effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i =
false
null
true
let b = u64 1 <<. size (i % 26) in let out = f.[ 1 ] <- f.[ 1 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[ 1 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 1 ] i; assert (v out.[ 1 ] == v f.[ 1 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 1 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "checked_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ "lemma" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow26", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
false
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
[]
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma1
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 1} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
{ "end_col": 80, "end_line": 626, "start_col": 26, "start_line": 601 }
FStar.Pervasives.Lemma
val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lset_bit5_lemma4 f i = let b = u64 1 <<. size (i % 26) in let out = f.[4] <- f.[4] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[4] < pow2 (i % 26)); lset_bit5_lemma_aux f.[4] i; assert (v out.[4] == v f.[4] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[4]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma4 f i =
false
null
true
let b = u64 1 <<. size (i % 26) in let out = f.[ 4 ] <- f.[ 4 ] |. b in let f0, f1, f2, f3, f4 = (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) in let o0, o1, o2, o3, o4 = (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) in assert (v f4 * pow104 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f4 * pow104) i 104; assert (v f4 < pow2 (i - 104)); assert (i - 104 == i % 26); assert (v f.[ 4 ] < pow2 (i % 26)); lset_bit5_lemma_aux f.[ 4 ] i; assert (v out.[ 4 ] == v f.[ 4 ] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[ 4 ]) (pow2 (i % 26)); calc ( == ) { as_nat5 (o0, o1, o2, o3, o4); ( == ) { () } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; ( == ) { () } pow2 (i % 26) * pow104 + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.pow2_plus (i % 26) 104 } pow2 (i % 26 + 104) + as_nat5 (f0, f1, f2, f3, f4); ( == ) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4))
{ "checked_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[ "lemma" ]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Pervasives.Native.Mktuple5", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Prims.nat", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Poly1305.Field32xN.pow104", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Poly1305.Field32xN.pow26", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_sum_lt_pow2_26", "Lib.Sequence.op_String_Access", "Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma_aux", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Math.Lemmas.lemma_div_lt_nat", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.size" ]
[]
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi #push-options "--max_ifuel 1" val store_felem5_lemma: #w:lanes -> f:felem5 w -> Lemma (requires felem_fits5 f (1, 1, 1, 1, 1)) (ensures (let (lo, hi) = store_felem5 f in v hi * pow2 64 + v lo == (fas_nat5 f).[0] % pow2 128)) let store_felem5_lemma #w f = let (lo, hi) = store_felem5 f in assert (store_tup64_lemma (as_tup64_i f 0) == (lo, hi)) #pop-options val lemma_sum_lt_pow2_26: i:nat -> a:nat{a < pow2 (i % 26)} -> b:nat{b <= pow2 (i % 26)} -> Lemma (a + b <= max26) let lemma_sum_lt_pow2_26 i a b = assert (a + b < pow2 (i % 26) + pow2 (i % 26)); FStar.Math.Lemmas.pow2_le_compat 25 (i % 26); assert (a + b < pow2 25 + pow2 25); FStar.Math.Lemmas.pow2_double_sum 25; assert_norm (pow26 = pow2 26) val lset_bit5_lemma_aux: fi:uint64 -> i:size_nat{i <= 128} -> Lemma (requires v fi < pow2 (i % 26)) (ensures (v (fi |. (u64 1 <<. size (i % 26))) == v fi + pow2 (i % 26))) let lset_bit5_lemma_aux fi i = let b = u64 1 <<. size (i % 26) in FStar.Math.Lemmas.pow2_lt_compat 26 (i % 26); FStar.Math.Lemmas.pow2_lt_compat 64 26; FStar.Math.Lemmas.modulo_lemma (pow2 (i % 26)) (pow2 64); assert (v b == pow2 (i % 26)); logor_disjoint fi b (i % 26); let out_i = fi |. b in assert (v out_i == v fi + v b); assert (v out_i == v fi + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v fi) (v b); assert_norm (pow26 = pow2 26); assert (v out_i <= max26) val lset_bit5_lemma0: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 0} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma0 f i = let b = u64 1 <<. size (i % 26) in let out = f.[0] <- f.[0] |. b in assert (v f.[i / 26] < pow2 (i % 26)); lset_bit5_lemma_aux f.[0] i; assert (v out.[0] == v f.[0] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[0]) (pow2 (i % 26)); let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma1: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 1} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma1 f i = let b = u64 1 <<. size (i % 26) in let out = f.[1] <- f.[1] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f1 * pow2 26 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f1 * pow2 26) i 26; assert (v f1 < pow2 (i - 26)); assert (i - 26 == i % 26); assert (v f.[1] < pow2 (i % 26)); lset_bit5_lemma_aux f.[1] i; assert (v out.[1] == v f.[1] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[1]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow26 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 26 } pow2 (i % 26 + 26) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma2: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 2} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma2 f i = let b = u64 1 <<. size (i % 26) in let out = f.[2] <- f.[2] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f2 * pow52 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f2 * pow52) i 52; assert (v f2 < pow2 (i - 52)); assert (i - 52 == i % 26); assert (v f.[2] < pow2 (i % 26)); lset_bit5_lemma_aux f.[2] i; assert (v out.[2] == v f.[2] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[2]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow52 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 52 } pow2 (i % 26 + 52) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma3: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 3} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]))) let lset_bit5_lemma3 f i = let b = u64 1 <<. size (i % 26) in let out = f.[3] <- f.[3] |. b in let (f0, f1, f2, f3, f4) = (f.[0], f.[1], f.[2], f.[3], f.[4]) in let (o0, o1, o2, o3, o4) = (out.[0], out.[1], out.[2], out.[3], out.[4]) in assert (v f3 * pow78 < pow2 i); FStar.Math.Lemmas.lemma_div_lt_nat (v f3 * pow78) i 78; assert (v f3 < pow2 (i - 78)); assert (i - 78 == i % 26); assert (v f.[3] < pow2 (i % 26)); lset_bit5_lemma_aux f.[3] i; assert (v out.[3] == v f.[3] + pow2 (i % 26)); lemma_sum_lt_pow2_26 i (v f.[3]) (pow2 (i % 26)); calc (==) { as_nat5 (o0, o1, o2, o3, o4); (==) { } v o0 + v o1 * pow26 + v o2 * pow52 + v o3 * pow78 + v o4 * pow104; (==) { } pow2 (i % 26) * pow78 + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.pow2_plus (i % 26) 78 } pow2 (i % 26 + 78) + as_nat5 (f0, f1, f2, f3, f4); (==) { FStar.Math.Lemmas.euclidean_division_definition i 26 } pow2 i + as_nat5 (f0, f1, f2, f3, f4); }; assert (as_nat5 (o0, o1, o2, o3, o4) == pow2 i + as_nat5 (f0, f1, f2, f3, f4)) val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
false
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lset_bit5_lemma4: f:lseq uint64 5 -> i:size_nat{i <= 128 /\ i / 26 = 4} -> Lemma (requires (forall (i:nat). i < 5 ==> v f.[i] <= max26) /\ as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4]) < pow2 i) (ensures (let b = u64 1 <<. size (i % 26) in let out = f.[i / 26] <- f.[i / 26] |. b in (forall (i:nat). i < 5 ==> v out.[i] <= max26) /\ as_nat5 (out.[0], out.[1], out.[2], out.[3], out.[4]) == pow2 i + as_nat5 (f.[0], f.[1], f.[2], f.[3], f.[4])))
[]
Hacl.Poly1305.Field32xN.Lemmas2.lset_bit5_lemma4
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Lib.Sequence.lseq Lib.IntTypes.uint64 5 -> i: Lib.IntTypes.size_nat{i <= 128 /\ i / 26 = 4} -> FStar.Pervasives.Lemma (requires (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v f.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ]) < Prims.pow2 i) (ensures (let b = Lib.IntTypes.u64 1 <<. Lib.IntTypes.size (i % 26) in let out = f.[ i / 26 ] <- f.[ i / 26 ] |. b in (forall (i: Prims.nat). i < 5 ==> Lib.IntTypes.v out.[ i ] <= Hacl.Spec.Poly1305.Field32xN.max26) /\ Hacl.Spec.Poly1305.Field32xN.as_nat5 (out.[ 0 ], out.[ 1 ], out.[ 2 ], out.[ 3 ], out.[ 4 ]) == Prims.pow2 i + Hacl.Spec.Poly1305.Field32xN.as_nat5 (f.[ 0 ], f.[ 1 ], f.[ 2 ], f.[ 3 ], f.[ 4 ])))
{ "end_col": 80, "end_line": 752, "start_col": 26, "start_line": 727 }
Prims.Pure
val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
[ { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Poly1305.Vec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntVector", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Poly1305.Field32xN", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_tup64_lemma f = let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc (==) { v lo + v hi * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; (==) { } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 * pow2 40) % pow2 64 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow2 40 * pow2 64; (==) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow2 14 * pow2 64 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + v f2 / pow2 12 * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + v f2 / pow2 12 * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; (==) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi
val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128)) let store_tup64_lemma f =
false
null
false
let f0, f1, f2, f3, f4 = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in lemma_store_felem_lo f lo; lemma_store_felem_hi f hi; assert (v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64); assert (v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64); calc ( == ) { v lo + v hi * pow2 64; ( == ) { () } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64) * pow2 64; ( == ) { () } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 * pow2 40) % pow2 64) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 64 40 } v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 % pow2 24) * pow2 40) * pow2 64; ( == ) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f2) 64 52 } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + ((v f4 % pow2 24) * pow2 40) * pow2 64; ( == ) { assert_norm (pow2 40 * pow2 64 = pow104) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + (v f3 * pow2 14) * pow2 64 + (v f4 % pow2 24) * pow104; ( == ) { assert_norm (pow2 14 * pow2 64 = pow78) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12) * pow2 52 + (v f2 / pow2 12) * pow2 64 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { assert_norm (pow2 12 * pow52 = pow2 64) } v f0 + v f1 * pow2 26 + (v f2 % pow2 12 + (v f2 / pow2 12) * pow2 12) * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { FStar.Math.Lemmas.euclidean_division_definition (v f2) (pow2 12) } v f0 + v f1 * pow2 26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104; ( == ) { lemma_tup64_mod_pow2_128 f } (as_nat5 f) % pow2 128; }; assert (v lo + v hi * pow2 64 == (as_nat5 f) % pow2 128); lo, hi
{ "checked_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntVector.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Poly1305.Vec.fst.checked", "Hacl.Spec.Poly1305.Field32xN.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Poly1305.Field32xN.Lemmas2.fst" }
[]
[ "Hacl.Spec.Poly1305.Field32xN.tup64_5", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Modulus", "Hacl.Spec.Poly1305.Field32xN.as_nat5", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Hacl.Spec.Poly1305.Field32xN.pow52", "Hacl.Spec.Poly1305.Field32xN.pow78", "Hacl.Spec.Poly1305.Field32xN.pow104", "Prims.op_Division", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "FStar.Math.Lemmas.euclidean_division_definition", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_tup64_mod_pow2_128", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_hi", "Hacl.Poly1305.Field32xN.Lemmas2.lemma_store_felem_lo", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Poly1305.Field32xN.Lemmas2 open Lib.IntTypes open Lib.IntVector open Lib.Sequence open FStar.Mul open FStar.Calc open Hacl.Spec.Poly1305.Vec include Hacl.Spec.Poly1305.Field32xN #reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq' --max_fuel 0 --max_ifuel 0" val lemma_mult_le: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a <= b /\ c <= d) (ensures a * c <= b * d) let lemma_mult_le a b c d = () val load_tup64_lemma0_lo: lo:uint64 -> Lemma (v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52 == v lo) let load_tup64_lemma0_lo lo = calc (==) { v lo % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow26 + v lo / pow2 52 * pow52; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo / pow2 26) % pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v lo) 26 52 } (v lo % pow2 52) % pow2 26 + ((v lo % pow2 52) / pow2 26) * pow2 26 + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo % pow2 52) (pow2 26) } (v lo % pow2 52) + v lo / pow2 52 * pow2 52; (==) { FStar.Math.Lemmas.euclidean_division_definition (v lo) (pow2 52) } v lo; } val load_tup64_lemma0_hi: hi:uint64 -> Lemma ((v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104 == v hi * pow2 64) let load_tup64_lemma0_hi hi = calc (==) { (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow78 = pow2 14 * pow2 64); assert_norm (pow104 = pow2 40 * pow2 64)} (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow2 14 * pow2 64 + v hi / pow2 40 * pow2 40 * pow2 64; (==) { } (v hi % pow2 14 + ((v hi / pow2 14) % pow2 26) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 40 } (v hi % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi) 14 40 } ((v hi % pow2 40) % pow2 14 + ((v hi % pow2 40) / pow2 14) * pow2 14 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi % pow2 40) (pow2 14) } (v hi % pow2 40 + (v hi / pow2 40) * pow2 40) * pow2 64; (==) { FStar.Math.Lemmas.euclidean_division_definition (v hi) (pow2 40) } v hi * pow2 64; } val load_tup64_lemma0: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures as_nat5 f == v hi * pow2 64 + v lo) #push-options"--z3rlimit 100" let load_tup64_lemma0 f lo hi = let (f0, f1, f2, f3, f4) = f in calc (==) { as_nat5 f; (==) { } v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104; (==) { } v lo % pow2 26 + (v lo / pow2 26) % pow2 26 * pow26 + v lo / pow2 52 * pow52 + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_lo lo } v lo + (v hi % pow2 14) * pow2 12 * pow52 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { assert_norm (pow2 12 * pow52 = pow2 64) } v lo + (v hi % pow2 14) * pow2 64 + (v hi / pow2 14) % pow2 26 * pow78 + v hi / pow2 40 * pow104; (==) { load_tup64_lemma0_hi hi } v lo + v hi * pow2 64; }; assert (as_nat5 f == v hi * pow2 64 + v lo) #pop-options val load_tup64_fits_lemma: f:tup64_5 -> lo:uint64 -> hi:uint64 -> Lemma (requires (let (f0, f1, f2, f3, f4) = f in v f0 == v lo % pow2 26 /\ v f1 == (v lo / pow2 26) % pow2 26 /\ v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 /\ v f3 == (v hi / pow2 14) % pow2 26 /\ v f4 == v hi / pow2 40)) (ensures tup64_fits5 f (1, 1, 1, 1, 1)) let load_tup64_fits_lemma f lo hi = let (f0, f1, f2, f3, f4) = f in assert_norm (pow26 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v lo) 64 52; lemma_mult_le (v hi % pow2 14) (pow2 14 - 1) (pow2 12) (pow2 12); assert_norm (pow2 14 * pow2 12 = pow2 26); FStar.Math.Lemmas.lemma_div_lt_nat (v hi) 64 40; assert_norm (pow2 24 < pow2 26) val load_tup64_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (v ((lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul)) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_lemma_f2 lo hi = let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in let tmp = (hi &. u64 0x3fff) in calc (==) { v (tmp <<. 12ul) % pow2 12; (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } (v tmp * pow2 12 % pow2 64) % pow2 12; (==) { assert_norm (pow2 64 = pow2 12 * pow2 52) } (v tmp * pow2 12 % (pow2 12 * pow2 52)) % pow2 12; (==) {FStar.Math.Lemmas.modulo_modulo_lemma (v tmp * pow2 12) (pow2 12) (pow2 52)} v tmp * pow2 12 % pow2 12; (==) {FStar.Math.Lemmas.multiple_modulo_lemma (v tmp) (pow2 12)} 0; }; assert (v (tmp <<. 12ul) % pow2 12 = 0); FStar.Math.Lemmas.lemma_div_lt (v lo) 64 52; assert (v (lo >>. 52ul) < pow2 12); logor_disjoint (lo >>. 52ul) ((hi &. u64 0x3fff) <<. 12ul) 12; calc (==) { v f2; (==) { } v (lo >>. 52ul) + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_right_lemma lo 52ul } v lo / pow2 52 + v ((hi &. u64 0x3fff) <<. 12ul); (==) { shift_left_lemma (hi &. u64 0x3fff) 12ul } v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64; }; assert (v f2 == v lo / pow2 52 + v (hi &. u64 0x3fff) * pow2 12 % pow2 64); assert_norm (0x3fff = pow2 14 - 1); mod_mask_lemma hi 14ul; assert (v (mod_mask #U64 #SEC 14ul) == v (u64 0x3fff)); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12 % pow2 64); assert (v hi % pow2 14 < pow2 14); assert_norm (pow2 14 * pow2 12 < pow2 64); FStar.Math.Lemmas.small_modulo_lemma_1 ((v hi % pow2 14) * pow2 12) (pow2 64); assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) noextract val load_tup64_lemma: lo:uint64 -> hi:uint64 -> Pure tup64_5 (requires True) (ensures fun f -> tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == v hi * pow2 64 + v lo) let load_tup64_lemma lo hi = let mask26 = u64 0x3ffffff in assert_norm (0x3ffffff = pow2 26 - 1); assert_norm (0x3fff = pow2 14 - 1); let f0 = lo &. mask26 in mod_mask_lemma lo 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v f0 == v lo % pow2 26); let f1 = (lo >>. 26ul) &. mask26 in assert (v f1 == (v lo / pow2 26) % pow2 26); let f2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12); let f3 = (hi >>. 14ul) &. mask26 in assert (v f3 == (v hi / pow2 14) % pow2 26); let f4 = hi >>. 40ul in assert (v f4 == v hi / pow2 40); let f = (f0, f1, f2, f3, f4) in load_tup64_lemma0 f lo hi; load_tup64_fits_lemma f lo hi; assert (as_nat5 f < pow2 128); assert_norm (pow2 128 < prime); FStar.Math.Lemmas.small_modulo_lemma_1 (as_nat5 f) prime; assert (as_nat5 f % prime == v hi * pow2 64 + v lo); f val load_felem5_lemma_i: #w:lanes -> lo:uint64xN w -> hi:uint64xN w -> i:nat{i < w} -> Lemma (let f = as_tup64_i (load_felem5 #w lo hi) i in tup64_fits5 f (1, 1, 1, 1, 1) /\ as_nat5 f < pow2 128 /\ as_nat5 f % prime == (uint64xN_v hi).[i] * pow2 64 + (uint64xN_v lo).[i]) let load_felem5_lemma_i #w lo hi i = assert (as_tup64_i (load_felem5 #w lo hi) i == load_tup64_lemma (vec_v lo).[i] (vec_v hi).[i]) noextract val load_tup64_4_compact: lo:uint64 -> hi:uint64 -> tup64_5 let load_tup64_4_compact lo hi = let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let o0 = lo &. mask26 in let o1 = (lo >>. 26ul) &. mask26 in let o2 = (t3 >>. 4ul) &. mask26 in let o3 = (t3 >>. 30ul) &. mask26 in let o4 = hi >>. 