forall_intro", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Algebra.CommMonoid.Fold.fold", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Algebra.CommMonoid.Fold.fold_offset_irrelevance_lemma", "Prims.pos", "FStar.Matrix.matrix_generator", "Prims.nat", "FStar.IntegerIntervals.interval_size" ]
[]
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* Here we reason about nested folds of functions over arbitrary integer intervals. We call such functions generators. *) module FStar.Algebra.CommMonoid.Fold.Nested module CF = FStar.Algebra.CommMonoid.Fold module CE = FStar.Algebra.CommMonoid.Equiv open FStar.IntegerIntervals open FStar.Matrix (* Auxiliary utility that casts (matrix c m n) to seq of length (m*n) *) let matrix_seq #c #m #r (generator: matrix_generator c m r) = seq_of_matrix (Matrix.init generator) (* Most general form of nested fold swap theorem. Here we prove that we can exchange the order of nested foldings over any suitable generator function. We use the previously proved weaker version (for zero-based indices) in order to prove this, because this way the two proofs together are way shorter. I keep the argument types explicit in order to make the proof easier to read. *) let double_fold_transpose_lemma #c #eq (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : Lemma (double_fold cm offset_gen
false
false
FStar.Algebra.CommMonoid.Fold.Nested.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val double_fold_transpose_lemma (#c:_) (#eq: _) (#m0: int) (#mk: not_less_than m0) (#n0: int) (#nk: not_less_than n0) (cm: CE.cm c eq) (offset_gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : Lemma (double_fold cm offset_gen `eq.eq` double_fold cm (transpose_generator offset_gen))
[]
FStar.Algebra.CommMonoid.Fold.Nested.double_fold_transpose_lemma
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Fold.Nested.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> offset_gen: (_: FStar.IntegerIntervals.ifrom_ito m0 mk -> _: FStar.IntegerIntervals.ifrom_ito n0 nk -> c) -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Algebra.CommMonoid.Fold.Nested.double_fold cm offset_gen) (FStar.Algebra.CommMonoid.Fold.Nested.double_fold cm (FStar.Algebra.CommMonoid.Fold.Nested.transpose_generator offset_gen)))
{ "end_col": 73, "end_line": 92, "start_col": 61, "start_line": 52 }
Prims.GTot
val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_root_inv #_ #f hs0 acc actd rt = MTS.mt_get_root #_ #f #(log2c (S.length hs0)) (hash_seq_spec_full #_ #f hs0 acc actd) == MTS.HRaw rt
val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0 let mt_root_inv #_ #f hs0 acc actd rt =
false
null
false
MTS.mt_get_root #_ #f #(log2c (S.length hs0)) (hash_seq_spec_full #_ #f hs0 acc actd) == MTS.HRaw rt
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.bool", "Prims.eq2", "MerkleTree.Spec.padded_hash", "MerkleTree.Spec.mt_get_root", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Base.hash_seq_spec_full", "MerkleTree.Spec.HRaw" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j) let rec mt_rhs_inv #_ #f j smt rhs actd = if j = 0 then true else begin (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1)) end val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0
[]
MerkleTree.New.High.Correct.Base.mt_root_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs0: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs0 > 0} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> rt: MerkleTree.New.High.hash -> Prims.GTot Type0
{ "end_col": 58, "end_line": 622, "start_col": 2, "start_line": 621 }
Prims.GTot
val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1))
val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 =
false
null
false
S.equal s1 (S.slice s2 0 (S.length s1))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0
[]
MerkleTree.New.High.Correct.Base.seq_prefix
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s1 <= FStar.Seq.Base.length s2} -> Prims.GTot Type0
{ "end_col": 41, "end_line": 21, "start_col": 2, "start_line": 21 }
Prims.GTot
val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds)
val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds =
false
null
false
if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "Prims.l_and", "Prims.eq2", "MerkleTree.New.High.hash", "FStar.Seq.Base.index", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "Prims.op_Addition", "Prims.op_Division", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_olds_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> i: Prims.nat -> olds: MerkleTree.New.High.hashess{FStar.Seq.Base.length olds = 32} -> Prims.GTot Type0
{ "end_col": 46, "end_line": 234, "start_col": 2, "start_line": 231 }
Prims.GTot
val mt_spec: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > 0} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (MTS.merkle_tree #hsz (log2c (MT?.j mt)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_spec #hsz mt olds = hash_seq_spec #_ (mt_base mt olds)
val mt_spec: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > 0} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (MTS.merkle_tree #hsz (log2c (MT?.j mt))) let mt_spec #hsz mt olds =
false
null
false
hash_seq_spec #_ (mt_base mt olds)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.l_and", "MerkleTree.New.High.mt_wf_elts", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.__proj__MT__item__i", "MerkleTree.New.High.Correct.Base.hash_seq_spec", "MerkleTree.New.High.Correct.Base.mt_base", "MerkleTree.Spec.merkle_tree", "MerkleTree.New.High.Correct.Base.log2c" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j) let rec mt_rhs_inv #_ #f j smt rhs actd = if j = 0 then true else begin (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1)) end val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0 let mt_root_inv #_ #f hs0 acc actd rt = MTS.mt_get_root #_ #f #(log2c (S.length hs0)) (hash_seq_spec_full #_ #f hs0 acc actd) == MTS.HRaw rt val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt}) let mt_base #hsz mt olds = S.head (merge_hs #hsz #(MT?.hash_fun mt) olds (MT?.hs mt)) #pop-options // --max_fuel 1 val mt_spec: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > 0} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (MTS.merkle_tree #hsz (log2c (MT?.j mt)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_spec: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > 0} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (MTS.merkle_tree #hsz (log2c (MT?.j mt)))
[]
MerkleTree.New.High.Correct.Base.mt_spec
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt /\ MT?.j mt > 0} -> olds: MerkleTree.New.High.hashess { FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv 0 (MT?.i mt) olds } -> Prims.GTot (MerkleTree.Spec.merkle_tree (MerkleTree.New.High.Correct.Base.log2c (MT?.j mt)))
{ "end_col": 36, "end_line": 640, "start_col": 2, "start_line": 640 }
Prims.GTot
val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1))
val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs =
false
null
false
forall (i: nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "Spec.Hash.Definitions.bytes", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Lib.IntTypes.uint8", "FStar.Seq.Base.index", "Prims.op_Multiply", "Prims.op_Addition" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0
[]
MerkleTree.New.High.Correct.Base.mt_hashes_next_rel
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> Prims.GTot Type0
{ "end_col": 45, "end_line": 87, "start_col": 2, "start_line": 84 }
Prims.GTot
val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len})
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let empty_hashes #hsz len = S.create len S.empty
val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len =
false
null
false
S.create len S.empty
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "Prims.nat", "FStar.Seq.Base.create", "MerkleTree.New.High.hashes", "FStar.Seq.Base.empty", "MerkleTree.New.High.hash", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len})