40ul in (o0, o1, o2, o3, o4) val load_tup64_4_compact_lemma_f2_mod: lo:uint64 -> hi:uint64 -> Lemma ((v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) let load_tup64_4_compact_lemma_f2_mod lo hi = calc (<) { v lo / pow2 52 + (v hi % pow2 14) * pow2 12; (<) { Math.Lemmas.lemma_div_lt (v lo) 64 52 } pow2 12 + (v hi % pow2 14) * pow2 12; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 12) (v hi % pow2 14) (pow2 14 - 1) } pow2 12 + (pow2 14 - 1) * pow2 12; (==) { Math.Lemmas.distributivity_sub_left (pow2 14) 1 (pow2 12); Math.Lemmas.pow2_plus 14 12 } pow2 26; }; assert (v lo / pow2 52 + (v hi % pow2 14) * pow2 12 < pow2 26); Math.Lemmas.small_modulo_lemma_1 (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) (pow2 26) val load_tup64_4_compact_lemma_f2: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 4ul) &. u64 0x3ffffff) == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #push-options "--z3rlimit 100" let load_tup64_4_compact_lemma_f2 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f2 = (t3 >>. 4ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 4; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 4; (==) { Math.Lemmas.pow2_plus 12 4 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 12 * pow2 4) / pow2 4; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 4) ((v hi % pow2 48) * pow2 12) } (v lo / pow2 48) / pow2 4 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } v lo / pow2 52 + (v hi % pow2 48) * pow2 12; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 60 12 } v lo / pow2 52 + (v hi * pow2 12) % pow2 60; }; assert (v (t3 >>. 4ul) == v lo / pow2 52 + (v hi * pow2 12) % pow2 60); assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f2 == v (t3 >>. 4ul) % pow2 26); calc (==) { (v lo / pow2 52 + (v hi * pow2 12) % pow2 60) % pow2 26; (==) { Math.Lemmas.lemma_mod_plus_distr_r (v lo / pow2 52) ((v hi * pow2 12) % pow2 60) (pow2 26) } (v lo / pow2 52 + (v hi * pow2 12) % pow2 60 % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi * pow2 12) 26 60 } (v lo / pow2 52 + (v hi * pow2 12) % pow2 26) % pow2 26; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 26 12 } (v lo / pow2 52 + (v hi % pow2 14) * pow2 12) % pow2 26; (==) { load_tup64_4_compact_lemma_f2_mod lo hi } v lo / pow2 52 + (v hi % pow2 14) * pow2 12; }; assert (v f2 == v lo / pow2 52 + (v hi % pow2 14) * pow2 12) #pop-options val load_tup64_4_compact_lemma_f3: lo:uint64 -> hi:uint64 -> Lemma (let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in v ((t3 >>. 30ul) &. u64 0x3ffffff) == (v hi / pow2 14) % pow2 26) #push-options "--z3rlimit 200" let load_tup64_4_compact_lemma_f3 lo hi = let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let f3 = (t3 >>. 30ul) &. u64 0x3ffffff in Math.Lemmas.lemma_div_lt (v lo) 64 48; logor_disjoint (lo >>. 48ul) (hi <<. 16ul) 16; assert (v t3 == v lo / pow2 48 + (v hi * pow2 16) % pow2 64); calc (==) { (v lo / pow2 48 + (v hi * pow2 16) % pow2 64) / pow2 30; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v hi) 64 16 } (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 30; (==) { Math.Lemmas.pow2_plus 16 14; Math.Lemmas.division_multiplication_lemma (v lo / pow2 48 + (v hi % pow2 48) * pow2 16) (pow2 16) (pow2 14) } ((v lo / pow2 48 + (v hi % pow2 48) * pow2 16) / pow2 16) / pow2 14; (==) { Math.Lemmas.division_addition_lemma (v lo / pow2 48) (pow2 16) (v hi % pow2 48) } ((v lo / pow2 48) / pow2 16 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.division_multiplication_lemma (v lo) (pow2 48) (pow2 16); Math.Lemmas.pow2_plus 48 16 } (v lo / pow2 64 + (v hi % pow2 48)) / pow2 14; (==) { Math.Lemmas.small_div (v lo) (pow2 64) } (v hi % pow2 48) / pow2 14; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (v hi) 14 48 } (v hi / pow2 14) % pow2 34; }; assert_norm (0x3ffffff = pow2 26 - 1); mod_mask_lemma (t3 >>. 4ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v (u64 0x3ffffff)); assert (v f3 == v (t3 >>. 30ul) % pow2 26); assert (v f3 == ((v hi / pow2 14) % pow2 34) % pow2 26); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v hi / pow2 14) 26 34 #pop-options val load_tup64_4_compact_lemma: lo:uint64 -> hi:uint64 -> Lemma (load_tup64_4_compact lo hi == load_tup64_lemma lo hi) let load_tup64_4_compact_lemma lo hi = let (l0, l1, l2, l3, l4) = load_tup64_4_compact lo hi in let (r0, r1, r2, r3, r4) = load_tup64_lemma lo hi in assert (l0 == r0 /\ l1 == r1 /\ l4 == r4); let mask26 = u64 0x3ffffff in let t3 = (lo >>. 48ul) |. (hi <<. 16ul) in let l2 = (t3 >>. 4ul) &. mask26 in load_tup64_4_compact_lemma_f2 lo hi; let r2 = (lo >>. 52ul) |. ((hi &. u64 0x3fff) <<. 12ul) in load_tup64_lemma_f2 lo hi; assert (v l2 == v r2); let r3 = (hi >>. 14ul) &. mask26 in mod_mask_lemma (hi >>. 14ul) 26ul; assert (v (mod_mask #U64 #SEC 26ul) == v mask26); assert (v r3 == (v hi / pow2 14) % pow2 26); let l3 = (t3 >>. 30ul) &. mask26 in load_tup64_4_compact_lemma_f3 lo hi val lemma_store_felem_lo: f:tup64_5{tup64_fits5 f (1, 1, 1, 1, 1)} -> lo:uint64 -> Lemma (let (f0, f1, f2, f3, f4) = f in let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in v lo == v f0 + v f1 * pow2 26 + (v f2 * pow2 52) % pow2 64) #push-options "--z3rlimit 200" #restart-solver let lemma_store_felem_lo f lo = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let lo = f0 |. (f1 <<. 26ul) |. (f2 <<. 52ul) in assert (v (f1 <<. 26ul) == v f1 * pow2 26 % pow2 64); FStar.Math.Lemmas.modulo_lemma (v f1 * pow2 26) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f1) 26 26; logor_disjoint f0 (f1 <<. 26ul) 26; assert (v (f0 |. (f1 <<. 26ul)) == v f0 + v f1 * pow2 26); assert_norm (pow2 26 * pow2 26 = pow2 52); assert (v f0 + v f1 * pow2 26 < pow2 52); assert (((v f2 * pow2 52) % pow2 64) % pow2 52 = 0); logor_disjoint (f0 |. (f1 <<. 26ul)) (f2 <<. 52ul) 52 #pop-options val lemma_store_felem_hi: f:tup64_5 -> hi:uint64 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in v hi == v f2 / pow2 12 + v f3 * pow2 14 + (v f4 * pow2 40) % pow2 64)) let lemma_store_felem_hi f hi = let (f0, f1, f2, f3, f4) = f in assert_norm (max26 = pow2 26 - 1); let hi = (f2 >>. 12ul) |. (f3 <<. 14ul) |. (f4 <<. 40ul) in FStar.Math.Lemmas.lemma_div_lt (v f2) 26 12; assert (v f2 / pow2 12 < pow2 14); assert (v (f3 <<. 14ul) == v f3 * pow2 14 % pow2 64); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26); assert_norm (pow2 26 * pow2 14 = pow2 40); assert_norm (pow2 40 < pow2 64); FStar.Math.Lemmas.modulo_lemma (v f3 * pow2 14) (pow2 64); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f3) 14 14; assert ((v f3 * pow2 14) % pow2 14 = 0); logor_disjoint (f2 >>. 12ul) (f3 <<. 14ul) 14; assert (v ((f2 >>. 12ul) |. (f3 <<. 14ul)) == v f2 / pow2 12 + v f3 * pow2 14); FStar.Math.Lemmas.lemma_mult_le_right (pow2 14) (v f3) (pow2 26 - 1); assert (v f2 / pow2 12 + v f3 * pow2 14 < pow2 40); FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v f4 * pow2 40) 40 64; assert (((v f4 * pow2 40) % pow2 64) % pow2 40 = (v f4 * pow2 40) % pow2 40); FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1 (v f4) 40 40; assert ((v f4 * pow2 40) % pow2 40 = 0); logor_disjoint ((f2 >>. 12ul) |. (f3 <<. 14ul)) (f4 <<. 40ul) 40 val lemma_tup64_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 < pow2 128)) let lemma_tup64_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104 in assert (tmp <= pow2 26 - 1 + (pow2 26 - 1) * pow26 + (pow2 26 - 1) * pow52 + (pow2 26 - 1) * pow78 + (pow2 24 - 1) * pow104); assert (tmp <= pow2 24 * pow104 - 1); assert_norm (pow2 24 * pow104 = pow2 128) val lemma_tup64_mod_pow2_128: f:tup64_5 -> Lemma (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (let (f0, f1, f2, f3, f4) = f in (as_nat5 f) % pow2 128 == v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + (v f4 % pow2 24) * pow104)) let lemma_tup64_mod_pow2_128 f = let (f0, f1, f2, f3, f4) = f in let tmp = v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 in calc (==) { (as_nat5 f) % pow2 128; (==) { } (v f0 + v f1 * pow26 + v f2 * pow52 + v f3 * pow78 + v f4 * pow104) % pow2 128; (==) { FStar.Math.Lemmas.lemma_mod_plus_distr_r tmp (v f4 * pow104) (pow2 128) } (tmp + (v f4 * pow104 % pow2 128)) % pow2 128; (==) { FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2 (v f4) 128 104 } (tmp + (v f4 % pow2 24) * pow104) % pow2 128; (==) { lemma_tup64_pow2_128 f; FStar.Math.Lemmas.modulo_lemma (tmp + (v f4 % pow2 24) * pow104) (pow2 128) } tmp + (v f4 % pow2 24) * pow104; }; assert ((as_nat5 f) % pow2 128 == tmp + (v f4 % pow2 24) * pow104) noextract val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
false
false
Hacl.Poly1305.Field32xN.Lemmas2.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_tup64_lemma: f:tup64_5 -> Pure (uint64 & uint64) (requires tup64_fits5 f (1, 1, 1, 1, 1)) (ensures (fun (lo, hi) -> v hi * pow2 64 + v lo == as_nat5 f % pow2 128))
[]
Hacl.Poly1305.Field32xN.Lemmas2.store_tup64_lemma
{ "file_name": "code/poly1305/Hacl.Poly1305.Field32xN.Lemmas2.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Poly1305.Field32xN.tup64_5 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64)
{ "end_col": 8, "end_line": 503, "start_col": 25, "start_line": 464 }
FStar.Pervasives.Lemma
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b)
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b =
false
null
true
ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint64", "Hacl.Spec.K256.MathLemmas.lemma_bound_mul64_wide", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ma: Prims.nat -> mb: Prims.nat -> mma: Prims.nat -> mmb: Prims.nat -> a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= ma * mma /\ Lib.IntTypes.v b <= mb * mmb) (ensures (let r = Lib.IntTypes.mul64_wide a b in Lib.IntTypes.v r = Lib.IntTypes.v a * Lib.IntTypes.v b /\ Lib.IntTypes.v r <= (ma * mb) * (mma * mmb)))
{ "end_col": 53, "end_line": 22, "start_col": 2, "start_line": 22 }
FStar.Pervasives.Lemma
val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32
val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 =
false
null
true
lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max48" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_c0
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c0: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c0 <= 4096 * (Hacl.Spec.K256.Field52.Definitions.max48 * Hacl.Spec.K256.Field52.Definitions.max48) ) (ensures Lib.IntTypes.v c0 / Prims.pow2 64 <= Prims.pow2 44)
{ "end_col": 29, "end_line": 443, "start_col": 2, "start_line": 441 }
FStar.Pervasives.Lemma
val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52)
val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a =
false
null
true
Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) ((md * max52) * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Math.Lemmas.lemma_mult_lt_left" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= (md * Hacl.Spec.K256.Field52.Definitions.max52) * Hacl.Spec.K256.Field52.Definitions.max52) (ensures Lib.IntTypes.v a / Prims.pow2 52 <= md * Hacl.Spec.K256.Field52.Definitions.max52)
{ "end_col": 60, "end_line": 399, "start_col": 2, "start_line": 397 }
FStar.Pervasives.Lemma
val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64)
val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a =
false
null
true
assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mult_le_left", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.MathLemmas.lemma_ab_lt_cd", "FStar.Pervasives.assert_norm" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)) (ensures Lib.IntTypes.v a / Prims.pow2 64 <= md * Prims.pow2 40)
{ "end_col": 62, "end_line": 433, "start_col": 2, "start_line": 424 }
FStar.Pervasives.Lemma
val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); }
val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a =
false
null
true
assert_norm (16 * (max52 * max48) < max52 * max52); calc ( < ) { (a * 16) * (max52 * max48); ( == ) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); ( < ) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_lt_left", "FStar.Pervasives.assert_norm" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Prims.pos -> FStar.Pervasives.Lemma (ensures (a * 16) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max48) < a * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52))
{ "end_col": 3, "end_line": 58, "start_col": 2, "start_line": 51 }
FStar.Pervasives.Lemma
val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128)
val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_four_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64) (ensures (let d = Lib.IntTypes.mul64_wide a0 b3 +. Lib.IntTypes.mul64_wide a1 b2 +. Lib.IntTypes.mul64_wide a2 b1 +. Lib.IntTypes.mul64_wide a3 b0 in Lib.IntTypes.v d = Lib.IntTypes.v a0 * Lib.IntTypes.v b3 + Lib.IntTypes.v a1 * Lib.IntTypes.v b2 + Lib.IntTypes.v a2 * Lib.IntTypes.v b1 + Lib.IntTypes.v a3 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d <= 16384 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 90, "end_line": 46, "start_col": 2, "start_line": 37 }
FStar.Pervasives.Lemma
val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4')
val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' =
false
null
true
let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4')
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Addition", "Prims.unit", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_double_sum", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_mod_add_last
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c12: Lib.IntTypes.uint64 -> t4': Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c12 < Prims.pow2 48 /\ Lib.IntTypes.v t4' < Prims.pow2 48) (ensures (let r4 = c12 +. t4' in Lib.IntTypes.v r4 = Lib.IntTypes.v c12 + Lib.IntTypes.v t4' /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 r4 2))
{ "end_col": 31, "end_line": 573, "start_col": 32, "start_line": 566 }
FStar.Pervasives.Lemma
val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64)
val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a =
false
null
true
assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.IntTypes.uint128", "FStar.Math.Lemmas.multiple_division_lemma", "FStar.Mul.op_Star", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.lemma_div_le", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.lemma_mult_le_left", "Hacl.Spec.K256.Field52.Definitions.max48", "Hacl.Spec.K256.MathLemmas.lemma_ab_lt_cd", "FStar.Pervasives.assert_norm" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.pos -> a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= md * (Hacl.Spec.K256.Field52.Definitions.max48 * Hacl.Spec.K256.Field52.Definitions.max48)) (ensures Lib.IntTypes.v a / Prims.pow2 64 <= md * Prims.pow2 32)
{ "end_col": 62, "end_line": 416, "start_col": 2, "start_line": 407 }
FStar.Pervasives.Lemma
val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64
val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d =
false
null
true
let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Prims.pow2", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask52", "Lib.IntTypes.to_u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1))
{ "end_col": 52, "end_line": 475, "start_col": 32, "start_line": 471 }
FStar.Pervasives.Lemma
val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40
val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 =
false
null
true
lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.pow2_plus", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div64_max52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_d10
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
d10: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d10 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)) (ensures Lib.IntTypes.v d10 / Prims.pow2 64 < Prims.pow2 50)
{ "end_col": 29, "end_line": 454, "start_col": 2, "start_line": 451 }
FStar.Pervasives.Lemma
val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d
val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d =
false
null
true
lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_div52", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.pos -> d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 16385) (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in let k = d >>. 52ul in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Lib.IntTypes.v k = Lib.IntTypes.v d / Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1 /\ Lib.IntTypes.v k <= md * Hacl.Spec.K256.Field52.Definitions.max52))
{ "end_col": 23, "end_line": 486, "start_col": 2, "start_line": 485 }
FStar.Pervasives.Lemma
val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c
val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c =
false
null
true
let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 12801 /\ Lib.IntTypes.v c <= Prims.pow2 44) (ensures (let r = d +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10 <<. 12ul) c in Lib.IntTypes.v r = Lib.IntTypes.v d + (0x1000003D10 * Prims.pow2 12) * Lib.IntTypes.v c /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 38, "end_line": 347, "start_col": 47, "start_line": 343 }
FStar.Pervasives.Lemma
val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64)
val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a =
false
null
true
let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.small_mod", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.lemma_div_lt", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_rsh64_to
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Lib.IntTypes.to_u64 (a >>. 64ul)) = Lib.IntTypes.v a / Prims.pow2 64)
{ "end_col": 49, "end_line": 464, "start_col": 28, "start_line": 460 }
FStar.Pervasives.Lemma
val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; }
val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 =
false
null
true
let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert ((v a0 * 2) * v a3 + (v a1 * 2) * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod ((v a0 * 2) * v a3 + (v a1 * 2) * v a2) (pow2 128); calc ( == ) { (v a0 * 2) * v a3 + (v a1 * 2) * v a2; ( == ) { (Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3)) } v a0 * v a3 + v a0 * v a3 + (v a1 * 2) * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2)) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_four_sqr64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64) (ensures (let d = Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a3 +. Lib.IntTypes.mul64_wide (a1 *. Lib.IntTypes.u64 2) a2 in Lib.IntTypes.v d = Lib.IntTypes.v a0 * Lib.IntTypes.v a3 + Lib.IntTypes.v a1 * Lib.IntTypes.v a2 + Lib.IntTypes.v a2 * Lib.IntTypes.v a1 + Lib.IntTypes.v a3 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d <= 16384 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 3, "end_line": 629, "start_col": 39, "start_line": 610 }
FStar.Pervasives.Lemma
val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64)
val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d =
false
null
true
let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint128", "FStar.Math.Lemmas.small_mod", "Prims.op_Division", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.lemma_div_lt", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.U64", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Hacl.Spec.K256.Field52.Lemmas5.lemma_u128_to_u64_mask52", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52_sp
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
d: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d < Prims.pow2 100) (ensures (let r = Lib.IntTypes.to_u64 d &. Hacl.Spec.K256.Field52.Definitions.mask52 in let k = Lib.IntTypes.to_u64 (d >>. 52ul) in Lib.IntTypes.v r = Lib.IntTypes.v d % Prims.pow2 52 /\ Lib.IntTypes.v k = Lib.IntTypes.v d / Prims.pow2 52 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 r 1 /\ Lib.IntTypes.v k < Prims.pow2 48))
{ "end_col": 49, "end_line": 527, "start_col": 35, "start_line": 519 }
FStar.Pervasives.Lemma
val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12)
val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () =
false
null
true
let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc ( < ) { 0x1000003D10 * pow2 12; ( < ) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; ( == ) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Prims.pow2", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Calc.calc_finish", "Prims.op_LessThan", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.squash", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Modulus", "FStar.Pervasives.assert_norm", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures (let rs = Lib.IntTypes.u64 0x1000003D10 <<. 12ul in Lib.IntTypes.v rs = 0x1000003D10 * Prims.pow2 12 /\ Lib.IntTypes.v rs < Prims.pow2 49))
{ "end_col": 40, "end_line": 286, "start_col": 22, "start_line": 271 }
FStar.Pervasives.Lemma
val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4
val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () =
false
null
true
let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.unit", "FStar.Math.Lemmas.lemma_div_lt", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33)
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_r_rsh4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.Pervasives.Lemma (ensures (let rs = Lib.IntTypes.u64 0x1000003D10 >>. 4ul in Lib.IntTypes.v rs = 0x1000003D10 / Prims.pow2 4 /\ Lib.IntTypes.v rs < Prims.pow2 33))
{ "end_col": 44, "end_line": 296, "start_col": 21, "start_line": 293 }
FStar.Pervasives.Lemma
val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c)
val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c =
false
null
true
assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Lib.IntTypes.u64", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 16384) (ensures (let r = d +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10) (Lib.IntTypes.to_u64 c) in Lib.IntTypes.v r = Lib.IntTypes.v d + 0x1000003D10 * (Lib.IntTypes.v c % Prims.pow2 64) /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 63, "end_line": 335, "start_col": 2, "start_line": 334 }
FStar.Pervasives.Lemma
val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48
val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 =
false
null
true
LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "FStar.Math.Lemmas.lemma_div_lt", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.unit", "Hacl.Spec.K256.Field52.Definitions.Lemmas.lemma_mask48" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask48_rsh48
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. Hacl.Spec.K256.Field52.Definitions.mask48 in Lib.IntTypes.v tx = Lib.IntTypes.v t4 / Prims.pow2 48 /\ Lib.IntTypes.v r = Lib.IntTypes.v t4 % Prims.pow2 48 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 r 1 /\ Lib.IntTypes.v tx < Prims.pow2 4))
{ "end_col": 39, "end_line": 510, "start_col": 2, "start_line": 509 }
FStar.Pervasives.Lemma
val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c
val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c =
false
null
true
let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_rsh4", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_rsh4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 4096 /\ Lib.IntTypes.v c < Prims.pow2 56) (ensures (let r = d +. Lib.IntTypes.mul64_wide c (Lib.IntTypes.u64 0x1000003D10 >>. 4ul) in Lib.IntTypes.v r = Lib.IntTypes.v d + Lib.IntTypes.v c * (0x1000003D10 / Prims.pow2 4) /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 38, "end_line": 358, "start_col": 46, "start_line": 355 }
FStar.Pervasives.Lemma
val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128)
val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc ( <= ) { md * max52 + 8192 * (max52 * max52); ( <= ) { (assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 8192 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 4097 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b1 +. Lib.IntTypes.mul64_wide a1 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b1 + Lib.IntTypes.v a1 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 8193 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 68, "end_line": 233, "start_col": 2, "start_line": 219 }
FStar.Pervasives.Lemma
val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128)
val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc ( <= ) { md * max52 + 12288 * (max52 * max52); ( <= ) { (assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 12288 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_LessThanOrEqual", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8194 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b2 +. Lib.IntTypes.mul64_wide a1 b1 +. Lib.IntTypes.mul64_wide a2 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b2 + Lib.IntTypes.v a1 * Lib.IntTypes.v b1 + Lib.IntTypes.v a2 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 12289 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 82, "end_line": 170, "start_col": 2, "start_line": 153 }
FStar.Pervasives.Lemma
val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64)
val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a =
false
null
true
let r = a *. u64 2 in calc ( <= ) { v a * 2; ( <= ) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } (m * max) * 2; ( == ) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); ( == ) { Math.Lemmas.paren_mul_right 2 m max } (2 * m) * max; }; assert (v a * 2 <= (2 * m) * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.MathLemmas.lemma_ab_le_cd", "Prims._assert", "Prims.op_LessThanOrEqual", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.paren_mul_right", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Prims.nat -> max: Prims.nat -> a: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a <= m * max /\ 2 * m <= 4096 /\ max <= Hacl.Spec.K256.Field52.Definitions.max52) (ensures (let r = a *. Lib.IntTypes.u64 2 in Lib.IntTypes.v r = Lib.IntTypes.v a * 2 /\ Lib.IntTypes.v r <= (2 * m) * max))
{ "end_col": 43, "end_line": 598, "start_col": 27, "start_line": 583 }
FStar.Pervasives.Lemma
val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10)
val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 =
false
null
true
let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.pos", "Lib.IntTypes.uint128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide", "Lib.IntTypes.u64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Hacl.Spec.K256.Field52.Definitions.mask52" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_mask52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.pos -> d8: Lib.IntTypes.uint128 -> c5: Lib.IntTypes.uint128 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d8 <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ Lib.IntTypes.v c5 <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ md <= 8193) (ensures (let r = c5 +. Lib.IntTypes.mul64_wide (Lib.IntTypes.to_u64 d8 &. Hacl.Spec.K256.Field52.Definitions.mask52) (Lib.IntTypes.u64 0x1000003D10) in let d9 = d8 >>. 52ul in Lib.IntTypes.v d9 = Lib.IntTypes.v d8 / Prims.pow2 52 /\ Lib.IntTypes.v d9 <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ Lib.IntTypes.v r = Lib.IntTypes.v c5 + (Lib.IntTypes.v d8 % Prims.pow2 52) * 0x1000003D10 /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 56, "end_line": 499, "start_col": 50, "start_line": 495 }
FStar.Pervasives.Lemma
val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128)
val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc ( < ) { md * max52 + 8192 * (max52 * max48); ( < ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); ( <= ) { (assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 512 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8193 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a3 b4 +. Lib.IntTypes.mul64_wide a4 b3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a3 * Lib.IntTypes.v b4 + Lib.IntTypes.v a4 * Lib.IntTypes.v b3 /\ Lib.IntTypes.v d1 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 68, "end_line": 264, "start_col": 2, "start_line": 247 }
FStar.Pervasives.Lemma
val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128)
val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b =
false
null
true
let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc ( < ) { md * (max52 * max52) + pow2 pa * pow2 pb; ( == ) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); ( <= ) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; ( < ) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; ( == ) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.pow2_le_compat", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pa: Prims.nat -> pb: Prims.nat -> md: Prims.nat -> d: Lib.IntTypes.uint128 -> a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v a < Prims.pow2 pa /\ Lib.IntTypes.v b < Prims.pow2 pb /\ md + 1 <= 16385 /\ Lib.IntTypes.v d <= md * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52) /\ pa + pb <= 103) (ensures (let r = d +. Lib.IntTypes.mul64_wide a b in Lib.IntTypes.v r = Lib.IntTypes.v d + Lib.IntTypes.v a * Lib.IntTypes.v b /\ Lib.IntTypes.v r <= (md + 1) * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 52, "end_line": 325, "start_col": 41, "start_line": 306 }
FStar.Pervasives.Lemma
val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56)
val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 =
false
null
true
let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc ( <= ) { v u0 * pow2 4; ( <= ) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; ( == ) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; ( == ) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Lib.IntTypes.uint64", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.logor_disjoint", "Lib.IntTypes.op_Less_Less_Dot", "FStar.UInt32.__uint_to_t", "FStar.Math.Lemmas.cancel_mul_mod", "FStar.Math.Lemmas.lemma_div_lt", "Prims.op_Equality", "FStar.Math.Lemmas.small_mod", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_tx_logor_u0_lsh4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
tx: Lib.IntTypes.uint64 -> u0: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v tx < Prims.pow2 4 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 u0 1) (ensures (let u0' = tx |. u0 <<. 4ul in Lib.IntTypes.v u0' == Lib.IntTypes.v tx + Lib.IntTypes.v u0 * Prims.pow2 4 /\ Lib.IntTypes.v u0' < Prims.pow2 56))
{ "end_col": 26, "end_line": 558, "start_col": 34, "start_line": 535 }
FStar.Pervasives.Lemma
val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128)
val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); ( <= ) { (assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 8704 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12802 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a1 b4 +. Lib.IntTypes.mul64_wide a2 b3 +. Lib.IntTypes.mul64_wide a3 b2 +. Lib.IntTypes.mul64_wide a4 b1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a1 * Lib.IntTypes.v b4 + Lib.IntTypes.v a2 * Lib.IntTypes.v b3 + Lib.IntTypes.v a3 * Lib.IntTypes.v b2 + Lib.IntTypes.v a4 * Lib.IntTypes.v b1 /\ Lib.IntTypes.v d1 <= 8705 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 96, "end_line": 138, "start_col": 2, "start_line": 117 }
FStar.Pervasives.Lemma
val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128)
val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); ( <= ) { (assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 4608 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8705 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a2 b4 +. Lib.IntTypes.mul64_wide a3 b3 +. Lib.IntTypes.mul64_wide a4 b2 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a2 * Lib.IntTypes.v b4 + Lib.IntTypes.v a3 * Lib.IntTypes.v b3 + Lib.IntTypes.v a4 * Lib.IntTypes.v b2 /\ Lib.IntTypes.v d1 <= 4609 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 82, "end_line": 205, "start_col": 2, "start_line": 185 }
FStar.Pervasives.Lemma
val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128)
val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
false
null
true
lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); ( < ) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); ( <= ) { (assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52) } max52 * max52 + 12800 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_mul64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> b0: Lib.IntTypes.uint64 -> b1: Lib.IntTypes.uint64 -> b2: Lib.IntTypes.uint64 -> b3: Lib.IntTypes.uint64 -> b4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 16385 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 b3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 b4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 b4 +. Lib.IntTypes.mul64_wide a1 b3 +. Lib.IntTypes.mul64_wide a2 b2 +. Lib.IntTypes.mul64_wide a3 b1 +. Lib.IntTypes.mul64_wide a4 b0 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v b4 + Lib.IntTypes.v a1 * Lib.IntTypes.v b3 + Lib.IntTypes.v a2 * Lib.IntTypes.v b2 + Lib.IntTypes.v a3 * Lib.IntTypes.v b1 + Lib.IntTypes.v a4 * Lib.IntTypes.v b0 /\ Lib.IntTypes.v d1 <= 12801 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 110, "end_line": 100, "start_col": 2, "start_line": 76 }
FStar.Pervasives.Lemma
val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_three_sqr64_wide52 md d a0 a1 a2 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc (<) { md * max52 + 12288 * (max52 * max52); (<) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2 + v a1 * v a1) (pow2 128); calc (==) { v d + v a0 * 2 * v a2 + v a1 * v a1; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; }
val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_sqr64_wide52 md d a0 a1 a2 =
false
null
true
lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 12288 * (max52 * max52); ( < ) { (assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 12288 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a2) (pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a2 + v a1 * v a1) (pow2 128); calc ( == ) { v d + (v a0 * 2) * v a2 + v a1 * v a1; ( == ) { (Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2)) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; } val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8194 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a2 +. Lib.IntTypes.mul64_wide a1 a1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a2 + Lib.IntTypes.v a1 * Lib.IntTypes.v a1 + Lib.IntTypes.v a2 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 12289 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 3, "end_line": 823, "start_col": 2, "start_line": 802 }
FStar.Pervasives.Lemma
val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128)
val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 =
false
null
true
lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + (v a0 * 2) * v a1 <= md * max52 + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max52); ( < ) { (assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 8192 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + (v a0 * 2) * v a1) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mult_lt_right", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide52
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 4097 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide (a0 *. Lib.IntTypes.u64 2) a1 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a1 + Lib.IntTypes.v a1 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 8193 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 58, "end_line": 749, "start_col": 2, "start_line": 737 }
FStar.Pervasives.Lemma
val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; }
val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_sqr64_wide md d a2 a3 a4 =
false
null
true
assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); ( < ) { (assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 4608 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc ( == ) { v d + v a2 * (v a4 * 2) + v a3 * v a3; ( == ) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 8705 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a2 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide a3 a3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a2 * Lib.IntTypes.v a4 + Lib.IntTypes.v a3 * Lib.IntTypes.v a3 + Lib.IntTypes.v a4 * Lib.IntTypes.v a2 /\ Lib.IntTypes.v d1 <= 4609 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 3, "end_line": 788, "start_col": 2, "start_line": 763 }
FStar.Pervasives.Lemma
val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; }
val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 =
false
null
true
let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); ( < ) { (assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 12800 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2) (pow2 128); calc ( == ) { v d + v a0 * (v a4 * 2) + (v a1 * 2) * v a3 + v a2 * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3)) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; ( == ) { (Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4)) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_sqr64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a0: Lib.IntTypes.uint64 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 16385 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a0 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a0 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide (a1 *. Lib.IntTypes.u64 2) a3 +. Lib.IntTypes.mul64_wide a2 a2 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a0 * Lib.IntTypes.v a4 + Lib.IntTypes.v a1 * Lib.IntTypes.v a3 + Lib.IntTypes.v a2 * Lib.IntTypes.v a2 + Lib.IntTypes.v a3 * Lib.IntTypes.v a1 + Lib.IntTypes.v a4 * Lib.IntTypes.v a0 /\ Lib.IntTypes.v d1 <= 12801 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 3, "end_line": 678, "start_col": 51, "start_line": 643 }
FStar.Pervasives.Lemma
val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128)
val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 =
false
null
true
let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc ( < ) { md * max52 + pow2 49 * pow2 50 + max52; ( == ) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; ( == ) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; ( <= ) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; ( < ) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Calc.calc_finish", "Prims.int", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Prims.Cons", "FStar.Preorder.relation", "Prims.op_LessThanOrEqual", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Pervasives.assert_norm", "Prims._assert", "Prims.l_and", "Prims.op_Equality", "Lib.IntTypes.mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.to_u128", "Hacl.Spec.K256.Field52.Lemmas5.lemma_r_lsh12", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u64", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12_add
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> c: Lib.IntTypes.uint128 -> d: Lib.IntTypes.uint64 -> t3: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v c <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12290 /\ Lib.IntTypes.v d < Prims.pow2 50 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 t3 1) (ensures (let r = c +. Lib.IntTypes.mul64_wide (Lib.IntTypes.u64 0x1000003D10 <<. 12ul) d +. Lib.IntTypes.to_u128 t3 in Lib.IntTypes.v r = Lib.IntTypes.v c + (0x1000003D10 * Prims.pow2 12) * Lib.IntTypes.v d + Lib.IntTypes.v t3 /\ Lib.IntTypes.v r < Prims.pow2 100))
{ "end_col": 60, "end_line": 389, "start_col": 54, "start_line": 366 }
FStar.Pervasives.Lemma
val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; }