[]
MerkleTree.New.High.Correct.Base.empty_hashes
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
len: Prims.nat -> Prims.GTot (hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = len})
{ "end_col": 48, "end_line": 40, "start_col": 28, "start_line": 40 }
Prims.GTot
val mt_inv: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot Type0
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_inv #hsz mt olds = let i = MT?.i mt in let j = MT?.j mt in let hs = MT?.hs mt in let rhs = MT?.rhs mt in let f = MT?.hash_fun mt in let fhs = merge_hs #hsz #f olds hs in let rt = MT?.mroot mt in log2c_bound j 32; mt_olds_hs_inv #_ #f 0 i j olds hs /\ (if j > 0 && MT?.rhs_ok mt then (mt_olds_hs_lth_inv_ok #_ #f 0 i j olds hs; mt_hashes_lth_inv_log_converted #_ #f j fhs; (mt_rhs_inv #_ #f j (mt_spec mt olds) (S.slice rhs 0 (log2c j)) false /\ mt_root_inv #_ #f (mt_base mt olds) hash_init false rt)) else true)
val mt_inv: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot Type0 let mt_inv #hsz mt olds =
false
null
false
let i = MT?.i mt in let j = MT?.j mt in let hs = MT?.hs mt in let rhs = MT?.rhs mt in let f = MT?.hash_fun mt in let fhs = merge_hs #hsz #f olds hs in let rt = MT?.mroot mt in log2c_bound j 32; mt_olds_hs_inv #_ #f 0 i j olds hs /\ (if j > 0 && MT?.rhs_ok mt then (mt_olds_hs_lth_inv_ok #_ #f 0 i j olds hs; mt_hashes_lth_inv_log_converted #_ #f j fhs; (mt_rhs_inv #_ #f j (mt_spec mt olds) (S.slice rhs 0 (log2c j)) false /\ mt_root_inv #_ #f (mt_base mt olds) hash_init false rt)) else true)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.__proj__MT__item__i", "MerkleTree.New.High.Correct.Base.mt_olds_hs_inv", "Prims.op_AmpAmp", "Prims.op_GreaterThan", "MerkleTree.New.High.__proj__MT__item__rhs_ok", "MerkleTree.New.High.Correct.Base.mt_rhs_inv", "MerkleTree.New.High.Correct.Base.mt_spec", "FStar.Seq.Base.slice", "MerkleTree.New.High.hash", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Base.mt_root_inv", "MerkleTree.New.High.Correct.Base.mt_base", "MerkleTree.New.High.hash_init", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok", "Prims.bool", "Prims.logical", "MerkleTree.New.High.Correct.Base.log2c_bound", "MerkleTree.New.High.__proj__MT__item__mroot", "Prims.nat", "MerkleTree.New.High.Correct.Base.merge_hs", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.__proj__MT__item__hash_fun", "MerkleTree.New.High.__proj__MT__item__rhs", "MerkleTree.New.High.__proj__MT__item__hs", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "MerkleTree.New.High.__proj__MT__item__j" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j) let rec mt_rhs_inv #_ #f j smt rhs actd = if j = 0 then true else begin (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1)) end val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0 let mt_root_inv #_ #f hs0 acc actd rt = MTS.mt_get_root #_ #f #(log2c (S.length hs0)) (hash_seq_spec_full #_ #f hs0 acc actd) == MTS.HRaw rt val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt}) let mt_base #hsz mt olds = S.head (merge_hs #hsz #(MT?.hash_fun mt) olds (MT?.hs mt)) #pop-options // --max_fuel 1 val mt_spec: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > 0} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (MTS.merkle_tree #hsz (log2c (MT?.j mt))) let mt_spec #hsz mt olds = hash_seq_spec #_ (mt_base mt olds) val mt_inv: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} ->
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_inv: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess{S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot Type0
[]
MerkleTree.New.High.Correct.Base.mt_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> olds: MerkleTree.New.High.hashess { FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv 0 (MT?.i mt) olds } -> Prims.GTot Type0
{ "end_col": 12, "end_line": 662, "start_col": 25, "start_line": 647 }
FStar.Pervasives.Lemma
val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1)
val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c =
false
null
true
if n = 1 then () else log2_bound (n / 2) (c - 1)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.log2_bound", "Prims.op_Division", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.log2_bound
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
n: Prims.nat{n > 0} -> c: Prims.nat{n < Prims.pow2 c} -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.Correct.Base.log2 n <= c - 1)
{ "end_col": 33, "end_line": 293, "start_col": 2, "start_line": 292 }
Prims.GTot
val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs))
val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs =
false
null
false
S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "FStar.Seq.Base.append", "MerkleTree.Spec.padded_hash", "MerkleTree.New.High.Correct.Base.hash_seq_lift", "MerkleTree.New.High.Correct.Base.create_pads", "Prims.op_Subtraction", "Prims.pow2", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.Spec.merkle_tree" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs > 0} -> Prims.GTot (MerkleTree.Spec.merkle_tree (MerkleTree.New.High.Correct.Base.log2c (FStar.Seq.Base.length hs)) )
{ "end_col": 67, "end_line": 435, "start_col": 2, "start_line": 434 }
FStar.Pervasives.Lemma
val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1))
val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len =
false
null
true
if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.merge_hs_empty", "Prims.op_Subtraction", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.merge_hs", "MerkleTree.New.High.Correct.Base.empty_hashes", "FStar.Seq.Properties.cons", "FStar.Seq.Base.empty", "MerkleTree.New.High.hash", "FStar.Seq.Base.append", "MerkleTree.New.High.Correct.Base.empty_hashes_tail", "MerkleTree.New.High.Correct.Base.empty_hashes_head" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.merge_hs_empty
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
len: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Base.merge_hs (MerkleTree.New.High.Correct.Base.empty_hashes len) (MerkleTree.New.High.Correct.Base.empty_hashes len)) (MerkleTree.New.High.Correct.Base.empty_hashes len))
{ "end_col": 38, "end_line": 173, "start_col": 2, "start_line": 164 }
Prims.GTot
val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len})
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let create_pads #hsz len = S.create len (MTS.HPad #hsz)
val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len =
false
null
false
S.create len (MTS.HPad #hsz)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "Prims.nat", "FStar.Seq.Base.create", "MerkleTree.Spec.padded_hash", "MerkleTree.Spec.HPad", "MerkleTree.Spec.hashes", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len})
[]
MerkleTree.New.High.Correct.Base.create_pads
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
len: Prims.nat -> Prims.GTot (pads: MerkleTree.Spec.hashes{FStar.Seq.Base.length pads = len})
{ "end_col": 55, "end_line": 427, "start_col": 27, "start_line": 427 }
FStar.Pervasives.Lemma
val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1)
val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv =
false
null
true
if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_empty", "Prims.op_Addition", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_empty
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv 0 (MerkleTree.New.High.Correct.Base.empty_hashes 32)) (decreases 32 - lv)
{ "end_col": 44, "end_line": 75, "start_col": 2, "start_line": 74 }
Prims.GTot
val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)})
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2)
val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n =
false
null
false
if n = 1 then 0 else 1 + log2 (n / 2)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "MerkleTree.New.High.Correct.Base.log2", "Prims.op_Division", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_LessThan" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)})
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)})
[ "recursion" ]
MerkleTree.New.High.Correct.Base.log2
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
n: Prims.nat{n > 0} -> Prims.GTot (c: Prims.nat{Prims.pow2 c <= n && n < Prims.pow2 (c + 1)})
{ "end_col": 23, "end_line": 286, "start_col": 2, "start_line": 285 }
Prims.GTot
val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)})
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let log2c n = if n = 0 then 0 else (log2 n + 1)
val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n =
false
null
false
if n = 0 then 0 else (log2 n + 1)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "MerkleTree.New.High.Correct.Base.log2", "Prims.b2t", "Prims.op_BarBar", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "Prims.op_LessThan" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)})
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)})
[]
MerkleTree.New.High.Correct.Base.log2c
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
n: Prims.nat -> Prims.GTot (c: Prims.nat{c = 0 || Prims.pow2 (c - 1) <= n && n < Prims.pow2 c})
{ "end_col": 35, "end_line": 304, "start_col": 2, "start_line": 304 }
FStar.Pervasives.Lemma
val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs
val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i =
false
null
true
hash_seq_lift_index #hsz hs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.nat", "Prims.op_LessThan", "MerkleTree.New.High.Correct.Base.hash_seq_lift_index", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec_index_raw
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs > 0} -> i: Prims.nat{i < FStar.Seq.Base.length hs} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.hash_seq_spec hs) i == MerkleTree.Spec.HRaw (FStar.Seq.Base.index hs i))
{ "end_col": 29, "end_line": 443, "start_col": 2, "start_line": 443 }
FStar.Pervasives.Lemma
val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1))
val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv =
false
null
true
if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_empty", "Prims.op_Addition", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_empty" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_inv_empty
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> FStar.Pervasives.Lemma (ensures ([@@ FStar.Pervasives.inline_let ]let _ = MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_empty lv in MerkleTree.New.High.Correct.Base.mt_hashes_inv lv 0 (MerkleTree.New.High.Correct.Base.empty_hashes 32))) (decreases 32 - lv)
{ "end_col": 43, "end_line": 112, "start_col": 2, "start_line": 110 }
FStar.Pervasives.Lemma
val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i
val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i =
false
null
true
hash_seq_spec_index_raw #hsz hs i
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.bool", "Prims.nat", "Prims.op_LessThan", "MerkleTree.New.High.Correct.Base.hash_seq_spec_index_raw", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec_full_index_raw
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs > 0} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> i: Prims.nat{i < FStar.Seq.Base.length hs} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.hash_seq_spec_full hs acc actd) i == MerkleTree.Spec.HRaw (FStar.Seq.Base.index hs i))
{ "end_col": 35, "end_line": 506, "start_col": 2, "start_line": 506 }
FStar.Pervasives.Lemma
val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j))))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs
val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs =
false
null
true
mt_hashes_inv_log_converted_ #_ #f 0 j fhs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_GreaterThan", "Prims.op_LessThan", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_log_converted_", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j))))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j))))
[]
MerkleTree.New.High.Correct.Base.mt_hashes_inv_log_converted
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 0 && j < Prims.pow2 32} -> fhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs = 32 /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv 0 j fhs } -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_inv 0 j fhs) (ensures ([@@ FStar.Pervasives.inline_let ]let _ = MerkleTree.New.High.Correct.Base.log2c_bound j 32 in [@@ FStar.Pervasives.inline_let ]let _ = MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_ 0 j fhs in MerkleTree.New.High.Correct.Base.mt_hashes_inv_log j (FStar.Seq.Base.slice fhs 0 (MerkleTree.New.High.Correct.Base.log2c j))))
{ "end_col": 44, "end_line": 402, "start_col": 2, "start_line": 402 }
Prims.GTot
val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)
val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs =
false
null
false
mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.Correct.Base.mt_hashes_inv", "MerkleTree.New.High.Correct.Base.merge_hs", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0
[]
MerkleTree.New.High.Correct.Base.mt_olds_hs_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv)} -> olds: MerkleTree.New.High.hashess {FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> Prims.GTot Type0
{ "end_col": 51, "end_line": 275, "start_col": 2, "start_line": 274 }
FStar.Pervasives.Lemma
val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2)
val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 =
false
null
true
if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_olds_inv_equiv", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_olds_inv_equiv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> i: Prims.nat -> olds1: MerkleTree.New.High.hashess{FStar.Seq.Base.length olds1 = 32} -> olds2: MerkleTree.New.High.hashess{FStar.Seq.Base.length olds2 = 32} -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds1 /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice olds1 lv 32) (FStar.Seq.Base.slice olds2 lv 32)) (ensures MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds2) (decreases 32 - lv)
{ "end_col": 60, "end_line": 249, "start_col": 2, "start_line": 247 }
Prims.GTot
val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_rhs_inv #_ #f j smt rhs actd = if j = 0 then true else begin (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1)) end
val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j) let rec mt_rhs_inv #_ #f j smt rhs actd =
false
null
false
if j = 0 then true else (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "MerkleTree.Spec.merkle_tree", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.bool", "Prims.int", "Prims.l_and", "Prims.op_AmpAmp", "Prims.op_Modulus", "Prims.eq2", "MerkleTree.Spec.padded_hash", "FStar.Seq.Base.index", "MerkleTree.Spec.HRaw", "FStar.Seq.Properties.head", "Prims.logical", "MerkleTree.New.High.Correct.Base.mt_rhs_inv", "Prims.op_Division", "MerkleTree.Spec.mt_next_lv", "FStar.Seq.Properties.tail", "Prims.op_BarBar" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_rhs_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat -> smt: MerkleTree.Spec.merkle_tree (MerkleTree.New.High.Correct.Base.log2c j) -> rhs: MerkleTree.New.High.hashes {FStar.Seq.Base.length rhs = MerkleTree.New.High.Correct.Base.log2c j} -> actd: Prims.bool -> Prims.GTot Type0
{ "end_col": 5, "end_line": 612, "start_col": 2, "start_line": 605 }
FStar.Pervasives.Lemma
val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)
val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs =
false
null
true
log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "MerkleTree.Spec.mt_next_rel_next_lv", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Base.hash_seq_spec", "Prims.unit", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel_lift_even", "MerkleTree.New.High.Correct.Base.log2c_div" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs)))