val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 =
false
null
true
let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + (v a2 * 2) * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc ( < ) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); ( < ) { (assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 8704 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc ( == ) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; ( == ) { (Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3)) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; ( == ) { (Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1)) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; }
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "Prims.squash", "FStar.Math.Lemmas.small_mod", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.mul64_wide", "Prims.l_and", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_sqr64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a1: Lib.IntTypes.uint64 -> a2: Lib.IntTypes.uint64 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 12802 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a1 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a2 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a1 (a4 *. Lib.IntTypes.u64 2) +. Lib.IntTypes.mul64_wide (a2 *. Lib.IntTypes.u64 2) a3 in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a1 * Lib.IntTypes.v a4 + Lib.IntTypes.v a2 * Lib.IntTypes.v a3 + Lib.IntTypes.v a3 * Lib.IntTypes.v a2 + Lib.IntTypes.v a4 * Lib.IntTypes.v a1 /\ Lib.IntTypes.v d1 <= 8705 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 5, "end_line": 724, "start_col": 48, "start_line": 691 }
FStar.Pervasives.Lemma
val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_add_two_sqr64_wide md d a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a3 (a4 *. u64 2); assert (v d + v a3 * (v a4 * 2) <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<) { assert_norm (64193 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 512 } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * (v a4 * 2)) (pow2 128)
val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_sqr64_wide md d a3 a4 =
false
null
true
assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a3 (a4 *. u64 2); assert (v d + v a3 * (v a4 * 2) <= md * max52 + 8192 * (max52 * max48)); calc ( < ) { md * max52 + 8192 * (max52 * max48); ( <= ) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); ( < ) { (assert_norm (64193 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52) } max52 * max52 + 512 * (max52 * max52); ( == ) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 512 } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * (v a4 * 2)) (pow2 128)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas5.fst" }
[ "lemma" ]
[ "Prims.nat", "Lib.IntTypes.uint128", "Lib.IntTypes.uint64", "FStar.Math.Lemmas.small_mod", "Prims.op_Addition", "Lib.IntTypes.v", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "FStar.Mul.op_Star", "Lib.IntTypes.U64", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.K256.Field52.Definitions.max52", "FStar.Calc.calc_finish", "Prims.int", "Hacl.Spec.K256.Field52.Definitions.max48", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.op_LessThanOrEqual", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas5.lemma_16_max52_max48", "Prims.squash", "FStar.Math.Lemmas.lemma_mult_lt_right", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mul_by2" ]
[]
module Hacl.Spec.K256.Field52.Lemmas5 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_bound_mul64_wide (ma mb:nat) (mma mmb:nat) (a b:uint64) : Lemma (requires v a <= ma * mma /\ v b <= mb * mmb) (ensures (let r = mul64_wide a b in v r = v a * v b /\ v r <= ma * mb * (mma * mmb))) let lemma_bound_mul64_wide ma mb mma mmb a b = ML.lemma_bound_mul64_wide ma mb mma mmb (v a) (v b) val lemma_four_mul64_wide (a0 a1 a2 a3 b0 b1 b2 b3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64) (ensures (let d = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in v d = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b3; lemma_bound_mul64_wide 64 64 max52 max52 a1 b2; lemma_bound_mul64_wide 64 64 max52 max52 a2 b1; lemma_bound_mul64_wide 64 64 max52 max52 a3 b0; assert (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1) (pow2 128); Math.Lemmas.small_mod (v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0) (pow2 128) val lemma_16_max52_max48: a:pos -> Lemma ((a * 16) * (max52 * max48) < a * (max52 * max52)) let lemma_16_max52_max48 a = assert_norm (16 * (max52 * max48) < max52 * max52); calc (<) { (a * 16) * (max52 * max48); (==) { Math.Lemmas.paren_mul_right a 16 (max52 * max48) } a * (16 * (max52 * max48)); (<) { Math.Lemmas.lemma_mult_lt_left a (16 * (max52 * max48)) (max52 * max52) } a * (max52 * max52); } val lemma_add_five_mul64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in v d1 == v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_mul64_wide md d a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a0 b4; lemma_bound_mul64_wide 64 64 max52 max52 a1 b3; lemma_bound_mul64_wide 64 64 max52 max52 a2 b2; lemma_bound_mul64_wide 64 64 max52 max52 a3 b1; lemma_bound_mul64_wide 64 64 max48 max52 a4 b0; Math.Lemmas.swap_mul max52 max48; assert (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 12800 * (max52 * max52); (<=) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12800 (max52 * max52) } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0) (pow2 128) val lemma_add_four_mul64_wide (md:nat) (d:uint128) (a1 a2 a3 a4 b1 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in v d1 == v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_mul64_wide md d a1 a2 a3 a4 b1 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a1 b4; lemma_bound_mul64_wide 64 64 max52 max52 a2 b3; lemma_bound_mul64_wide 64 64 max52 max52 a3 b2; lemma_bound_mul64_wide 64 64 max48 max52 a4 b1; assert (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 8704 * (max52 * max52); (<=) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8704 (max52 * max52) } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1) (pow2 128) val lemma_add_three_mul64_wide52 (md:nat) (d:uint128) (a0 a1 a2 b0 b1 b2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64) (ensures (let d1 = d +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in v d1 == v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_mul64_wide52 md d a0 a1 a2 b0 b1 b2 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b2; lemma_bound_mul64_wide 64 64 max52 max52 a1 b1; lemma_bound_mul64_wide 64 64 max52 max52 a2 b0; assert (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0 <= md * max52 + 12288 * (max52 * max52)); calc (<=) { md * max52 + 12288 * (max52 * max52); (<=) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 12288 (max52 * max52) } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b2 + v a1 * v b1 + v a2 * v b0) (pow2 128) val lemma_add_three_mul64_wide (md:nat) (d:uint128) (a2 a3 a4 b2 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 b2 64 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in v d1 == v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_mul64_wide md d a2 a3 a4 b2 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a2 b4; lemma_bound_mul64_wide 64 64 max52 max52 a3 b3; lemma_bound_mul64_wide 64 64 max48 max52 a4 b2; Math.Lemmas.swap_mul max52 max48; assert (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<) { lemma_16_max52_max48 512 } md * max52 + 4608 * (max52 * max52); (<=) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 4608 (max52 * max52) } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * v b4 + v a3 * v b3 + v a4 * v b2) (pow2 128) val lemma_add_two_mul64_wide52 (md:nat) (d:uint128) (a0 a1 b0 b1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 b0 64 /\ felem_fits1 a1 64 /\ felem_fits1 b1 64) (ensures (let d1 = d +. mul64_wide a0 b1 +. mul64_wide a1 b0 in v d1 == v d + v a0 * v b1 + v a1 * v b0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_mul64_wide52 md d a0 a1 b0 b1 = lemma_bound_mul64_wide 64 64 max52 max52 a0 b1; lemma_bound_mul64_wide 64 64 max52 max52 a1 b0; assert (v d + v a0 * v b1 + v a1 * v b0 <= md * max52 + 8192 * (max52 * max52)); calc (<=) { md * max52 + 8192 * (max52 * max52); (<=) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 8192 (max52 * max52) } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * v b1 + v a1 * v b0) (pow2 128) val lemma_add_two_mul64_wide (md:nat) (d:uint128) (a3 a4 b3 b4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8193 /\ felem_fits1 a3 64 /\ felem_fits1 b3 64 /\ felem_fits_last1 a4 64 /\ felem_fits_last1 b4 64) (ensures (let d1 = d +. mul64_wide a3 b4 +. mul64_wide a4 b3 in v d1 == v d + v a3 * v b4 + v a4 * v b3 /\ v d1 <= 513 * (max52 * max52))) let lemma_add_two_mul64_wide md d a3 a4 b3 b4 = lemma_bound_mul64_wide 64 64 max52 max48 a3 b4; lemma_bound_mul64_wide 64 64 max48 max52 a4 b3; Math.Lemmas.swap_mul max52 max48; assert (v d + v a3 * v b4 + v a4 * v b3 <= md * max52 + 8192 * (max52 * max48)); calc (<) { md * max52 + 8192 * (max52 * max48); (<) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52); (<=) { assert_norm (8193 < max52); Math.Lemmas.lemma_mult_le_right max52 md max52 } max52 * max52 + 512 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left 1 512 (max52 * max52) } 513 * (max52 * max52); }; assert_norm (513 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4) (pow2 128); Math.Lemmas.small_mod (v d + v a3 * v b4 + v a4 * v b3) (pow2 128) val lemma_r_lsh12: unit -> Lemma (let rs = u64 0x1000003D10 <<. 12ul in v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49) let lemma_r_lsh12 () = let rs = u64 0x1000003D10 <<. 12ul in assert_norm (0x1000003D10 < pow2 37); assert (v rs = 0x1000003D10 * pow2 12 % pow2 64); calc (<) { 0x1000003D10 * pow2 12; (<) { Math.Lemmas.lemma_mult_lt_right (pow2 12) 0x1000003D10 (pow2 37) } pow2 37 * pow2 12; (==) { Math.Lemmas.pow2_plus 12 37 } pow2 49; }; Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (0x1000003D10 * pow2 12) (pow2 64); assert (v rs = 0x1000003D10 * pow2 12) val lemma_r_rsh4: unit -> Lemma (let rs = u64 0x1000003D10 >>. 4ul in v rs = 0x1000003D10 / pow2 4 /\ v rs < pow2 33) let lemma_r_rsh4 () = let rs = u64 0x1000003D10 >>. 4ul in assert_norm (0x1000003D10 < pow2 37); Math.Lemmas.lemma_div_lt 0x1000003D10 37 4 val lemma_add_mul64_wide (pa pb md:nat) (d:uint128) (a b:uint64) : Lemma (requires v a < pow2 pa /\ v b < pow2 pb /\ md + 1 <= 16385 /\ // md + 1 <= pow2 24 v d <= md * (max52 * max52) /\ pa + pb <= 103) (ensures (let r = d +. mul64_wide a b in v r = v d + v a * v b /\ v r <= (md + 1) * (max52 * max52))) let lemma_add_mul64_wide pa pb md d a b = let r = d +. mul64_wide a b in lemma_bound_mul64_wide 1 1 (pow2 pa) (pow2 pb) a b; assert (v d + v a * v b <= md * (max52 * max52) + pow2 pa * pow2 pb); calc (<) { md * (max52 * max52) + pow2 pa * pow2 pb; (==) { Math.Lemmas.pow2_plus pa pb } md * (max52 * max52) + pow2 (pa + pb); (<=) { Math.Lemmas.pow2_le_compat 103 (pa + pb) } md * (max52 * max52) + pow2 103; (<) { assert_norm (pow2 103 < max52 * max52) } md * (max52 * max52) + max52 * max52; (==) { Math.Lemmas.distributivity_add_left md 1 (max52 * max52) } (md + 1) * (max52 * max52); }; Math.Lemmas.lemma_mult_le_right (max52 * max52) (md + 1) 16385; assert_norm (16385 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a * v b) (pow2 128) val lemma_bound_add_mul64_wide_r (md:nat) (d c:uint128) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 16384) (ensures (let r = d +. mul64_wide (u64 0x1000003D10) (to_u64 c) in v r = v d + 0x1000003D10 * (v c % pow2 64) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r md d c = assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 37 64 md d (u64 0x1000003D10) (to_u64 c) val lemma_bound_add_mul64_wide_r_lsh12 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 12801 /\ v c <= pow2 44) (ensures (let r = d +. mul64_wide (u64 0x1000003D10 <<. 12ul) c in v r = v d + 0x1000003D10 * pow2 12 * v c /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_lsh12 md d c = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); Math.Lemmas.pow2_lt_compat 45 44; lemma_add_mul64_wide 49 45 md d rs c val lemma_bound_add_mul64_wide_r_rsh4 (md:nat) (d:uint128) (c:uint64) : Lemma (requires v d <= md * (max52 * max52) /\ md <= 4096 /\ v c < pow2 56) (ensures (let r = d +. mul64_wide c (u64 0x1000003D10 >>. 4ul) in v r = v d + v c * (0x1000003D10 / pow2 4) /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_rsh4 md d c = let rs = u64 0x1000003D10 >>. 4ul in lemma_r_rsh4 (); lemma_add_mul64_wide 33 56 md d rs c val lemma_bound_add_mul64_wide_r_lsh12_add (md:nat) (c:uint128) (d t3:uint64) : Lemma (requires v c <= md * max52 /\ md <= 12290 /\ v d < pow2 50 /\ felem_fits1 t3 1) (ensures (let r = c +. mul64_wide (u64 0x1000003D10 <<. 12ul) d +. to_u128 t3 in v r = v c + 0x1000003D10 * pow2 12 * v d + v t3 /\ v r < pow2 100)) let lemma_bound_add_mul64_wide_r_lsh12_add md c d t3 = let rs = u64 0x1000003D10 <<. 12ul in lemma_r_lsh12 (); assert (v rs = 0x1000003D10 * pow2 12 /\ v rs < pow2 49); let r = c +. mul64_wide rs d +. to_u128 t3 in lemma_bound_mul64_wide 1 1 (pow2 49) (pow2 50) rs d; assert (v (mul64_wide rs d) = v rs * v d /\ v rs * v d < pow2 49 * pow2 50); calc (<) { md * max52 + pow2 49 * pow2 50 + max52; (==) { Math.Lemmas.pow2_plus 49 50 } md * max52 + pow2 99 + max52; (==) { Math.Lemmas.distributivity_add_left md 1 max52 } (md + 1) * max52 + pow2 99; (<=) { Math.Lemmas.lemma_mult_le_right max52 (md + 1) 12291 } 12291 * max52 + pow2 99; (<) { assert_norm (12291 * max52 + pow2 99 < pow2 100) } pow2 100; }; Math.Lemmas.pow2_lt_compat 128 100; Math.Lemmas.small_mod (v c + v rs * v d) (pow2 128); Math.Lemmas.small_mod (v c + v rs * v d + v t3) (pow2 128) val lemma_u128_div52: md:pos -> a:uint128 -> Lemma (requires v a <= md * max52 * max52) (ensures v a / pow2 52 <= md * max52) let lemma_u128_div52 md a = Math.Lemmas.lemma_mult_lt_left (md * max52) max52 (pow2 52); Math.Lemmas.lemma_div_le (v a) (md * max52 * pow2 52) (pow2 52); Math.Lemmas.multiple_division_lemma (md * max52) (pow2 52) val lemma_u128_div64_max48: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max48 * max48)) (ensures v a / pow2 64 <= md * pow2 32) let lemma_u128_div64_max48 md a = assert_norm (max48 < pow2 48); ML.lemma_ab_lt_cd max48 max48 (pow2 48) (pow2 48); Math.Lemmas.pow2_plus 48 48; assert (max48 * max48 < pow2 96); Math.Lemmas.lemma_mult_le_left md (max48 * max48) (pow2 96); assert (v a < md * pow2 96); Math.Lemmas.lemma_div_le (v a) (md * pow2 96) (pow2 64); Math.Lemmas.pow2_plus 64 32; Math.Lemmas.multiple_division_lemma (md * pow2 32) (pow2 64) val lemma_u128_div64_max52: md:pos -> a:uint128 -> Lemma (requires v a <= md * (max52 * max52)) (ensures v a / pow2 64 <= md * pow2 40) let lemma_u128_div64_max52 md a = assert_norm (max52 < pow2 52); ML.lemma_ab_lt_cd max52 max52 (pow2 52) (pow2 52); Math.Lemmas.pow2_plus 52 52; assert (max52 * max52 < pow2 104); Math.Lemmas.lemma_mult_le_left md (max52 * max52) (pow2 104); assert (v a < md * pow2 104); Math.Lemmas.lemma_div_le (v a) (md * pow2 104) (pow2 64); Math.Lemmas.pow2_plus 64 40; Math.Lemmas.multiple_division_lemma (md * pow2 40) (pow2 64) val lemma_bound_c0: c0:uint128 -> Lemma (requires v c0 <= 4096 * (max48 * max48)) (ensures v c0 / pow2 64 <= pow2 44) let lemma_bound_c0 c0 = lemma_u128_div64_max48 4096 c0; assert_norm (pow2 12 = 4096); Math.Lemmas.pow2_plus 12 32 val lemma_bound_d10: d10:uint128 -> Lemma (requires v d10 <= 513 * (max52 * max52)) (ensures v d10 / pow2 64 < pow2 50) let lemma_bound_d10 d10 = lemma_u128_div64_max52 513 d10; assert_norm (513 < pow2 10); Math.Lemmas.lemma_mult_le_right (pow2 38) 513 (pow2 10); Math.Lemmas.pow2_plus 10 40 val lemma_bound_rsh64_to: a:uint128 -> Lemma (v (to_u64 (a >>. 64ul)) = v a / pow2 64) let lemma_bound_rsh64_to a = let r = to_u64 (a >>. 64ul) in assert (v r == (v a / pow2 64) % pow2 64); Math.Lemmas.lemma_div_lt (v a) 128 64; Math.Lemmas.small_mod (v a / pow2 64) (pow2 64) val lemma_u128_to_u64_mask52: d:uint128 -> Lemma (let r = to_u64 d &. mask52 in v r = v d % pow2 52 /\ felem_fits1 r 1) let lemma_u128_to_u64_mask52 d = let r = to_u64 d &. mask52 in LD.lemma_mask52 (to_u64 d); assert (v r = v d % pow2 64 % pow2 52); Math.Lemmas.pow2_modulo_modulo_lemma_1 (v d) 52 64 val lemma_bound_mask52_rsh52: md:pos -> d:uint128 -> Lemma (requires v d <= md * (max52 * max52) /\ md <= 16385) (ensures (let r = to_u64 d &. mask52 in let k = d >>. 52ul in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k <= md * max52)) let lemma_bound_mask52_rsh52 md d = lemma_u128_to_u64_mask52 d; lemma_u128_div52 md d val lemma_bound_add_mul64_wide_r_mask52 (md:pos) (d8 c5:uint128) : Lemma (requires v d8 <= md * (max52 * max52) /\ v c5 <= md * (max52 * max52) /\ md <= 8193) (ensures (let r = c5 +. mul64_wide (to_u64 d8 &. mask52) (u64 0x1000003D10) in let d9 = d8 >>. 52ul in v d9 = v d8 / pow2 52 /\ v d9 <= md * max52 /\ v r = v c5 + v d8 % pow2 52 * 0x1000003D10 /\ v r <= (md + 1) * (max52 * max52))) let lemma_bound_add_mul64_wide_r_mask52 md d8 c5 = let tm = to_u64 d8 &. mask52 in lemma_bound_mask52_rsh52 md d8; assert_norm (0x1000003D10 < pow2 37); lemma_add_mul64_wide 64 37 md c5 tm (u64 0x1000003D10) val lemma_bound_mask48_rsh48: t4:uint64 -> Lemma (requires felem_fits1 t4 1) (ensures (let tx = t4 >>. 48ul in let r = t4 &. mask48 in v tx = v t4 / pow2 48 /\ v r = v t4 % pow2 48 /\ felem_fits_last1 r 1 /\ v tx < pow2 4)) let lemma_bound_mask48_rsh48 t4 = LD.lemma_mask48 t4; Math.Lemmas.lemma_div_lt (v t4) 52 48 val lemma_bound_mask52_rsh52_sp: d:uint128 -> Lemma (requires v d < pow2 100) (ensures (let r = to_u64 d &. mask52 in let k = to_u64 (d >>. 52ul) in v r = v d % pow2 52 /\ v k = v d / pow2 52 /\ felem_fits1 r 1 /\ v k < pow2 48)) let lemma_bound_mask52_rsh52_sp d = let r = to_u64 d &. mask52 in lemma_u128_to_u64_mask52 d; let k = to_u64 (d >>. 52ul) in assert (v k == v d / pow2 52 % pow2 64); Math.Lemmas.lemma_div_lt (v d) 100 52; Math.Lemmas.pow2_lt_compat 64 48; Math.Lemmas.small_mod (v d / pow2 52) (pow2 64) val lemma_tx_logor_u0_lsh4 (tx u0:uint64) : Lemma (requires v tx < pow2 4 /\ felem_fits1 u0 1) (ensures (let u0' = tx |. (u0 <<. 4ul) in v u0' == v tx + v u0 * pow2 4 /\ v u0' < pow2 56)) let lemma_tx_logor_u0_lsh4 tx u0 = let u0' = tx |. (u0 <<. 4ul) in assert (v (u0 <<. 4ul) = v u0 * pow2 4 % pow2 64); calc (<=) { v u0 * pow2 4; (<=) { Math.Lemmas.lemma_mult_le_right (pow2 4) (v u0) (pow2 52 - 1) } (pow2 52 - 1) * pow2 4; (==) { Math.Lemmas.distributivity_sub_left (pow2 52) 1 (pow2 4) } pow2 52 * pow2 4 - pow2 4; (==) { Math.Lemmas.pow2_plus 52 4 } pow2 56 - pow2 4; }; assert (v u0 * pow2 4 <= pow2 56 - pow2 4); Math.Lemmas.pow2_lt_compat 64 56; Math.Lemmas.small_mod (v u0 * pow2 4) (pow2 64); assert (v (u0 <<. 4ul) = v u0 * pow2 4); Math.Lemmas.lemma_div_lt (v u0) 52 4; Math.Lemmas.cancel_mul_mod (v u0) (pow2 4); logor_disjoint tx (u0 <<. 