[]
MerkleTree.New.High.Correct.Base.mt_hashes_next_rel_next_even
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 1} -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> FStar.Pervasives.Lemma (requires j % 2 = 0 /\ MerkleTree.New.High.Correct.Base.mt_hashes_next_rel j hs nhs) (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Base.hash_seq_spec nhs) (MerkleTree.Spec.mt_next_lv (MerkleTree.New.High.Correct.Base.hash_seq_spec hs)))
{ "end_col": 52, "end_line": 487, "start_col": 2, "start_line": 484 }
Prims.GTot
val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs))
val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs =
false
null
false
if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.log2c", "Prims.int", "Prims.bool", "Prims.l_and", "Prims.eq2", "MerkleTree.New.High.hash", "FStar.Seq.Properties.head", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log", "Prims.op_Division", "FStar.Seq.Properties.tail" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat -> fhs: MerkleTree.New.High.hashess {FStar.Seq.Base.length fhs = MerkleTree.New.High.Correct.Base.log2c j} -> Prims.GTot Type0
{ "end_col": 55, "end_line": 326, "start_col": 2, "start_line": 324 }
Prims.GTot
val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs))
val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs =
false
null
false
if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.New.High.hashes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "FStar.Seq.Base.empty", "MerkleTree.Spec.padded_hash", "Prims.bool", "FStar.Seq.Properties.cons", "MerkleTree.Spec.HRaw", "FStar.Seq.Properties.head", "MerkleTree.New.High.Correct.Base.hash_seq_lift", "FStar.Seq.Properties.tail", "MerkleTree.Spec.hashes", "Prims.b2t", "Prims.nat" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.hash_seq_lift
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes -> Prims.GTot (shs: MerkleTree.Spec.hashes{FStar.Seq.Base.length shs = FStar.Seq.Base.length hs})
{ "end_col": 69, "end_line": 411, "start_col": 2, "start_line": 410 }
Prims.GTot
val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2)))
val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 =
false
null
false
if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2)))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.int", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Seq.Properties.cons", "FStar.Seq.Base.append", "MerkleTree.New.High.hash", "FStar.Seq.Properties.head", "MerkleTree.New.High.Correct.Base.merge_hs", "FStar.Seq.Properties.tail" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.merge_hs
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs1: MerkleTree.New.High.hashess -> hs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs1 = FStar.Seq.Base.length hs2} -> Prims.GTot (mhs: MerkleTree.New.High.hashess{FStar.Seq.Base.length mhs = FStar.Seq.Base.length hs1})
{ "end_col": 58, "end_line": 156, "start_col": 2, "start_line": 154 }
FStar.Pervasives.Lemma
val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2)
val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 =
false
null
true
if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_equiv", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_inv_equiv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> j: Prims.nat{j < Prims.pow2 (32 - lv)} -> fhs1: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs1 = 32 /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs1 } -> fhs2: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs2 = 32 /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs2 } -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_inv lv j fhs1 /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice fhs1 lv 32) (FStar.Seq.Base.slice fhs2 lv 32)) (ensures MerkleTree.New.High.Correct.Base.mt_hashes_inv lv j fhs2) (decreases 32 - lv)
{ "end_col": 60, "end_line": 145, "start_col": 2, "start_line": 142 }
Prims.GTot
val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt})
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_base #hsz mt olds = S.head (merge_hs #hsz #(MT?.hash_fun mt) olds (MT?.hs mt))
val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt}) let mt_base #hsz mt olds =
false
null
false
S.head (merge_hs #hsz #(MT?.hash_fun mt) olds (MT?.hs mt))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.__proj__MT__item__i", "FStar.Seq.Properties.head", "MerkleTree.New.High.Correct.Base.merge_hs", "MerkleTree.New.High.__proj__MT__item__hash_fun", "MerkleTree.New.High.__proj__MT__item__hs", "Prims.nat", "MerkleTree.New.High.hash", "MerkleTree.New.High.__proj__MT__item__j" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc val mt_rhs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> smt:MTS.merkle_tree #hsz (log2c j) -> rhs:hashes #hsz {S.length rhs = log2c j} -> actd:bool -> GTot Type0 (decreases j) let rec mt_rhs_inv #_ #f j smt rhs actd = if j = 0 then true else begin (if j % 2 = 1 && actd then (S.index smt j == MTS.HRaw (S.head rhs)) else true) /\ mt_rhs_inv #_ #f (j / 2) (MTS.mt_next_lv #_ #f #(log2c j) smt) (S.tail rhs) (actd || (j % 2 = 1)) end val mt_root_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs0:hashes #hsz {S.length hs0 > 0} -> acc:hash #hsz -> actd:bool -> rt:hash #hsz -> GTot Type0 let mt_root_inv #_ #f hs0 acc actd rt = MTS.mt_get_root #_ #f #(log2c (S.length hs0)) (hash_seq_spec_full #_ #f hs0 acc actd) == MTS.HRaw rt val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt})
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_base: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> GTot (bhs:hashes #hsz {S.length bhs = MT?.j mt})
[]
MerkleTree.New.High.Correct.Base.mt_base
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> olds: MerkleTree.New.High.hashess { FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv 0 (MT?.i mt) olds } -> Prims.GTot (bhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length bhs = MT?.j mt})
{ "end_col": 60, "end_line": 630, "start_col": 2, "start_line": 630 }
Prims.GTot
val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs)
val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs =
false
null
false
if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel", "FStar.Seq.Base.index", "Prims.op_Addition", "MerkleTree.New.High.Correct.Base.mt_hashes_inv", "Prims.op_Division" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> j: Prims.nat{j < Prims.pow2 (32 - lv)} -> fhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs = 32 /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs } -> Prims.GTot Type0
{ "end_col": 48, "end_line": 100, "start_col": 2, "start_line": 98 }
FStar.Pervasives.Lemma
val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)]
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1)
val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i =
false
null
true
if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_LessThan", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.merge_hs_index", "FStar.Seq.Properties.tail", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)]
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)]
[ "recursion" ]
MerkleTree.New.High.Correct.Base.merge_hs_index
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs1: MerkleTree.New.High.hashess -> hs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs1 = FStar.Seq.Base.length hs2} -> i: Prims.nat{i < FStar.Seq.Base.length hs1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.merge_hs hs1 hs2) i) (FStar.Seq.Base.append (FStar.Seq.Base.index hs1 i) (FStar.Seq.Base.index hs2 i))) (decreases FStar.Seq.Base.length hs1) [SMTPat (FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.merge_hs hs1 hs2) i)]
{ "end_col": 61, "end_line": 188, "start_col": 2, "start_line": 186 }
Prims.GTot
val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs))
val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs =
false
null
false
if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs))
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log", "Prims.op_LessThanOrEqual", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel", "FStar.Seq.Base.index", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_log", "Prims.op_Division", "FStar.Seq.Properties.tail" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_inv_log
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat -> fhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs = MerkleTree.New.High.Correct.Base.log2c j /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log j fhs } -> Prims.GTot Type0
{ "end_col": 52, "end_line": 347, "start_col": 2, "start_line": 345 }
FStar.Pervasives.Lemma
val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2)
val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 =
false
null
true
if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_equiv", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_equiv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> j: Prims.nat{j < Prims.pow2 (32 - lv)} -> fhs1: MerkleTree.New.High.hashess{FStar.Seq.Base.length fhs1 = 32} -> fhs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length fhs2 = 32} -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs1 /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice fhs1 lv 32) (FStar.Seq.Base.slice fhs2 lv 32)) (ensures MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs2) (decreases 32 - lv)
{ "end_col": 64, "end_line": 127, "start_col": 2, "start_line": 125 }
FStar.Pervasives.Lemma
val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs)
val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs =
false
null
true
if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.hs_wf_elts", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok", "Prims.op_Addition", "Prims.op_Division", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv)} -> olds: MerkleTree.New.High.hashess {FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j (MerkleTree.New.High.Correct.Base.merge_hs olds hs)) (decreases 32 - lv)
{ "end_col": 69, "end_line": 263, "start_col": 2, "start_line": 262 }
FStar.Pervasives.Lemma
val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd = if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc
val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_next #_ #f j hs nhs acc actd nacc nactd =
false
null
true
if j % 2 = 0 then hash_seq_spec_full_even_next #_ #f j hs nhs acc actd else hash_seq_spec_full_odd_next #_ #f j hs nhs acc actd nacc
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "Prims.bool", "Prims.op_Modulus", "MerkleTree.New.High.Correct.Base.hash_seq_spec_full_even_next", "MerkleTree.New.High.Correct.Base.hash_seq_spec_full_odd_next", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true) #pop-options val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec_full_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> nactd:bool -> Lemma (requires mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if j % 2 = 0 then acc else if actd then f (S.last hs) acc else S.last hs) /\ nactd == (actd || j % 2 = 1)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc nactd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec_full_next
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 1} -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> nacc: MerkleTree.New.High.hash -> nactd: Prims.bool -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_next_rel j hs nhs /\ nacc == (match j % 2 = 0 with | true -> acc | _ -> (match actd with | true -> f (FStar.Seq.Properties.last hs) acc | _ -> FStar.Seq.Properties.last hs) <: b: Spec.Hash.Definitions.bytes { FStar.Seq.Base.length b = hsz \/ FStar.Seq.Base.length b = hsz \/ FStar.Seq.Base.length b = hsz }) /\ nactd == (actd || j % 2 = 1)) (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Base.hash_seq_spec_full nhs nacc nactd) (MerkleTree.Spec.mt_next_lv (MerkleTree.New.High.Correct.Base.hash_seq_spec_full hs acc actd)))
{ "end_col": 63, "end_line": 595, "start_col": 2, "start_line": 593 }
FStar.Pervasives.Lemma
val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs)
val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs =
false
null
true
if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.New.High.hashes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.bool", "MerkleTree.New.High.Correct.Base.hash_seq_lift_index", "FStar.Seq.Properties.tail", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.hash_seq_lift_index
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes -> FStar.Pervasives.Lemma (ensures forall (i: Prims.nat{i < FStar.Seq.Base.length hs}). FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.hash_seq_lift hs) i == MerkleTree.Spec.HRaw (FStar.Seq.Base.index hs i)) (decreases FStar.Seq.Base.length hs)
{ "end_col": 43, "end_line": 423, "start_col": 2, "start_line": 422 }
FStar.Pervasives.Lemma
val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j)
val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j =
false
null
true
if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.bool", "MerkleTree.New.High.Correct.Base.merge_hs_slice_equal", "Prims.op_Addition", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.merge_hs_slice_equal
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
ahs1: MerkleTree.New.High.hashess -> ahs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length ahs1 = FStar.Seq.Base.length ahs2} -> bhs1: MerkleTree.New.High.hashess -> bhs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length bhs1 = FStar.Seq.Base.length bhs2} -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length ahs1 && j <= FStar.Seq.Base.length bhs1} -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Base.slice ahs1 i j) (FStar.Seq.Base.slice bhs1 i j) /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice ahs2 i j) (FStar.Seq.Base.slice bhs2 i j)) (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice (MerkleTree.New.High.Correct.Base.merge_hs ahs1 ahs2) i j) (FStar.Seq.Base.slice (MerkleTree.New.High.Correct.Base.merge_hs bhs1 bhs2) i j)) (decreases j - i)
{ "end_col": 64, "end_line": 206, "start_col": 2, "start_line": 203 }
FStar.Pervasives.Lemma
val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2
val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 =
false
null
true
if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_LessThan", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.merge_hs_upd", "FStar.Seq.Properties.tail", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.merge_hs_upd
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs1: MerkleTree.New.High.hashess -> hs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs1 = FStar.Seq.Base.length hs2} -> i: Prims.nat{i < FStar.Seq.Base.length hs1} -> v1: MerkleTree.New.High.hashes -> v2: MerkleTree.New.High.hashes -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Base.append (FStar.Seq.Base.index hs1 i) (FStar.Seq.Base.index hs2 i)) (FStar.Seq.Base.append v1 v2)) (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Base.merge_hs hs1 hs2) (MerkleTree.New.High.Correct.Base.merge_hs (FStar.Seq.Base.upd hs1 i v1) (FStar.Seq.Base.upd hs2 i v2))) (decreases i)
{ "end_col": 65, "end_line": 222, "start_col": 2, "start_line": 220 }
Prims.GTot
val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs)
val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs =
false
null
false
if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "Prims.l_and", "Prims.eq2", "MerkleTree.New.High.hash", "FStar.Seq.Base.index", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv", "Prims.op_Addition", "Prims.op_Division" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> j: Prims.nat{j < Prims.pow2 (32 - lv)} -> fhs: MerkleTree.New.High.hashess{FStar.Seq.Base.length fhs = 32} -> Prims.GTot Type0
{ "end_col": 46, "end_line": 65, "start_col": 2, "start_line": 63 }