4ul) 4; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56) val lemma_mod_add_last (c12 t4':uint64) : Lemma (requires v c12 < pow2 48 /\ v t4' < pow2 48) (ensures (let r4 = c12 +. t4' in v r4 = v c12 + v t4' /\ felem_fits_last1 r4 2)) let lemma_mod_add_last c12 t4' = let r4 = c12 +. t4' in assert (v c12 + v t4' < pow2 48 + pow2 48); Math.Lemmas.pow2_double_sum 48; assert (v c12 + v t4' < pow2 49); Math.Lemmas.pow2_lt_compat 64 49; Math.Lemmas.small_mod (v c12 + v t4') (pow2 64); assert (v r4 = v c12 + v t4') /// squaring val lemma_mul_by2: m:nat -> max:nat -> a:uint64 -> Lemma (requires v a <= m * max /\ 2 * m <= 4096 /\ max <= max52) (ensures (let r = a *. u64 2 in v r = v a * 2 /\ v r <= (2 * m) * max)) let lemma_mul_by2 m max a = let r = a *. u64 2 in calc (<=) { v a * 2; (<=) { Math.Lemmas.lemma_mult_le_right 2 (v a) (m * max) } m * max * 2; (==) { Math.Lemmas.swap_mul (m * max) 2 } 2 * (m * max); (==) { Math.Lemmas.paren_mul_right 2 m max } 2 * m * max; }; assert (v a * 2 <= 2 * m * max); ML.lemma_ab_le_cd (2 * m) max 4096 max52; assert_norm (4096 * max52 < pow2 64); Math.Lemmas.small_mod (v a * 2) (pow2 64) val lemma_four_sqr64_wide (a0 a1 a2 a3:uint64) : Lemma (requires felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64) (ensures (let d = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in v d = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0 /\ v d <= 16384 * (max52 * max52))) let lemma_four_sqr64_wide a0 a1 a2 a3 = let r0 = a0 *. u64 2 in let r1 = a1 *. u64 2 in lemma_mul_by2 64 max52 a0; lemma_mul_by2 64 max52 a1; assert (v r0 = v a0 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 128 64 max52 max52 r0 a3; lemma_bound_mul64_wide 128 64 max52 max52 r1 a2; assert (v a0 * 2 * v a3 + v a1 * 2 * v a2 <= 16384 * (max52 * max52)); assert_norm (16384 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v a0 * 2 * v a3 + v a1 * 2 * v a2) (pow2 128); calc (==) { v a0 * 2 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a3) } v a0 * v a3 + v a0 * v a3 + v a1 * 2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a2) } v a0 * v a3 + v a0 * v a3 + v a1 * v a2 + v a2 * v a1; } val lemma_add_five_sqr64_wide (md:nat) (d:uint128) (a0 a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 16385 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in v d1 == v d + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0 /\ v d1 <= 12801 * (max52 * max52))) let lemma_add_five_sqr64_wide md d a0 a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r1 = a1 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a1; assert (v r4 = v a4 * 2 /\ v r1 = v a1 * 2); lemma_bound_mul64_wide 64 128 max52 max48 a0 r4; lemma_bound_mul64_wide 128 64 max52 max52 r1 a3; lemma_bound_mul64_wide 64 64 max52 max52 a2 a2; assert (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2 <= md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 12288 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 12288 * (max52 * max52); (<) { assert_norm (16385 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12800 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12800 } 12801 * (max52 * max52); }; assert_norm (12801 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2) (pow2 128); calc (==) { v d + v a0 * (v a4 * 2) + v a1 * 2 * v a3 + v a2 * v a2; (==) { Math.Lemmas.swap_mul (v a1) 2; Math.Lemmas.paren_mul_right 2 (v a1) (v a3) } v d + v a0 * (v a4 * 2) + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; (==) { Math.Lemmas.paren_mul_right (v a0) (v a4) 2; Math.Lemmas.swap_mul 2 (v a0 * v a4) } v d + v a0 * v a4 + v a0 * v a4 + v a1 * v a3 + v a1 * v a3 + v a2 * v a2; } val lemma_add_four_sqr64_wide (md:nat) (d:uint128) (a1 a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 12802 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in v d1 == v d + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1 /\ v d1 <= 8705 * (max52 * max52))) let lemma_add_four_sqr64_wide md d a1 a2 a3 a4 = let r4 = a4 *. u64 2 in let r2 = a2 *. u64 2 in assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_mul_by2 64 max52 a2; assert (v r2 = v a2 * 2 /\ v r4 = v a4 * 2); let d1 = d +. mul64_wide a1 r4 +. mul64_wide r2 a3 in lemma_bound_mul64_wide 64 128 max52 max48 a1 (a4 *. u64 2); lemma_bound_mul64_wide 128 64 max52 max52 (a2 *. u64 2) a3; assert (v d + v a1 * (v a4 * 2) + v a2 * 2 * v a3 <= md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 8192 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 8192 * (max52 * max52); (<) { assert_norm (12802 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8704 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8704 } 8705 * (max52 * max52); }; assert_norm (8705 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4)) (pow2 128); Math.Lemmas.small_mod (v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3) (pow2 128); calc (==) { v d + v a1 * (2 * v a4) + (v a2 * 2) * v a3; (==) { Math.Lemmas.swap_mul (v a2) 2; Math.Lemmas.paren_mul_right 2 (v a2) (v a3) } v d + v a1 * (2 * v a4) + v a2 * v a3 + v a3 * v a2; (==) { Math.Lemmas.swap_mul (v a1) (2 * v a4); Math.Lemmas.paren_mul_right 2 (v a4) (v a1) } v d + v a1 * v a4 + v a4 * v a1 + v a2 * v a3 + v a3 * v a2; } val lemma_add_two_sqr64_wide52 (md:nat) (d:uint128) (a0 a1:uint64) : Lemma (requires v d <= md * max52 /\ md <= 4097 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a1 in v d1 == v d + v a0 * v a1 + v a1 * v a0 /\ v d1 <= 8193 * (max52 * max52))) let lemma_add_two_sqr64_wide52 md d a0 a1 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a1; assert (v d + v a0 * 2 * v a1 <= md * max52 + 8192 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max52); (<) { assert_norm (4097 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 8192 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 8192 } 8193 * (max52 * max52); }; assert_norm (8193 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a1) (pow2 128) val lemma_add_three_sqr64_wide (md:nat) (d:uint128) (a2 a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8705 /\ felem_fits1 a2 64 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in v d1 == v d + v a2 * v a4 + v a3 * v a3 + v a4 * v a2 /\ v d1 <= 4609 * (max52 * max52))) let lemma_add_three_sqr64_wide md d a2 a3 a4 = assert_norm (max48 < max52); lemma_mul_by2 64 max48 a4; lemma_bound_mul64_wide 64 128 max52 max48 a2 (a4 *. u64 2); lemma_bound_mul64_wide 64 64 max52 max52 a3 a3; assert (v d + v a2 * (v a4 * 2) + v a3 * v a3 <= md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52)); calc (<) { md * max52 + 8192 * (max52 * max48) + 4096 * (max52 * max52); (<=) { lemma_16_max52_max48 512 } md * max52 + 512 * (max52 * max52) + 4096 * (max52 * max52); (<) { assert_norm (8705 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 4608 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 4608 } 4609 * (max52 * max52); }; assert_norm (4609 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2)) (pow2 128); Math.Lemmas.small_mod (v d + v a2 * (v a4 * 2) + v a3 * v a3) (pow2 128); calc (==) { v d + v a2 * (v a4 * 2) + v a3 * v a3; (==) { Math.Lemmas.paren_mul_right (v a2) (v a4) 2 } v d + v a2 * v a4 + v a4 * v a2 + v a3 * v a3; } val lemma_add_three_sqr64_wide52 (md:nat) (d:uint128) (a0 a1 a2:uint64) : Lemma (requires v d <= md * max52 /\ md <= 8194 /\ felem_fits1 a0 64 /\ felem_fits1 a1 64 /\ felem_fits1 a2 64) (ensures (let d1 = d +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in v d1 == v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 /\ v d1 <= 12289 * (max52 * max52))) let lemma_add_three_sqr64_wide52 md d a0 a1 a2 = lemma_mul_by2 64 max52 a0; lemma_bound_mul64_wide 128 64 max52 max52 (a0 *. u64 2) a2; lemma_bound_mul64_wide 64 64 max52 max52 a1 a1; assert (v d + v a0 * v a2 + v a1 * v a1 + v a2 * v a0 <= md * max52 + 12288 * (max52 * max52)); calc (<) { md * max52 + 12288 * (max52 * max52); (<) { assert_norm (8194 < max52); Math.Lemmas.lemma_mult_lt_right max52 md max52 } max52 * max52 + 12288 * (max52 * max52); (==) { Math.Lemmas.distributivity_add_left (max52 * max52) 1 12288 } 12289 * (max52 * max52); }; assert_norm (12289 * (max52 * max52) < pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2) (pow2 128); Math.Lemmas.small_mod (v d + v a0 * 2 * v a2 + v a1 * v a1) (pow2 128); calc (==) { v d + v a0 * 2 * v a2 + v a1 * v a1; (==) { Math.Lemmas.swap_mul (v a0) 2; Math.Lemmas.paren_mul_right 2 (v a0) (v a2) } v d + v a0 * v a2 + v a2 * v a0 + v a1 * v a1; } val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
false
false
Hacl.Spec.K256.Field52.Lemmas5.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_add_two_sqr64_wide (md:nat) (d:uint128) (a3 a4:uint64) : Lemma (requires v d <= md * max52 /\ md <= 64193 /\ felem_fits1 a3 64 /\ felem_fits_last1 a4 64) (ensures (let d1 = d +. mul64_wide a3 (a4 *. u64 2) in v d1 == v d + v a3 * v a4 + v a4 * v a3 /\ v d1 <= 513 * (max52 * max52)))
[]
Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas5.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
md: Prims.nat -> d: Lib.IntTypes.uint128 -> a3: Lib.IntTypes.uint64 -> a4: Lib.IntTypes.uint64 -> FStar.Pervasives.Lemma (requires Lib.IntTypes.v d <= md * Hacl.Spec.K256.Field52.Definitions.max52 /\ md <= 64193 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits1 a3 64 /\ Hacl.Spec.K256.Field52.Definitions.felem_fits_last1 a4 64) (ensures (let d1 = d +. Lib.IntTypes.mul64_wide a3 (a4 *. Lib.IntTypes.u64 2) in Lib.IntTypes.v d1 == Lib.IntTypes.v d + Lib.IntTypes.v a3 * Lib.IntTypes.v a4 + Lib.IntTypes.v a4 * Lib.IntTypes.v a3 /\ Lib.IntTypes.v d1 <= 513 * (Hacl.Spec.K256.Field52.Definitions.max52 * Hacl.Spec.K256.Field52.Definitions.max52)))
{ "end_col": 60, "end_line": 851, "start_col": 2, "start_line": 836 }
Prims.Tot
val parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l
val parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) let parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) =
false
null
false
parse_bitfield parse_u32 uint32 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt32.t", "LowParse.Spec.Int.parse_u32_kind", "LowParse.Spec.Int.parse_u32", "LowParse.BitFields.uint32", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l))
[]
LowParse.Spec.BitFields.parse_bitfield32
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 32 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u32_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint32 0 32 l)
{ "end_col": 35, "end_line": 161, "start_col": 2, "start_line": 161 }
Prims.Tot
val serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l
val serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l)) let serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l)) =
false
null
false
serialize_bitfield serialize_u8 uint8 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.Int.serialize_u8", "LowParse.BitFields.uint8", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield8" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (serializer (parse_bitfield8 l))
[]
LowParse.Spec.BitFields.serialize_bitfield8
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 8 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield8 l)
{ "end_col": 41, "end_line": 176, "start_col": 2, "start_line": 176 }
Prims.Tot
val serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l
val serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l)) let serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l)) =
false
null
false
serialize_bitfield serialize_u32 uint32 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt32.t", "LowParse.Spec.Int.parse_u32_kind", "LowParse.Spec.Int.parse_u32", "LowParse.Spec.Int.serialize_u32", "LowParse.BitFields.uint32", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield32" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_bitfield32 (l: list nat {valid_bitfield_widths 0 32 l}) : Tot (serializer (parse_bitfield32 l))
[]
LowParse.Spec.BitFields.serialize_bitfield32
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 32 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield32 l)
{ "end_col": 43, "end_line": 164, "start_col": 2, "start_line": 164 }
Prims.Tot
val parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l
val parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) let parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) =
false
null
false
parse_bitfield parse_u64 uint64 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt64.t", "LowParse.Spec.Int.parse_u64_kind", "LowParse.Spec.Int.parse_u64", "LowParse.BitFields.uint64", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l))
[]
LowParse.Spec.BitFields.parse_bitfield64
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 64 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u64_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint64 0 64 l)
{ "end_col": 35, "end_line": 155, "start_col": 2, "start_line": 155 }
Prims.Tot
val serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l
val serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l)) let serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l)) =
false
null
false
serialize_bitfield serialize_u16 uint16 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt16.t", "LowParse.Spec.Int.parse_u16_kind", "LowParse.Spec.Int.parse_u16", "LowParse.Spec.Int.serialize_u16", "LowParse.BitFields.uint16", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield16" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (serializer (parse_bitfield16 l))
[]
LowParse.Spec.BitFields.serialize_bitfield16
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 16 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield16 l)
{ "end_col": 43, "end_line": 170, "start_col": 2, "start_line": 170 }
Prims.Tot
val parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l
val parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) let parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) =
false
null
false
parse_bitfield parse_u16 uint16 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt16.t", "LowParse.Spec.Int.parse_u16_kind", "LowParse.Spec.Int.parse_u16", "LowParse.BitFields.uint16", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_bitfield16 (l: list nat {valid_bitfield_widths 0 16 l}) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l))
[]
LowParse.Spec.BitFields.parse_bitfield16
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 16 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u16_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint16 0 16 l)
{ "end_col": 35, "end_line": 167, "start_col": 2, "start_line": 167 }
Prims.Tot
val serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l
val serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l)) let serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l)) =
false
null
false
serialize_bitfield serialize_u64 uint64 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.serialize_bitfield", "FStar.UInt64.t", "LowParse.Spec.Int.parse_u64_kind", "LowParse.Spec.Int.parse_u64", "LowParse.Spec.Int.serialize_u64", "LowParse.BitFields.uint64", "LowParse.Spec.Base.serializer", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.parse_bitfield64" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_bitfield64 (l: list nat {valid_bitfield_widths 0 64 l}) : Tot (serializer (parse_bitfield64 l))
[]
LowParse.Spec.BitFields.serialize_bitfield64
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 64 l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield64 l)
{ "end_col": 43, "end_line": 158, "start_col": 2, "start_line": 158 }
Prims.Tot
val parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l
val parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) let parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) =
false
null
false
parse_bitfield parse_u8 uint8 l
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.parse_bitfield", "FStar.UInt8.t", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Int.parse_u8", "LowParse.BitFields.uint8", "LowParse.Spec.Base.parser", "LowParse.Spec.BitFields.bitfields" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_bitfield8 (l: list nat {valid_bitfield_widths 0 8 l}) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l))
[]
LowParse.Spec.BitFields.parse_bitfield8
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 8 l} -> LowParse.Spec.Base.parser LowParse.Spec.Int.parse_u8_kind (LowParse.Spec.BitFields.bitfields LowParse.BitFields.uint8 0 8 l)
{ "end_col": 33, "end_line": 173, "start_col": 2, "start_line": 173 }
Prims.Tot
val synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x
val synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t =
false
null
false
synth_bitfield_recip' cl lo hi l x
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield_recip'" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t
[]
LowParse.Spec.BitFields.synth_bitfield_recip
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> t
{ "end_col": 231, "end_line": 103, "start_col": 197, "start_line": 103 }
Prims.Tot
val synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x
val synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) =
false
null
false
synth_bitfield' cl lo hi l x
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.synth_bitfield'", "LowParse.Spec.BitFields.bitfields" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l)
[]
LowParse.Spec.BitFields.synth_bitfield
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> LowParse.Spec.BitFields.bitfields cl lo hi l
{ "end_col": 221, "end_line": 45, "start_col": 193, "start_line": 45 }
Prims.Tot
val mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l)
val mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) =
false
null
false
norm [ delta_only [ `%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons ]; iota; zeta; primops ] (mk_bitfields_destr' cl lo hi l)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops", "LowParse.Spec.BitFields.bitfields_destr_t", "LowParse.Spec.BitFields.mk_bitfields_destr'" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l })
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l)
[]
LowParse.Spec.BitFields.mk_bitfields_destr
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo hi l
{ "end_col": 172, "end_line": 262, "start_col": 2, "start_line": 262 }
Prims.Tot
val valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q
val valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) let rec valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) =
false
null
false
match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.op_Equality", "Prims.op_AmpAmp", "Prims.op_Addition", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims.bool" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_bitfield_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.valid_bitfield_widths
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Tot Prims.bool
{ "end_col": 68, "end_line": 19, "start_col": 2, "start_line": 17 }
Prims.Pure
val bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l)
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q
val bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) let rec bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) =
false
null
false
match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.Nil", "Prims.Cons", "Prims.op_Addition", "LowParse.Spec.BitFields.bounds_of_widths", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.valid_bitfield_bounds" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bounds_of_widths (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.bounds_of_widths
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Pure (Prims.list Prims.nat)
{ "end_col": 59, "end_line": 28, "start_col": 2, "start_line": 25 }
Prims.Tot
val valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
[ { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
val valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) let rec valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l) =
false
null
false
match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "Prims.op_AmpAmp", "LowParse.Spec.BitFields.valid_bitfield_bounds", "Prims.bool" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion.