FStar.Pervasives.Lemma
val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs)
val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs =
false
null
true
if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "MerkleTree.New.High.Correct.Base.log2c_bound" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> j: Prims.nat{j < Prims.pow2 (32 - lv)} -> fhs: MerkleTree.New.High.hashess{FStar.Seq.Base.length fhs = 32} -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv lv j fhs) (ensures ([@@ FStar.Pervasives.inline_let ]let _ = MerkleTree.New.High.Correct.Base.log2c_bound j (32 - lv) in MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log j (FStar.Seq.Base.slice fhs lv (lv + MerkleTree.New.High.Correct.Base.log2c j)))) (decreases j)
{ "end_col": 67, "end_line": 361, "start_col": 2, "start_line": 359 }
FStar.Pervasives.Lemma
val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc = log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc))) end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true)
val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) let hash_seq_spec_full_odd_next #hsz #f j hs nhs acc actd nacc =
false
null
true
log2c_div j; mt_hashes_next_rel_lift_odd #_ #f j hs nhs; if actd then (MTS.mt_next_rel_upd_odd #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))) (S.length nhs) (MTS.HRaw acc); MTS.mt_next_rel_next_lv #_ #f (log2c j) (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (f (S.last hs) acc)))) else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs nacc true)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "Prims.bool", "MerkleTree.Spec.mt_next_rel_next_lv", "MerkleTree.New.High.Correct.Base.log2c", "FStar.Seq.Base.upd", "MerkleTree.Spec.padded_hash", "MerkleTree.New.High.Correct.Base.hash_seq_spec", "MerkleTree.Spec.HRaw", "FStar.Seq.Properties.last", "Prims.unit", "MerkleTree.Spec.mt_next_rel_upd_odd", "MerkleTree.New.High.Correct.Base.hash_seq_spec_full", "MerkleTree.New.High.Correct.Base.mt_hashes_next_rel_lift_odd", "MerkleTree.New.High.Correct.Base.log2c_div" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs val hash_seq_spec_full_index_raw: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc actd) i == MTS.HRaw (S.index hs i)) let hash_seq_spec_full_index_raw #hsz #_ hs acc actd i = hash_seq_spec_index_raw #hsz hs i val hash_seq_spec_full_case_true: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> Lemma (S.index (hash_seq_spec_full #_ #f hs acc true) (S.length hs) == MTS.HRaw acc) let hash_seq_spec_full_case_true #_ #_ _ _ = () val hash_seq_spec_full_even_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec_full #_ #f nhs acc actd) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd))) #restart-solver #push-options "--quake 1/3 --z3rlimit 100 --fuel 2 --ifuel 1" let hash_seq_spec_full_even_next #hsz #f j hs nhs acc actd = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; if actd then begin MTS.mt_next_rel_upd_even_pad #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) (S.length hs / 2) (MTS.HRaw acc); let n = log2c j in let mt = S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc) in let nmt = S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw acc) in // assume (MTS.mt_next_rel #_ #f n mt nmt); MTS.mt_next_rel_next_lv #_ #f n mt nmt end else MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec_full #_ #f hs acc actd) (hash_seq_spec_full #_ #f nhs acc actd) #pop-options #push-options "--z3rlimit 80" val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec_full_odd_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> acc:hash #hsz -> actd:bool -> nacc:hash #hsz -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs /\ nacc == (if actd then f (S.last hs) acc else S.last hs)) (ensures S.equal (hash_seq_spec_full #_ #f nhs nacc true) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec_full #_ #f hs acc actd)))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec_full_odd_next
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 1} -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> nacc: MerkleTree.New.High.hash -> FStar.Pervasives.Lemma (requires j % 2 = 1 /\ MerkleTree.New.High.Correct.Base.mt_hashes_next_rel j hs nhs /\ nacc == (match actd with | true -> f (FStar.Seq.Properties.last hs) acc | _ -> FStar.Seq.Properties.last hs)) (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Base.hash_seq_spec_full nhs nacc true) (MerkleTree.Spec.mt_next_lv (MerkleTree.New.High.Correct.Base.hash_seq_spec_full hs acc actd)))
{ "end_col": 49, "end_line": 573, "start_col": 2, "start_line": 559 }
FStar.Pervasives.Lemma
val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs
val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs =
false
null
true
hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "MerkleTree.New.High.Correct.Base.hash_seq_lift_index", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs))
[]
MerkleTree.New.High.Correct.Base.mt_hashes_next_rel_lift_even
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 1} -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> FStar.Pervasives.Lemma (requires j % 2 = 0 /\ MerkleTree.New.High.Correct.Base.mt_hashes_next_rel j hs nhs) (ensures MerkleTree.Spec.mt_next_rel (MerkleTree.New.High.Correct.Base.log2c j) (MerkleTree.New.High.Correct.Base.hash_seq_spec hs) (MerkleTree.New.High.Correct.Base.hash_seq_spec nhs))
{ "end_col": 30, "end_line": 458, "start_col": 2, "start_line": 457 }
FStar.Pervasives.Lemma
val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs
val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs =
false
null
true
log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.int", "Prims.op_Division", "MerkleTree.New.High.Correct.Base.hash_seq_lift_index", "Prims.unit", "MerkleTree.New.High.Correct.Base.log2c_div" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs))))
[]
MerkleTree.New.High.Correct.Base.mt_hashes_next_rel_lift_odd
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j > 1} -> hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs = j} -> nhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length nhs = j / 2} -> FStar.Pervasives.Lemma (requires j % 2 = 1 /\ MerkleTree.New.High.Correct.Base.mt_hashes_next_rel j hs nhs) (ensures MerkleTree.Spec.mt_next_rel (MerkleTree.New.High.Correct.Base.log2c j) (MerkleTree.New.High.Correct.Base.hash_seq_spec hs) (FStar.Seq.Base.upd (MerkleTree.New.High.Correct.Base.hash_seq_spec nhs) (FStar.Seq.Base.length nhs) (MerkleTree.Spec.HRaw (FStar.Seq.Properties.last hs))))
{ "end_col": 30, "end_line": 473, "start_col": 2, "start_line": 471 }
FStar.Pervasives.Lemma
val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c)
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1)
val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c =
false
null
true
if n = 0 then () else log2c_bound (n / 2) (c - 1)
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.Correct.Base.log2c_bound", "Prims.op_Division", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c)
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c)
[ "recursion" ]
MerkleTree.New.High.Correct.Base.log2c_bound
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
n: Prims.nat -> c: Prims.nat{n < Prims.pow2 c} -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.Correct.Base.log2c n <= c)
{ "end_col": 34, "end_line": 316, "start_col": 2, "start_line": 315 }
Prims.GTot
val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_seq_spec_full #hsz #f hs acc actd = if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs
val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec_full #hsz #f hs acc actd =
false
null
false