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_bitfield_bounds (lo: nat) (hi: nat{lo <= hi}) (l: list nat) : Tot bool (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.valid_bitfield_bounds
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> l: Prims.list Prims.nat -> Prims.Tot Prims.bool
{ "end_col": 68, "end_line": 14, "start_col": 2, "start_line": 12 }
Prims.Tot
val valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat { lo <= hi }) (prefix: list nat) (suffix: list nat { valid_bitfield_widths lo hi (prefix `L.append` suffix) }) : Tot (mi: nat { lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix }) (decreases prefix) = match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix
val valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix) let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix) =
false
null
false
match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "FStar.List.Tot.Base.append", "LowParse.Spec.BitFields.valid_bitfield_widths_prefix", "Prims.op_Addition", "Prims.l_and" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat { lo <= hi }) (prefix: list nat) (suffix: list nat { valid_bitfield_widths lo hi (prefix `L.append` suffix) }) : Tot (mi: nat { lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix })
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_bitfield_widths_prefix (lo: nat) (hi: nat{lo <= hi}) (prefix: list nat) (suffix: list nat {valid_bitfield_widths lo hi (prefix `L.append` suffix)}) : Tot (mi: nat{lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix}) (decreases prefix)
[ "recursion" ]
LowParse.Spec.BitFields.valid_bitfield_widths_prefix
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> hi: Prims.nat{lo <= hi} -> prefix: Prims.list Prims.nat -> suffix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi (prefix @ suffix)} -> Prims.Tot (mi: Prims.nat{lo <= mi /\ mi <= hi /\ LowParse.Spec.BitFields.valid_bitfield_widths lo mi prefix})
{ "end_col": 65, "end_line": 288, "start_col": 2, "start_line": 286 }
FStar.Pervasives.Lemma
val valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q
val valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) =
false
null
true
match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths_inj", "Prims.op_Addition", "Prims.unit", "Prims.l_and", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims.squash", "Prims.eq2", "Prims.l_or", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_bitfield_widths_inj (lo: nat) (hi1: nat{lo <= hi1}) (hi2: nat{lo <= hi2}) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.valid_bitfield_widths_inj
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> hi1: Prims.nat{lo <= hi1} -> hi2: Prims.nat{lo <= hi2} -> l: Prims.list Prims.nat -> FStar.Pervasives.Lemma (requires LowParse.Spec.BitFields.valid_bitfield_widths lo hi1 l /\ LowParse.Spec.BitFields.valid_bitfield_widths lo hi2 l) (ensures hi1 == hi2) (decreases l)
{ "end_col": 60, "end_line": 277, "start_col": 2, "start_line": 275 }
Prims.Tot
val synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
val synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l) let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l) =
false
null
false
match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "FStar.Pervasives.Native.Mktuple2", "LowParse.BitFields.bitfield", "LowParse.Spec.BitFields.bitfields", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield'" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: t) : Tot (bitfields cl lo hi l) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.synth_bitfield'
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> Prims.Tot (LowParse.Spec.BitFields.bitfields cl lo hi l)
{ "end_col": 111, "end_line": 43, "start_col": 2, "start_line": 40 }
Prims.Tot
val synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
val synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l) let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l) =
false
null
false
match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let hd, tl = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "LowParse.BitFields.bitfield", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield_recip'", "FStar.Pervasives.Native.tuple2" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Tot t (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.synth_bitfield_recip'
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> Prims.Tot t
{ "end_col": 80, "end_line": 101, "start_col": 2, "start_line": 96 }
Prims.Tot
val mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q)
val mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l) let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l) =
false
null
false
match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields_destr_nil", "LowParse.Spec.BitFields.bitfields_destr_cons_nil", "LowParse.Spec.BitFields.bitfields_destr_cons", "LowParse.Spec.BitFields.mk_bitfields_destr'", "Prims.op_Addition", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l)
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) : Tot (bitfields_destr_t cl lo hi l) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.mk_bitfields_destr'
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> Prims.Tot (LowParse.Spec.BitFields.bitfields_destr_t cl lo hi l)
{ "end_col": 89, "end_line": 250, "start_col": 2, "start_line": 247 }
Prims.Tot
val parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l
val parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l)) let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l)) =
false
null
false
p `parse_synth` (synth_bitfield cl 0 tot l)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "Prims.pos", "LowParse.BitFields.uint_t", "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (parser k (bitfields cl 0 tot l))
[]
LowParse.Spec.BitFields.parse_bitfield
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k t -> cl: LowParse.BitFields.uint_t tot t -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> LowParse.Spec.Base.parser k (LowParse.Spec.BitFields.bitfields cl 0 tot l)
{ "end_col": 43, "end_line": 93, "start_col": 2, "start_line": 93 }
FStar.Pervasives.Lemma
val synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ]
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x )
val synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ] let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ] =
false
null
true
synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.synth_inverse_intro'", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.Spec.BitFields.synth_bitfield_recip_inverse'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.op_GreaterThan", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.Combinators.synth_inverse", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))]
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [ SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l) ) ]
[]
LowParse.Spec.BitFields.synth_bitfield_recip_inverse
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> FStar.Pervasives.Lemma (ensures lo == 0 /\ hi == tot ==> LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitFields.synth_bitfield cl lo hi l) (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l)) [ SMTPat (LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitFields.synth_bitfield cl lo hi l) (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l)) ]
{ "end_col": 3, "end_line": 141, "start_col": 2, "start_line": 139 }
FStar.Pervasives.Lemma
val synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))]
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)))
val synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] =
false
null
true
synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y)))
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.synth_injective_intro'", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims._assert", "Prims.eq2", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "Prims.unit", "LowParse.BitFields.get_bitfield_full", "LowParse.Spec.BitFields.synth_bitfield_injective'", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "LowParse.Spec.Combinators.synth_injective", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))]
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths 0 tot l}) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))]
[]
LowParse.Spec.BitFields.synth_bitfield_injective
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> FStar.Pervasives.Lemma (ensures lo == 0 /\ hi == tot ==> LowParse.Spec.Combinators.synth_injective (LowParse.Spec.BitFields.synth_bitfield cl lo hi l )) [ SMTPat (LowParse.Spec.Combinators.synth_injective (LowParse.Spec.BitFields.synth_bitfield cl lo hi l)) ]
{ "end_col": 60, "end_line": 68, "start_col": 2, "start_line": 64 }
Prims.Tot
val serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l))
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
val serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l)) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l)) =
false
null
false
serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) ()
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.pos", "LowParse.BitFields.uint_t", "Prims.list", "Prims.nat", "Prims.b2t", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.Spec.BitFields.parse_bitfield" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l })
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat {valid_bitfield_widths 0 tot l}) : Tot (serializer (parse_bitfield p cl l))
[]
LowParse.Spec.BitFields.serialize_bitfield
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
s: LowParse.Spec.Base.serializer p -> cl: LowParse.BitFields.uint_t tot t -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths 0 tot l} -> LowParse.Spec.Base.serializer (LowParse.Spec.BitFields.parse_bitfield p cl l)
{ "end_col": 6, "end_line": 152, "start_col": 2, "start_line": 147 }
Prims.Tot
val bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo [])
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f ()
val bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo []) let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo []) =
false
null
false
fun f_t f x -> f ()
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.BitFields.bitfields", "Prims.Nil", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } )
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat{lo <= tot}) : Tot (bitfields_destr_t cl lo lo [])
[]
LowParse.Spec.BitFields.bitfields_destr_nil
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat{lo <= tot} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo lo []
{ "end_col": 8, "end_line": 235, "start_col": 2, "start_line": 234 }
Prims.Tot
val bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz])
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz))
val bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) =
false
null
false
fun f_t f x -> f (cl.get_bitfield x lo (lo + sz))
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "total" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "LowParse.Spec.BitFields.bitfields", "Prims.Cons", "Prims.Nil", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.bitfields_destr_t" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot })
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat{lo + sz <= tot}) : Tot (bitfields_destr_t cl lo (lo + sz) [sz])
[]
LowParse.Spec.BitFields.bitfields_destr_cons_nil
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> sz: Prims.nat{lo + sz <= tot} -> LowParse.Spec.BitFields.bitfields_destr_t cl lo (lo + sz) [sz]
{ "end_col": 38, "end_line": 224, "start_col": 2, "start_line": 223 }
FStar.Pervasives.Lemma
val synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)
val synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) =
false
null
true
match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let hd, tl = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.bitfields", "Prims._assert", "Prims.eq2", "LowParse.Spec.BitFields.synth_bitfield", "LowParse.Spec.BitFields.synth_bitfield_recip", "LowParse.BitFields.bitfield", "Prims.unit", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield", "LowParse.BitFields.get_bitfield_set_bitfield_same", "Prims.op_Addition", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BitFields.synth_bitfield_recip_inverse'", "LowParse.Spec.BitFields.synth_bitfield_ext", "LowParse.BitFields.get_bitfield_set_bitfield_other", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.synth_bitfield_recip_inverse'
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: LowParse.Spec.BitFields.bitfields cl lo hi l -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitFields.synth_bitfield cl lo hi l (LowParse.Spec.BitFields.synth_bitfield_recip cl lo hi l x) == x) (decreases l)
{ "end_col": 79, "end_line": 131, "start_col": 2, "start_line": 113 }
FStar.Pervasives.Lemma
val valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec valid_bitfield_widths_append (lo: nat) (mi: nat { lo <= mi }) (hi: nat { mi <= hi }) (prefix: list nat { valid_bitfield_widths lo mi prefix }) (suffix: list nat { valid_bitfield_widths mi hi suffix }) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix) = match prefix with | [] -> () | sz :: q -> valid_bitfield_widths_append (lo + sz) mi hi q suffix
val valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix) let rec valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix) =
false
null
true
match prefix with | [] -> () | sz :: q -> valid_bitfield_widths_append (lo + sz) mi hi q suffix
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma", "" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.Spec.BitFields.valid_bitfield_widths_append", "Prims.op_Addition", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.List.Tot.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) #pop-options let parse_bitfield (#t: Type) (#k: parser_kind) (p: parser k t) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (parser k (bitfields cl 0 tot l)) = p `parse_synth` synth_bitfield cl 0 tot l let rec synth_bitfield_recip' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t (decreases l) = match l with | [] -> cl.uint_to_t 0 | [_] -> cl.set_bitfield (cl.uint_to_t 0) lo hi x | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in cl.set_bitfield (synth_bitfield_recip' cl (lo + sz) hi q tl) lo (lo + sz) hd let synth_bitfield_recip (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Tot t = synth_bitfield_recip' cl lo hi l x #push-options "--z3rlimit 64" let rec synth_bitfield_recip_inverse' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: bitfields cl lo hi l) : Lemma (ensures (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | [sz] -> let x = x <: bitfield cl sz in BF.get_bitfield_set_bitfield_same 0 lo hi (cl.v x); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi); assert (cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (cl.uint_to_t 0) lo hi x) lo hi)) == cl.uint_to_t (cl.v x)); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) | sz :: q -> let (hd, tl) = x <: (bitfield cl sz & bitfields cl (lo + sz) hi q) in let y = synth_bitfield_recip cl (lo + sz) hi q tl in BF.get_bitfield_set_bitfield_same (cl.v y) lo (lo + sz) (cl.v hd); BF.get_bitfield_set_bitfield_other (cl.v y) lo (lo + sz) (cl.v hd) (lo + sz) hi; synth_bitfield_ext cl (lo + sz) hi q y (cl.set_bitfield y lo (lo + sz) hd); synth_bitfield_recip_inverse' cl (lo + sz) hi q tl; assert (cl.uint_to_t (cl.v (fst (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) <: (bitfield cl sz & bitfields cl (lo + sz) hi q)))) == cl.uint_to_t (cl.v (cl.get_bitfield (cl.set_bitfield (synth_bitfield_recip cl (lo + sz) hi q tl) lo (lo + sz) hd) lo (lo + sz)))); assert (synth_bitfield cl lo hi l (synth_bitfield_recip cl lo hi l x) == x) #pop-options let synth_bitfield_recip_inverse (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_inverse (synth_bitfield cl lo hi l) (synth_bitfield_recip cl lo hi l)) [SMTPat (synth_inverse (synth_bitfield #tot #t cl lo hi l) (synth_bitfield_recip #tot #t cl lo hi l))] = synth_inverse_intro' (synth_bitfield cl 0 tot l) (synth_bitfield_recip cl 0 tot l) (fun x -> synth_bitfield_recip_inverse' cl 0 tot l x ) let serialize_bitfield (#t: Type) (#k: parser_kind) (#p: parser k t) (s: serializer p) (#tot: pos) (cl: uint_t tot t) (l: list nat { valid_bitfield_widths 0 tot l }) : Tot (serializer (parse_bitfield p cl l)) = serialize_synth p (synth_bitfield cl 0 tot l) s (synth_bitfield_recip cl 0 tot l) () let parse_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (parser parse_u64_kind (bitfields uint64 0 64 l)) = parse_bitfield parse_u64 uint64 l let serialize_bitfield64 (l: list nat { valid_bitfield_widths 0 64 l }) : Tot (serializer (parse_bitfield64 l)) = serialize_bitfield serialize_u64 uint64 l let parse_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (parser parse_u32_kind (bitfields uint32 0 32 l)) = parse_bitfield parse_u32 uint32 l let serialize_bitfield32 (l: list nat { valid_bitfield_widths 0 32 l }) : Tot (serializer (parse_bitfield32 l)) = serialize_bitfield serialize_u32 uint32 l let parse_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (parser parse_u16_kind (bitfields uint16 0 16 l)) = parse_bitfield parse_u16 uint16 l let serialize_bitfield16 (l: list nat { valid_bitfield_widths 0 16 l }) : Tot (serializer (parse_bitfield16 l)) = serialize_bitfield serialize_u16 uint16 l let parse_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (parser parse_u8_kind (bitfields uint8 0 8 l)) = parse_bitfield parse_u8 uint8 l let serialize_bitfield8 (l: list nat { valid_bitfield_widths 0 8 l }) : Tot (serializer (parse_bitfield8 l)) = serialize_bitfield serialize_u8 uint8 l (* Universal destructor *) inline_for_extraction noextract let bitfields_destr_t (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type = (f_t: (bitfields cl lo hi l -> Tot Type)) -> (f: ((x: bitfields cl lo hi l) -> Tot (f_t x))) -> (x: t) -> Tot (f_t (synth_bitfield cl lo hi l x)) inline_for_extraction noextract let bitfields_destr_cons (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat) (hi: nat { lo + sz <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths (lo + sz) hi l /\ Cons? l }) (phi: bitfields_destr_t cl (lo + sz) hi l) : Tot (bitfields_destr_t cl lo hi (sz :: l)) = fun f_t f x -> phi (fun x' -> f_t (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) (fun x' -> f (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), x')) x inline_for_extraction noextract let bitfields_destr_cons_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (sz: nat { lo + sz <= tot }) : Tot (bitfields_destr_t cl lo (lo + sz) [sz]) = fun f_t f x -> f (cl.get_bitfield x lo (lo + sz)) inline_for_extraction noextract let bitfields_destr_nil (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat { lo <= tot } ) : Tot (bitfields_destr_t cl lo lo []) = fun f_t f x -> f () noextract let rec mk_bitfields_destr' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) (decreases l) = match l with | [] -> bitfields_destr_nil cl lo | [sz] -> bitfields_destr_cons_nil cl lo sz | sz :: q -> bitfields_destr_cons cl lo sz hi q (mk_bitfields_destr' cl (lo + sz) hi q) inline_for_extraction noextract let mk_bitfields_destr (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot (bitfields_destr_t cl lo hi l) = norm [delta_only [`%mk_bitfields_destr'; `%bitfields_destr_nil; `%bitfields_destr_cons_nil; `%bitfields_destr_cons]; iota; zeta; primops] (mk_bitfields_destr' cl lo hi l) module L = FStar.List.Tot let rec valid_bitfield_widths_inj (lo: nat) (hi1: nat { lo <= hi1 }) (hi2: nat { lo <= hi2 }) (l: list nat) : Lemma (requires (valid_bitfield_widths lo hi1 l /\ valid_bitfield_widths lo hi2 l)) (ensures (hi1 == hi2)) (decreases l) = match l with | [] -> () | sz :: q -> valid_bitfield_widths_inj (lo + sz) hi1 hi2 q let rec valid_bitfield_widths_prefix (lo: nat) (hi: nat { lo <= hi }) (prefix: list nat) (suffix: list nat { valid_bitfield_widths lo hi (prefix `L.append` suffix) }) : Tot (mi: nat { lo <= mi /\ mi <= hi /\ valid_bitfield_widths lo mi prefix }) (decreases prefix) = match prefix with | [] -> lo | sz :: q -> valid_bitfield_widths_prefix (lo + sz) hi q suffix let rec valid_bitfield_widths_append (lo: nat) (mi: nat { lo <= mi }) (hi: nat { mi <= hi }) (prefix: list nat { valid_bitfield_widths lo mi prefix }) (suffix: list nat { valid_bitfield_widths mi hi suffix }) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix)))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val valid_bitfield_widths_append (lo: nat) (mi: nat{lo <= mi}) (hi: nat{mi <= hi}) (prefix: list nat {valid_bitfield_widths lo mi prefix}) (suffix: list nat {valid_bitfield_widths mi hi suffix}) : Lemma (ensures (valid_bitfield_widths lo hi (prefix `L.append` suffix))) (decreases prefix)
[ "recursion" ]
LowParse.Spec.BitFields.valid_bitfield_widths_append
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
lo: Prims.nat -> mi: Prims.nat{lo <= mi} -> hi: Prims.nat{mi <= hi} -> prefix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo mi prefix} -> suffix: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths mi hi suffix} -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitFields.valid_bitfield_widths lo hi (prefix @ suffix)) (decreases prefix)
{ "end_col": 68, "end_line": 301, "start_col": 2, "start_line": 299 }
FStar.Pervasives.Lemma
val synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y)
val synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) =
false
null
true
match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "LowParse.BitFields.get_bitfield_empty", "LowParse.BitFields.__proj__Mkuint_t__item__v", "Prims.unit", "LowParse.BitFields.get_bitfield_partition_2_gen", "Prims.op_Addition", "LowParse.Spec.BitFields.synth_bitfield_injective'", "Prims.eq2", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims.squash", "LowParse.BitFields.ubitfield", "Prims.op_Subtraction", "LowParse.BitFields.get_bitfield", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.synth_bitfield_injective'
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> y: t -> FStar.Pervasives.Lemma (requires LowParse.Spec.BitFields.synth_bitfield cl lo hi l x == LowParse.Spec.BitFields.synth_bitfield cl lo hi l y) (ensures LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) lo hi == LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) lo hi) (decreases l)
{ "end_col": 69, "end_line": 58, "start_col": 2, "start_line": 51 }
FStar.Pervasives.Lemma
val synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l)
[ { "abbrev": true, "full_module": "FStar.UInt", "short_module": "U" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": false, "full_module": "LowParse.BitFields", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) = match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)
val synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l) =
false
null
true
match l with | [] -> assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | [_] -> assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo hi)) == cl.uint_to_t (cl.v (cl.get_bitfield y lo hi))); assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y) | sz :: q -> BF.get_bitfield_get_bitfield (cl.v x) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v x) lo hi sz (hi - lo); BF.get_bitfield_get_bitfield (cl.v y) lo hi 0 sz; BF.get_bitfield_get_bitfield (cl.v y) lo hi sz (hi - lo); assert (cl.uint_to_t (cl.v (cl.get_bitfield x lo (lo + sz))) == cl.uint_to_t (cl.v (cl.get_bitfield y lo (lo + sz)))); synth_bitfield_ext cl (lo + sz) hi q x y; assert (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)
{ "checked_file": "LowParse.Spec.BitFields.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitFields.fst" }
[ "lemma", "" ]
[ "Prims.pos", "LowParse.BitFields.uint_t", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.list", "LowParse.Spec.BitFields.valid_bitfield_widths", "Prims._assert", "Prims.eq2", "LowParse.Spec.BitFields.bitfields", "LowParse.Spec.BitFields.synth_bitfield", "Prims.unit", "LowParse.BitFields.__proj__Mkuint_t__item__uint_to_t", "LowParse.BitFields.__proj__Mkuint_t__item__v", "LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield", "LowParse.Spec.BitFields.synth_bitfield_ext", "Prims.op_Addition", "LowParse.BitFields.get_bitfield_get_bitfield", "Prims.op_Subtraction", "LowParse.BitFields.ubitfield", "LowParse.BitFields.get_bitfield", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.BitFields include LowParse.Spec.Combinators include LowParse.Spec.Int include LowParse.BitFields module BF = LowParse.BitFields // IMPORTANT: these bitfield operators are defined in a least // significant bit (LSB) first fashion. let rec valid_bitfield_bounds (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> true | mi :: q -> lo <= mi && mi <= hi && valid_bitfield_bounds mi hi q let rec valid_bitfield_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Tot bool (decreases l) = match l with | [] -> lo = hi | sz :: q -> lo + sz <= hi && valid_bitfield_widths (lo + sz) hi q let rec bounds_of_widths (lo: nat) (hi: nat { lo <= hi }) (l: list nat) : Pure (list nat) (requires (valid_bitfield_widths lo hi l)) (ensures (fun res -> valid_bitfield_bounds lo hi res)) (decreases l) = match l with | [] -> [] | [_] -> [] | sz :: q -> (lo + sz) :: bounds_of_widths (lo + sz) hi q module U = FStar.UInt noextract let rec bitfields (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) : Tot Type (decreases l) = match l with | [] -> unit | [sz] -> bitfield cl sz | sz :: q -> bitfield cl sz & bitfields cl (lo + sz) hi q let rec synth_bitfield' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) (decreases l) = match l with | [] -> () | [_] -> cl.get_bitfield x lo hi | sz :: q -> (((cl.get_bitfield x lo (lo + sz) <: t) <: bitfield cl sz), synth_bitfield' cl (lo + sz) hi q x) let synth_bitfield (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x: t) : Tot (bitfields cl lo hi l) = synth_bitfield' cl lo hi l x let rec synth_bitfield_injective' (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (ensures (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (decreases l) = match l with | [] -> BF.get_bitfield_empty (cl.v x) lo; BF.get_bitfield_empty (cl.v y) lo | [_] -> () | sz :: q -> synth_bitfield_injective' cl (lo + sz) hi q x y; BF.get_bitfield_partition_2_gen lo (lo + sz) hi (cl.v x) (cl.v y) let synth_bitfield_injective (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths 0 tot l }) : Lemma ((lo == 0 /\ hi == tot) ==> synth_injective (synth_bitfield cl lo hi l)) [SMTPat (synth_injective (synth_bitfield #tot #t cl lo hi l))] = synth_injective_intro' (synth_bitfield cl 0 tot l) (fun x y -> synth_bitfield_injective' cl 0 tot l x y; BF.get_bitfield_full (cl.v x); BF.get_bitfield_full (cl.v y); assert (cl.uint_to_t (cl.v x) == cl.uint_to_t (cl.v y))) #push-options "--z3rlimit 128" let rec synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat { lo <= hi /\ hi <= tot }) (l: list nat { valid_bitfield_widths lo hi l }) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y))
false
false
LowParse.Spec.BitFields.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 128, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_bitfield_ext (#tot: pos) (#t: Type) (cl: uint_t tot t) (lo: nat) (hi: nat{lo <= hi /\ hi <= tot}) (l: list nat {valid_bitfield_widths lo hi l}) (x y: t) : Lemma (requires (BF.get_bitfield (cl.v x) lo hi == BF.get_bitfield (cl.v y) lo hi)) (ensures (synth_bitfield cl lo hi l x == synth_bitfield cl lo hi l y)) (decreases l)
[ "recursion" ]
LowParse.Spec.BitFields.synth_bitfield_ext
{ "file_name": "src/lowparse/LowParse.Spec.BitFields.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
cl: LowParse.BitFields.uint_t tot t -> lo: Prims.nat -> hi: Prims.nat{lo <= hi /\ hi <= tot} -> l: Prims.list Prims.nat {LowParse.Spec.BitFields.valid_bitfield_widths lo hi l} -> x: t -> y: t -> FStar.Pervasives.Lemma (requires LowParse.BitFields.get_bitfield (Mkuint_t?.v cl x) lo hi == LowParse.BitFields.get_bitfield (Mkuint_t?.v cl y) lo hi) (ensures LowParse.Spec.BitFields.synth_bitfield cl lo hi l x == LowParse.Spec.BitFields.synth_bitfield cl lo hi l y) (decreases l)
{ "end_col": 71, "end_line": 88, "start_col": 2, "start_line": 76 }
FStar.All.ML
val test: Prims.unit -> FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test () : FStar.All.ML bool = let t0 : bool = test_secret_to_public test2_sk test2_pk in let t1 : bool = test_verify test1_pk test1_msg test1_sgnt in let t2 : bool = test_sign_and_verify test2_sk test2_pk test2_nonce test2_msgHash test2_sgnt in let t3 : bool = test_public_key_compressed test2_pk in let t4 : bool = test_public_key_uncompressed test2_pk in if t0 && t1 && t2 && t3 && t4 then begin IO.print_string "Test K256 ecdsa: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa: Failure :(\n"; false end
val test: Prims.unit -> FStar.All.ML bool let test () : FStar.All.ML bool =
true
null
false
let t0:bool = test_secret_to_public test2_sk test2_pk in let t1:bool = test_verify test1_pk test1_msg test1_sgnt in let t2:bool = test_sign_and_verify test2_sk test2_pk test2_nonce test2_msgHash test2_sgnt in let t3:bool = test_public_key_compressed test2_pk in let t4:bool = test_public_key_uncompressed test2_pk in if t0 && t1 && t2 && t3 && t4 then (IO.print_string "Test K256 ecdsa: Success!\n"; true) else (IO.print_string "Test K256 ecdsa: Failure :(\n"; false)
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Prims.unit", "Prims.op_AmpAmp", "Prims.bool", "FStar.IO.print_string", "Spec.K256.Test.test_public_key_uncompressed", "Spec.K256.Test.test2_pk", "Spec.K256.Test.test_public_key_compressed", "Spec.K256.Test.test_sign_and_verify", "Spec.K256.Test.test2_sk", "Spec.K256.Test.test2_nonce", "Spec.K256.Test.test2_msgHash", "Spec.K256.Test.test2_sgnt", "Spec.K256.Test.test_verify", "Spec.K256.Test.test1_pk", "Spec.K256.Test.test1_msg", "Spec.K256.Test.test1_sgnt", "Spec.K256.Test.test_secret_to_public" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end let test_public_key_uncompressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> begin IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false end #set-options "--ifuel 2"
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test: Prims.unit -> FStar.All.ML bool
[]
Spec.K256.Test.test
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
_: Prims.unit -> FStar.All.ML Prims.bool
{ "end_col": 71, "end_line": 207, "start_col": 34, "start_line": 198 }
Prims.Tot
val test1_msg:lbytes 6
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l
val test1_msg:lbytes 6 let test1_msg:lbytes 6 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy] in assert_norm (List.Tot.length l == 6); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test1_msg:lbytes 6
[]
Spec.K256.Test.test1_msg
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 6
{ "end_col": 11, "end_line": 35, "start_col": 26, "start_line": 30 }
FStar.All.ML
val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end
val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt =
true
null
false
let verify:bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then (IO.print_string "Test K256 ecdsa verification: Success!\n"; true) else (IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false)
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Lib.ByteSequence.lbytes", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.max_size_t", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Spec.K256.ecdsa_verify_sha256" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool
[]
Spec.K256.Test.test_verify
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pk: Lib.ByteSequence.lbytes 64 -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg <= Lib.IntTypes.max_size_t} -> sgnt: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
{ "end_col": 84, "end_line": 141, "start_col": 29, "start_line": 137 }
FStar.All.ML
val test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_public_key_uncompressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> begin IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false end
val test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool let test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool =
true
null
false
let pk_u = pk_uncompressed_from_raw pk_raw in let pk_raw_u = pk_uncompressed_to_raw pk_u in match pk_raw_u with | Some pk_raw_u -> let is_pk_u_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_u pk_raw in if not is_pk_u_valid then IO.print_string "Test K256 pk_uncompressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_uncompressed: Success!\n"; is_pk_u_valid | None -> IO.print_string "Test K256 pk_uncompressed (None): Failure :(\n"; false
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "Prims.op_Negation", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.pk_uncompressed_to_raw", "Spec.K256.pk_uncompressed_from_raw" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_public_key_uncompressed (pk_raw: lbytes 64) : FStar.All.ML bool
[]
Spec.K256.Test.test_public_key_uncompressed
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pk_raw: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
{ "end_col": 85, "end_line": 194, "start_col": 73, "start_line": 182 }
FStar.All.ML
val test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_public_key_compressed (pk_raw:lbytes 64) : FStar.All.ML bool = let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> begin IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false end
val test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool let test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool =
true
null
false
let pk_c = pk_compressed_from_raw pk_raw in let pk_raw_c = pk_compressed_to_raw pk_c in match pk_raw_c with | Some pk_raw_c -> let is_pk_c_valid = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_raw_c pk_raw in if not is_pk_c_valid then IO.print_string "Test K256 pk_compressed (Some): Failure :(\n" else IO.print_string "Test K256 pk_compressed: Success!\n"; is_pk_c_valid | None -> IO.print_string "Test K256 pk_compressed (None): Failure :(\n"; false
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "Prims.op_Negation", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.pk_compressed_to_raw", "Spec.K256.pk_compressed_from_raw" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_public_key_compressed (pk_raw: lbytes 64) : FStar.All.ML bool
[]
Spec.K256.Test.test_public_key_compressed
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
pk_raw: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
{ "end_col": 83, "end_line": 179, "start_col": 71, "start_line": 167 }
FStar.All.ML
val test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid
val test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool let test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool =
true
null
false
let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Lib.ByteSequence.lbytes", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.secret_to_public" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_secret_to_public (sk: lbytes 32) (pk_expected: lbytes 64) : FStar.All.ML bool
[]
Spec.K256.Test.test_secret_to_public
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
sk: Lib.ByteSequence.lbytes 32 -> pk_expected: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
{ "end_col": 13, "end_line": 128, "start_col": 86, "start_line": 118 }
FStar.All.ML
val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test_sign_and_verify sk pk nonce msgHash sgnt = let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then begin IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false end
val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool let test_sign_and_verify sk pk nonce msgHash sgnt =
true
null
false