if actd then (S.upd (hash_seq_spec #hsz hs) (S.length hs) (MTS.HRaw acc)) else hash_seq_spec #hsz hs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.bool", "FStar.Seq.Base.upd", "MerkleTree.Spec.padded_hash", "MerkleTree.New.High.Correct.Base.hash_seq_spec", "MerkleTree.Spec.HRaw", "MerkleTree.Spec.merkle_tree", "MerkleTree.New.High.Correct.Base.log2c" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs val mt_hashes_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j > 0 && j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz lv j fhs} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs lv (lv + log2c j)))) (decreases j) #pop-options #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" let rec mt_hashes_inv_log_converted_ #_ #f lv j fhs = if j = 1 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs; mt_hashes_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) #pop-options val mt_hashes_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 0 && j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv #hsz 0 j fhs} -> Lemma (requires mt_hashes_inv #_ #f 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs; mt_hashes_inv_log #_ #f j (S.slice fhs 0 (log2c j)))) let mt_hashes_inv_log_converted #_ #f j fhs = mt_hashes_inv_log_converted_ #_ #f 0 j fhs val hash_seq_lift: #hsz:pos -> hs:hashes #hsz -> GTot (shs:MTS.hashes #hsz {S.length shs = S.length hs}) (decreases (S.length hs)) let rec hash_seq_lift #hsz hs = if S.length hs = 0 then S.empty else S.cons (MTS.HRaw (S.head hs)) (hash_seq_lift #hsz (S.tail hs)) #push-options "--z3rlimit 50 --initial_fuel 2 --max_fuel 2" val hash_seq_lift_index: #hsz:pos -> hs:hashes #hsz -> Lemma (requires True) (ensures forall (i:nat{i < S.length hs}). S.index (hash_seq_lift #hsz hs) i == MTS.HRaw (S.index hs i)) (decreases (S.length hs)) let rec hash_seq_lift_index #hsz hs = if S.length hs = 0 then () else hash_seq_lift_index #hsz (S.tail hs) #pop-options val create_pads: #hsz:pos -> len:nat -> GTot (pads:MTS.hashes #hsz {S.length pads = len}) let create_pads #hsz len = S.create len (MTS.HPad #hsz) val hash_seq_spec: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs))) let hash_seq_spec #hsz hs = S.append (hash_seq_lift #hsz hs) (create_pads (pow2 (log2c (S.length hs)) - S.length hs)) val hash_seq_spec_index_raw: #hsz:pos -> hs:hashes #hsz {S.length hs > 0} -> i:nat{i < S.length hs} -> Lemma (S.index (hash_seq_spec #hsz hs) i == MTS.HRaw #hsz (S.index hs i)) let hash_seq_spec_index_raw #hsz hs i = hash_seq_lift_index #hsz hs // Now about recovering rightmost hashes #push-options "--z3rlimit 50 --initial_fuel 1 --max_fuel 1" val mt_hashes_next_rel_lift_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs)) let mt_hashes_next_rel_lift_even #hsz #_ j hs nhs = hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_lift_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 1 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures MTS.mt_next_rel #_ #f (log2c j) (hash_seq_spec #hsz hs) (S.upd (hash_seq_spec #hsz nhs) (S.length nhs) (MTS.HRaw (S.last hs)))) let mt_hashes_next_rel_lift_odd #hsz #_ j hs nhs = log2c_div j; hash_seq_lift_index #hsz hs; hash_seq_lift_index #hsz nhs val mt_hashes_next_rel_next_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> Lemma (requires j % 2 = 0 /\ mt_hashes_next_rel #_ #f j hs nhs) (ensures S.equal (hash_seq_spec #hsz nhs) (MTS.mt_next_lv #_ #f #(log2c j) (hash_seq_spec #hsz hs))) let mt_hashes_next_rel_next_even #hsz #f j hs nhs = log2c_div j; mt_hashes_next_rel_lift_even #_ #f j hs nhs; MTS.mt_next_rel_next_lv #_ #f (log2c j) (hash_seq_spec #hsz hs) (hash_seq_spec #hsz nhs) val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_seq_spec_full: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs:hashes #hsz {S.length hs > 0} -> acc:hash #hsz -> actd:bool -> GTot (MTS.merkle_tree #hsz (log2c (S.length hs)))
[]
MerkleTree.New.High.Correct.Base.hash_seq_spec_full
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashes{FStar.Seq.Base.length hs > 0} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> Prims.GTot (MerkleTree.Spec.merkle_tree (MerkleTree.New.High.Correct.Base.log2c (FStar.Seq.Base.length hs)) )
{ "end_col": 28, "end_line": 497, "start_col": 2, "start_line": 495 }
FStar.Pervasives.Lemma
val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j))))
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_hashes_lth_inv_log_converted #_ #f j fhs = mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs
val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j)))) let mt_hashes_lth_inv_log_converted #_ #f j fhs =
false
null
true
mt_hashes_lth_inv_log_converted_ #_ #f 0 j fhs
{ "checked_file": "MerkleTree.New.High.Correct.Base.fst.checked", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Base.fst" }
[ "lemma" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_", "Prims.unit" ]
[]
module MerkleTree.New.High.Correct.Base open FStar.Classical open FStar.Ghost open FStar.Seq module S = FStar.Seq module MTS = MerkleTree.Spec open MerkleTree.New.High #set-options "--z3rlimit 40 --max_fuel 0 --max_ifuel 0" /// Sequence helpers val seq_prefix: #a:Type -> s1:S.seq a -> s2:S.seq a{S.length s1 <= S.length s2} -> GTot Type0 let seq_prefix #a s1 s2 = S.equal s1 (S.slice s2 0 (S.length s1)) val seq_head_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.head (S.cons x s) == x) [SMTPat (S.cons x s)] let seq_head_cons #a x s = () val seq_tail_cons: #a:Type -> x:a -> s:S.seq a -> Lemma (S.equal (S.tail (S.cons x s)) s) [SMTPat (S.cons x s)] let seq_tail_cons #a x s = () /// Invariants and simulation relation of high-level Merkle tree design // Invariants of internal hashes val empty_hashes: (#hsz:pos) -> (len:nat) -> GTot (hs:hashess #hsz {S.length hs = len}) let empty_hashes #hsz len = S.create len S.empty val empty_hashes_head: #hsz:pos -> len:nat{len > 0} -> Lemma (S.head (empty_hashes #hsz len) == S.empty) let empty_hashes_head #_ _ = () val empty_hashes_tail: #hsz:pos -> len:nat{len > 0} -> Lemma (S.equal (S.tail (empty_hashes len)) (empty_hashes #hsz (len - 1))) let empty_hashes_tail #_ _ = () #push-options "--max_fuel 1" val mt_hashes_lth_inv: #hsz:pos -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_lth_inv #hsz lv j fhs = if lv = 32 then true else (S.length (S.index fhs lv) == j /\ mt_hashes_lth_inv (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures mt_hashes_lth_inv lv 0 (empty_hashes #hsz 32)) (decreases (32 - lv)) let rec mt_hashes_lth_inv_empty #hsz lv = if lv = 32 then () else mt_hashes_lth_inv_empty #hsz (lv + 1) val mt_hashes_next_rel: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> hs:hashes #hsz {S.length hs = j} -> nhs:hashes #hsz {S.length nhs = j / 2} -> GTot Type0 let mt_hashes_next_rel #hsz #f j hs nhs = forall (i:nat{i < j / 2}). S.index nhs i == f (S.index hs (op_Multiply 2 i)) (S.index hs (op_Multiply 2 i + 1)) #pop-options #push-options "--max_fuel 2" val mt_hashes_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32 /\ mt_hashes_lth_inv lv j fhs} -> GTot Type0 (decreases (32 - lv)) let rec mt_hashes_inv #hsz #f lv j fhs = if lv = 31 then true else (mt_hashes_next_rel #_ #f j (S.index fhs lv) (S.index fhs (lv + 1)) /\ mt_hashes_inv #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_inv_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> Lemma (requires True) (ensures (mt_hashes_lth_inv_empty #hsz lv; mt_hashes_inv #hsz #f lv 0 (empty_hashes #hsz 32))) (decreases (32 - lv)) let rec mt_hashes_inv_empty #hsz #f lv = if lv = 31 then () else (mt_hashes_lth_inv_empty #hsz (lv + 1); mt_hashes_inv_empty #_ #f (lv + 1)) val mt_hashes_lth_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess{S.length fhs1 = 32} -> fhs2:hashess{S.length fhs2 = 32} -> Lemma (requires mt_hashes_lth_inv lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_lth_inv #hsz lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_lth_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); mt_hashes_lth_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) #pop-options #push-options "--max_fuel 1" val mt_hashes_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> j:nat{j < pow2 (32 - lv)} -> fhs1:hashess #hsz {S.length fhs1 = 32 /\ mt_hashes_lth_inv lv j fhs1} -> fhs2:hashess #hsz {S.length fhs2 = 32 /\ mt_hashes_lth_inv lv j fhs2} -> Lemma (requires mt_hashes_inv #_ #f lv j fhs1 /\ S.equal (S.slice fhs1 lv 32) (S.slice fhs2 lv 32)) (ensures mt_hashes_inv #_ #f lv j fhs2) (decreases (32 - lv)) let rec mt_hashes_inv_equiv #hsz #f lv j fhs1 fhs2 = if lv = 31 then () else (assert (S.index fhs1 lv == S.index fhs2 lv); assert (S.index fhs1 (lv + 1) == S.index fhs2 (lv + 1)); mt_hashes_inv_equiv #_ #f (lv + 1) (j / 2) fhs1 fhs2) val merge_hs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> GTot (mhs:hashess #hsz {S.length mhs = S.length hs1}) (decreases (S.length hs1)) let rec merge_hs #hsz #f hs1 hs2 = if S.length hs1 = 0 then S.empty else (S.cons (S.append (S.head hs1) (S.head hs2)) (merge_hs #_ #f (S.tail hs1) (S.tail hs2))) val merge_hs_empty: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> len:nat -> Lemma (S.equal (merge_hs #_ #f (empty_hashes #hsz len) (empty_hashes #hsz len)) (empty_hashes #hsz len)) let rec merge_hs_empty #hsz #f len = if len = 0 then () else (empty_hashes_head #hsz len; empty_hashes_tail #hsz len; assert (S.equal (S.append #(hash #hsz) S.empty S.empty) (S.empty #(hash #hsz))); assert (S.equal (merge_hs #_ #f (empty_hashes len) (empty_hashes len)) (S.cons S.empty (merge_hs #_ #f (empty_hashes (len - 1)) (empty_hashes (len - 1))))); merge_hs_empty #_ #f (len - 1)) val merge_hs_index: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess -> hs2:hashess{S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> Lemma (requires True) (ensures S.equal (S.index (merge_hs #_ #f hs1 hs2) i) (S.append (S.index hs1 i) (S.index hs2 i))) (decreases (S.length hs1)) [SMTPat (S.index (merge_hs #_ #f hs1 hs2) i)] let rec merge_hs_index #hsz #f hs1 hs2 i = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_index #_ #f (S.tail hs1) (S.tail hs2) (i - 1) val merge_hs_slice_equal: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> ahs1:hashess #hsz -> ahs2:hashess #hsz {S.length ahs1 = S.length ahs2} -> bhs1:hashess #hsz -> bhs2:hashess #hsz {S.length bhs1 = S.length bhs2} -> i:nat -> j:nat{i <= j && j <= S.length ahs1 && j <= S.length bhs1} -> Lemma (requires S.equal (S.slice ahs1 i j) (S.slice bhs1 i j) /\ S.equal (S.slice ahs2 i j) (S.slice bhs2 i j)) (ensures S.equal (S.slice (merge_hs #_ #f ahs1 ahs2) i j) (S.slice (merge_hs #_ #f bhs1 bhs2) i j)) (decreases (j - i)) let rec merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 i j = if i = j then () else (assert (S.index ahs1 i == S.index bhs1 i); assert (S.index ahs2 i == S.index bhs2 i); merge_hs_slice_equal #_ #f ahs1 ahs2 bhs1 bhs2 (i + 1) j) val merge_hs_upd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> hs1:hashess #hsz -> hs2:hashess #hsz {S.length hs1 = S.length hs2} -> i:nat{i < S.length hs1} -> v1:hashes #hsz -> v2:hashes #hsz -> Lemma (requires S.equal (S.append (S.index hs1 i) (S.index hs2 i)) (S.append v1 v2)) (ensures S.equal (merge_hs #_ #f hs1 hs2) (merge_hs #_ #f (S.upd hs1 i v1) (S.upd hs2 i v2))) (decreases i) let rec merge_hs_upd #_ #f hs1 hs2 i v1 v2 = if S.length hs1 = 0 then () else if i = 0 then () else merge_hs_upd #_ #f (S.tail hs1) (S.tail hs2) (i - 1) v1 v2 val mt_olds_inv: #hsz:pos -> lv:nat{lv <= 32} -> i:nat -> olds:hashess #hsz {S.length olds = 32} -> GTot Type0 (decreases (32 - lv)) let rec mt_olds_inv #hsz lv i olds = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index olds lv) == ofs /\ mt_olds_inv #hsz (lv + 1) (i / 2) olds) val mt_olds_inv_equiv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> olds1:hashess #hsz {S.length olds1 = 32} -> olds2:hashess #hsz {S.length olds2 = 32} -> Lemma (requires mt_olds_inv #hsz lv i olds1 /\ S.equal (S.slice olds1 lv 32) (S.slice olds2 lv 32)) (ensures mt_olds_inv #hsz lv i olds2) (decreases (32 - lv)) let rec mt_olds_inv_equiv #hsz #f lv i olds1 olds2 = if lv = 32 then () else (assert (S.index olds1 lv == S.index olds2 lv); mt_olds_inv_equiv #_ #f (lv + 1) (i / 2) olds1 olds2) val mt_olds_hs_lth_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> Lemma (requires True) (ensures mt_hashes_lth_inv #hsz lv j (merge_hs #_ #f olds hs)) (decreases (32 - lv)) let rec mt_olds_hs_lth_inv_ok #hsz #f lv i j olds hs = if lv = 32 then () else (mt_olds_hs_lth_inv_ok #_ #f (lv + 1) (i / 2) (j / 2) olds hs) val mt_olds_hs_inv: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts #hsz lv hs i j} -> GTot Type0 let mt_olds_hs_inv #hsz #f lv i j olds hs = mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) // Relation between valid internal hashes (satisfying `mt_olds_hs_inv`) and // the spec. While giving such relation, all rightmost hashes are recovered. // Note that `MT?.rhs` after `construct_rhs` does NOT contain all rightmost // hashes; it has partial rightmost hashes that are enough to calculate // Merkle paths. val log2: n:nat{n > 0} -> GTot (c:nat{pow2 c <= n && n < pow2 (c+1)}) let rec log2 n = if n = 1 then 0 else 1 + log2 (n / 2) val log2_bound: n:nat{n > 0} -> c:nat{n < pow2 c} -> Lemma (log2 n <= c-1) let rec log2_bound n c = if n = 1 then () else log2_bound (n / 2) (c - 1) val log2_div: n:nat{n > 1} -> Lemma (log2 (n / 2) = log2 n - 1) let log2_div n = () val log2c: n:nat -> GTot (c:nat{c = 0 || (pow2 (c-1) <= n && n < pow2 c)}) let log2c n = if n = 0 then 0 else (log2 n + 1) val log2c_div: n:nat{n > 0} -> Lemma (log2c (n / 2) = log2c n - 1) let log2c_div n = () val log2c_bound: n:nat -> c:nat{n < pow2 c} -> Lemma (log2c n <= c) let rec log2c_bound n c = if n = 0 then () else log2c_bound (n / 2) (c - 1) val mt_hashes_lth_inv_log: #hsz:pos -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> GTot Type0 (decreases j) let rec mt_hashes_lth_inv_log #hsz j fhs = if j = 0 then true else (S.length (S.head fhs) == j /\ mt_hashes_lth_inv_log #hsz (j / 2) (S.tail fhs)) #pop-options #push-options "--max_fuel 2" val mt_hashes_lth_inv_log_next: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j > 1} -> fhs:hashess #hsz {S.length fhs = log2c j} -> Lemma (requires mt_hashes_lth_inv_log #hsz j fhs) (ensures S.length (S.head fhs) == j /\ S.length (S.head (S.tail fhs)) == j / 2) let mt_hashes_lth_inv_log_next #_ #_ _ _ = () val mt_hashes_inv_log: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> GTot Type0 (decreases j) let rec mt_hashes_inv_log #hsz #f j fhs = if j <= 1 then true else (mt_hashes_next_rel #_ #f j (S.index fhs 0) (S.index fhs 1) /\ mt_hashes_inv_log #_ #f (j / 2) (S.tail fhs)) val mt_hashes_lth_inv_log_converted_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> j:nat{j < pow2 (32 - lv)} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz lv j fhs) (ensures (log2c_bound j (32 - lv); mt_hashes_lth_inv_log #hsz j (S.slice fhs lv (lv + log2c j)))) (decreases j) let rec mt_hashes_lth_inv_log_converted_ #_ #f lv j fhs = if j = 0 then () else (log2c_bound (j / 2) (32 - (lv + 1)); mt_hashes_lth_inv_log_converted_ #_ #f (lv + 1) (j / 2) fhs) val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j))))
false
false
MerkleTree.New.High.Correct.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_hashes_lth_inv_log_converted: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat{j < pow2 32} -> fhs:hashess #hsz {S.length fhs = 32} -> Lemma (requires mt_hashes_lth_inv #hsz 0 j fhs) (ensures (log2c_bound j 32; mt_hashes_lth_inv_log #hsz j (S.slice fhs 0 (log2c j))))
[]
MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted
{ "file_name": "src/MerkleTree.New.High.Correct.Base.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
j: Prims.nat{j < Prims.pow2 32} -> fhs: MerkleTree.New.High.hashess{FStar.Seq.Base.length fhs = 32} -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv 0 j fhs) (ensures ([@@ FStar.Pervasives.inline_let ]let _ = MerkleTree.New.High.Correct.Base.log2c_bound j 32 in MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log j (FStar.Seq.Base.slice fhs 0 (MerkleTree.New.High.Correct.Base.log2c j))))
{ "end_col": 48, "end_line": 371, "start_col": 2, "start_line": 371 }