let signature = ecdsa_sign_hashed_msg msgHash sk nonce in let is_sgnt_valid = match signature with | Some x -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) sgnt x | None -> false in let verify_sgnt = ecdsa_verify_hashed_msg msgHash pk sgnt in if verify_sgnt && is_sgnt_valid then (IO.print_string "Test K256 ecdsa signature and verification: Success!\n"; true) else (IO.print_string "Test K256 ecdsa signature and verification: Failure :(\n"; false)
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "ml" ]
[ "Lib.ByteSequence.lbytes", "Prims.op_AmpAmp", "Prims.bool", "Prims.unit", "FStar.IO.print_string", "Spec.K256.ecdsa_verify_hashed_msg", "Lib.Sequence.for_all2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Equality", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.K256.ecdsa_sign_hashed_msg" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l let test_secret_to_public (sk:lbytes 32) (pk_expected:lbytes 64) : FStar.All.ML bool = let pk = secret_to_public sk in let is_pk_valid = match pk with | Some pk -> for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) pk_expected pk | None -> false in if is_pk_valid then IO.print_string "Test K256 secret_to_public: Success!\n" else IO.print_string "Test K256 secret_to_public: Failure :(\n"; is_pk_valid val test_verify: pk:lbytes 64 -> msg:bytes{length msg <= max_size_t} -> sgnt:lbytes 64 -> FStar.All.ML bool let test_verify pk msg sgnt = let verify : bool = ecdsa_verify_sha256 (length msg) msg pk sgnt in if verify then begin IO.print_string "Test K256 ecdsa verification: Success!\n"; true end else begin IO.print_string "Test K256 ecdsa verification: Failure :(\n"; false end val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test_sign_and_verify: sk:lbytes 32 -> pk:lbytes 64 -> nonce:lbytes 32 -> msgHash:lbytes 32 -> sgnt:lbytes 64 -> FStar.All.ML bool
[]
Spec.K256.Test.test_sign_and_verify
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
sk: Lib.ByteSequence.lbytes 32 -> pk: Lib.ByteSequence.lbytes 64 -> nonce: Lib.ByteSequence.lbytes 32 -> msgHash: Lib.ByteSequence.lbytes 32 -> sgnt: Lib.ByteSequence.lbytes 64 -> FStar.All.ML Prims.bool
{ "end_col": 98, "end_line": 164, "start_col": 51, "start_line": 152 }
Prims.Tot
val test2_nonce:lbytes 32
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
val test2_nonce:lbytes 32 let test2_nonce:lbytes 32 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test2_nonce:lbytes 32
[]
Spec.K256.Test.test2_nonce
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
{ "end_col": 11, "end_line": 89, "start_col": 29, "start_line": 81 }
Prims.Tot
val test2_sk:lbytes 32
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
val test2_sk:lbytes 32 let test2_sk:lbytes 32 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test2_sk:lbytes 32
[]
Spec.K256.Test.test2_sk
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
{ "end_col": 11, "end_line": 63, "start_col": 26, "start_line": 55 }
Prims.Tot
val test2_msgHash:lbytes 32
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
val test2_msgHash:lbytes 32 let test2_msgHash:lbytes 32 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test2_msgHash:lbytes 32
[]
Spec.K256.Test.test2_msgHash
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 32
{ "end_col": 11, "end_line": 100, "start_col": 31, "start_line": 92 }
Prims.Tot
val test1_sgnt:lbytes 64
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l
val test1_sgnt:lbytes 64 let test1_sgnt:lbytes 64 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test1_sgnt:lbytes 64
[]
Spec.K256.Test.test1_sgnt
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
{ "end_col": 11, "end_line": 50, "start_col": 28, "start_line": 38 }
Prims.Tot
val test2_sgnt:lbytes 64
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test2_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
val test2_sgnt:lbytes 64 let test2_sgnt:lbytes 64 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0x24uy; 0x10uy; 0x97uy; 0xefuy; 0xbfuy; 0x8buy; 0x63uy; 0xbfuy; 0x14uy; 0x5cuy; 0x89uy; 0x61uy; 0xdbuy; 0xdfuy; 0x10uy; 0xc3uy; 0x10uy; 0xefuy; 0xbbuy; 0x3buy; 0x26uy; 0x76uy; 0xbbuy; 0xc0uy; 0xf8uy; 0xb0uy; 0x85uy; 0x05uy; 0xc9uy; 0xe2uy; 0xf7uy; 0x95uy; 0x02uy; 0x10uy; 0x06uy; 0xb7uy; 0x83uy; 0x86uy; 0x09uy; 0x33uy; 0x9euy; 0x8buy; 0x41uy; 0x5auy; 0x7fuy; 0x9auy; 0xcbuy; 0x1buy; 0x66uy; 0x18uy; 0x28uy; 0x13uy; 0x1auy; 0xefuy; 0x1euy; 0xcbuy; 0xc7uy; 0x95uy; 0x5duy; 0xfbuy; 0x01uy; 0xf3uy; 0xcauy; 0x0euy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l let test2_nonce : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x49uy; 0xa0uy; 0xd7uy; 0xb7uy; 0x86uy; 0xecuy; 0x9cuy; 0xdeuy; 0x0duy; 0x07uy; 0x21uy; 0xd7uy; 0x28uy; 0x04uy; 0xbeuy; 0xfduy; 0x06uy; 0x57uy; 0x1cuy; 0x97uy; 0x4buy; 0x19uy; 0x1euy; 0xfbuy; 0x42uy; 0xecuy; 0xf3uy; 0x22uy; 0xbauy; 0x9duy; 0xdduy; 0x9auy ] in assert_norm (List.Tot.length l == 32); of_list l let test2_msgHash : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x4buy; 0x68uy; 0x8duy; 0xf4uy; 0x0buy; 0xceuy; 0xdbuy; 0xe6uy; 0x41uy; 0xdduy; 0xb1uy; 0x6fuy; 0xf0uy; 0xa1uy; 0x84uy; 0x2duy; 0x9cuy; 0x67uy; 0xeauy; 0x1cuy; 0x3buy; 0xf6uy; 0x3fuy; 0x3euy; 0x04uy; 0x71uy; 0xbauy; 0xa6uy; 0x64uy; 0x53uy; 0x1duy; 0x1auy ] in assert_norm (List.Tot.length l == 32); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test2_sgnt:lbytes 64
[]
Spec.K256.Test.test2_sgnt
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
{ "end_col": 11, "end_line": 115, "start_col": 28, "start_line": 103 }
Prims.Tot
val test2_pk:lbytes 64
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test2_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
val test2_pk:lbytes 64 let test2_pk:lbytes 64 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0x77uy; 0x9duy; 0xd1uy; 0x97uy; 0xa5uy; 0xdfuy; 0x97uy; 0x7euy; 0xd2uy; 0xcfuy; 0x6cuy; 0xb3uy; 0x1duy; 0x82uy; 0xd4uy; 0x33uy; 0x28uy; 0xb7uy; 0x90uy; 0xdcuy; 0x6buy; 0x3buy; 0x7duy; 0x44uy; 0x37uy; 0xa4uy; 0x27uy; 0xbduy; 0x58uy; 0x47uy; 0xdfuy; 0xcduy; 0xe9uy; 0x4buy; 0x72uy; 0x4auy; 0x55uy; 0x5buy; 0x6duy; 0x01uy; 0x7buy; 0xb7uy; 0x60uy; 0x7cuy; 0x3euy; 0x32uy; 0x81uy; 0xdauy; 0xf5uy; 0xb1uy; 0x69uy; 0x9duy; 0x6euy; 0xf4uy; 0x12uy; 0x49uy; 0x75uy; 0xc9uy; 0x23uy; 0x7buy; 0x91uy; 0x7duy; 0x42uy; 0x6fuy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1 let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l let test1_msg : lbytes 6 = let l = List.Tot.map u8_from_UInt8 [ 0x31uy; 0x32uy; 0x33uy; 0x34uy; 0x30uy; 0x30uy ] in assert_norm (List.Tot.length l == 6); of_list l let test1_sgnt : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0x81uy; 0x3euy; 0xf7uy; 0x9cuy; 0xceuy; 0xfauy; 0x9auy; 0x56uy; 0xf7uy; 0xbauy; 0x80uy; 0x5fuy; 0x0euy; 0x47uy; 0x85uy; 0x84uy; 0xfeuy; 0x5fuy; 0x0duy; 0xd5uy; 0xf5uy; 0x67uy; 0xbcuy; 0x09uy; 0xb5uy; 0x12uy; 0x3cuy; 0xcbuy; 0xc9uy; 0x83uy; 0x23uy; 0x65uy; 0x6fuy; 0xf1uy; 0x8auy; 0x52uy; 0xdcuy; 0xc0uy; 0x33uy; 0x6fuy; 0x7auy; 0xf6uy; 0x24uy; 0x00uy; 0xa6uy; 0xdduy; 0x9buy; 0x81uy; 0x07uy; 0x32uy; 0xbauy; 0xf1uy; 0xffuy; 0x75uy; 0x80uy; 0x00uy; 0xd6uy; 0xf6uy; 0x13uy; 0xa5uy; 0x56uy; 0xebuy; 0x31uy; 0xbauy ] in assert_norm (List.Tot.length l == 64); of_list l /// Test 2 let test2_sk : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0xebuy; 0xb2uy; 0xc0uy; 0x82uy; 0xfduy; 0x77uy; 0x27uy; 0x89uy; 0x0auy; 0x28uy; 0xacuy; 0x82uy; 0xf6uy; 0xbduy; 0xf9uy; 0x7buy; 0xaduy; 0x8duy; 0xe9uy; 0xf5uy; 0xd7uy; 0xc9uy; 0x02uy; 0x86uy; 0x92uy; 0xdeuy; 0x1auy; 0x25uy; 0x5cuy; 0xaduy; 0x3euy; 0x0fuy ] in assert_norm (List.Tot.length l == 32); of_list l
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test2_pk:lbytes 64
[]
Spec.K256.Test.test2_pk
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
{ "end_col": 11, "end_line": 78, "start_col": 26, "start_line": 66 }
Prims.Tot
val test1_pk:lbytes 64
[ { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let test1_pk : lbytes 64 = let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
val test1_pk:lbytes 64 let test1_pk:lbytes 64 =
false
null
false
let l = List.Tot.map u8_from_UInt8 [ 0xb8uy; 0x38uy; 0xffuy; 0x44uy; 0xe5uy; 0xbcuy; 0x17uy; 0x7buy; 0xf2uy; 0x11uy; 0x89uy; 0xd0uy; 0x76uy; 0x60uy; 0x82uy; 0xfcuy; 0x9duy; 0x84uy; 0x32uy; 0x26uy; 0x88uy; 0x7fuy; 0xc9uy; 0x76uy; 0x03uy; 0x71uy; 0x10uy; 0x0buy; 0x7euy; 0xe2uy; 0x0auy; 0x6fuy; 0xf0uy; 0xc9uy; 0xd7uy; 0x5buy; 0xfbuy; 0xa7uy; 0xb3uy; 0x1auy; 0x6buy; 0xcauy; 0x19uy; 0x74uy; 0x49uy; 0x6euy; 0xebuy; 0x56uy; 0xdeuy; 0x35uy; 0x70uy; 0x71uy; 0x95uy; 0x5duy; 0x83uy; 0xc4uy; 0xb1uy; 0xbauy; 0xdauy; 0xa0uy; 0xb2uy; 0x18uy; 0x32uy; 0xe9uy ] in assert_norm (List.Tot.length l == 64); of_list l
{ "checked_file": "Spec.K256.Test.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.Test.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
module Spec.K256.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.K256 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// Test 1
false
false
Spec.K256.Test.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val test1_pk:lbytes 64
[]
Spec.K256.Test.test1_pk
{ "file_name": "specs/tests/Spec.K256.Test.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 64
{ "end_col": 11, "end_line": 27, "start_col": 26, "start_line": 15 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let natN = Vale.Def.Words_s.natN
let natN =
false
null
false
Vale.Def.Words_s.natN
{ "checked_file": "Vale.Def.TypesNative_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.TypesNative_s.fst" }
[ "total" ]
[ "Vale.Def.Words_s.natN" ]
[]
module Vale.Def.TypesNative_s open FStar.Mul
false
true
Vale.Def.TypesNative_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val natN : n: Prims.nat -> Type0
[]
Vale.Def.TypesNative_s.natN
{ "file_name": "vale/specs/defs/Vale.Def.TypesNative_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> Type0
{ "end_col": 39, "end_line": 4, "start_col": 18, "start_line": 4 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_norm = Vale.Def.Words_s.pow2_norm
let pow2_norm =
false
null
false
Vale.Def.Words_s.pow2_norm
{ "checked_file": "Vale.Def.TypesNative_s.fst.checked", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.TypesNative_s.fst" }
[ "total" ]
[ "Vale.Def.Words_s.pow2_norm" ]
[]
module Vale.Def.TypesNative_s open FStar.Mul
false
true
Vale.Def.TypesNative_s.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_norm : n: Prims.nat -> Prims.pos
[]
Vale.Def.TypesNative_s.pow2_norm
{ "file_name": "vale/specs/defs/Vale.Def.TypesNative_s.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat -> Prims.pos
{ "end_col": 49, "end_line": 5, "start_col": 23, "start_line": 5 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Plus_At #f e1 e2 = fadd #f e1 e2
let op_Plus_At #f e1 e2 =
false
null
false
fadd #f e1 e2
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fadd" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e)
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Plus_At : e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
[]
Spec.GaloisField.op_Plus_At
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 39, "end_line": 34, "start_col": 26, "start_line": 34 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_At #f e1 e2 = fmul #f e1 e2
let op_Star_At #f e1 e2 =
false
null
false
fmul #f e1 e2
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fmul" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_At : e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
[]
Spec.GaloisField.op_Star_At
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 39, "end_line": 51, "start_col": 26, "start_line": 51 }
Prims.Tot
val fadd (#f: field) (a b: felem f) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b
val fadd (#f: field) (a b: felem f) : felem f let fadd (#f: field) (a b: felem f) : felem f =
false
null
false
a ^. b
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.op_Hat_Dot", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e)
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd (#f: field) (a b: felem f) : felem f
[]
Spec.GaloisField.fadd
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 62, "end_line": 33, "start_col": 56, "start_line": 33 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Star_Star_At #f e1 e2 = fexp #f e1 e2
let op_Star_Star_At #f e1 e2 =
false
null
false
fexp #f e1 e2
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Spec.GaloisField.fexp" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n) let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r'
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Star_At : e1: Spec.GaloisField.felem f -> e2: n: Prims.nat{n >= 1} -> Spec.GaloisField.felem f
[]
Spec.GaloisField.op_Star_Star_At
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
e1: Spec.GaloisField.felem f -> e2: n: Prims.nat{n >= 1} -> Spec.GaloisField.felem f
{ "end_col": 44, "end_line": 91, "start_col": 31, "start_line": 91 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gf t irred = GF t irred
let gf t irred =
false
null
false
GF t irred
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.l_and", "Prims.b2t", "Lib.IntTypes.unsigned", "Prims.op_disEquality", "Lib.IntTypes.U1", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Spec.GaloisField.GF", "Spec.GaloisField.field" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gf : t: Lib.IntTypes.inttype{Lib.IntTypes.unsigned t /\ t <> Lib.IntTypes.U1} -> irred: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Spec.GaloisField.field
[]
Spec.GaloisField.gf
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Lib.IntTypes.inttype{Lib.IntTypes.unsigned t /\ t <> Lib.IntTypes.U1} -> irred: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Spec.GaloisField.field
{ "end_col": 27, "end_line": 15, "start_col": 17, "start_line": 15 }
Prims.Tot
val to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n
val to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f let to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f =
false
null
false
uint #f.t #SEC n
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.uint", "Lib.IntTypes.SEC", "Spec.GaloisField.felem" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_felem (#f: field) (n: nat{n <= maxint f.t}) : felem f
[]
Spec.GaloisField.to_felem
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
n: Prims.nat{n <= Lib.IntTypes.maxint (GF?.t f)} -> Spec.GaloisField.felem f
{ "end_col": 77, "end_line": 17, "start_col": 61, "start_line": 17 }
Prims.Tot
val from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t}
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
val from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t} let from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t} =
false
null
false
uint_v #f.t #SEC e
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.uint_v", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.maxint" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val from_felem (#f: field) (e: felem f) : n: nat{n <= maxint f.t}
[]
Spec.GaloisField.from_felem
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
e: Spec.GaloisField.felem f -> n: Prims.nat{n <= Lib.IntTypes.maxint (GF?.t f)}
{ "end_col": 83, "end_line": 18, "start_col": 65, "start_line": 18 }
Prims.Tot
val zero (#f: field) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero (#f:field) : felem f = to_felem 0
val zero (#f: field) : felem f let zero (#f: field) : felem f =
false
null
false
to_felem 0
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.to_felem", "Spec.GaloisField.felem" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero (#f: field) : felem f
[]
Spec.GaloisField.zero
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.GaloisField.felem f
{ "end_col": 42, "end_line": 20, "start_col": 32, "start_line": 20 }
Prims.Tot
val one (#f: field) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one (#f:field) : felem f = to_felem 1
val one (#f: field) : felem f let one (#f: field) : felem f =
false
null
false
to_felem 1
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.to_felem", "Spec.GaloisField.felem" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one (#f: field) : felem f
[]
Spec.GaloisField.one
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.GaloisField.felem f
{ "end_col": 41, "end_line": 21, "start_col": 31, "start_line": 21 }
Prims.Tot
val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n)
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r'
val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n) let rec fexp #f a x =
false
null
false
if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r'
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total", "" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.bool", "Spec.GaloisField.fmul", "Prims.op_Modulus", "Spec.GaloisField.fexp", "Prims.op_Division" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n)
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n)
[ "recursion" ]
Spec.GaloisField.fexp
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> n: Prims.nat{n >= 1} -> Prims.Tot (Spec.GaloisField.felem f)
{ "end_col": 19, "end_line": 90, "start_col": 2, "start_line": 85 }
Prims.Tot
val fmul_be (#f: field) (x y: felem f) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res
val fmul_be (#f: field) (x y: felem f) : felem f let fmul_be (#f: field) (x y: felem f) : felem f =
false
null
false
let res, y = repeati (bits f.t) (fmul_be_f x) (zero, y) in res
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "Spec.GaloisField.fmul_be_f", "FStar.Pervasives.Native.Mktuple2", "Spec.GaloisField.zero" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y)
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_be (#f: field) (x y: felem f) : felem f
[]
Spec.GaloisField.fmul_be
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.GaloisField.felem f -> y: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 5, "end_line": 81, "start_col": 58, "start_line": 79 }
Prims.Tot
val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)})
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one)
val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i =
false
null
false
logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one)
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Spec.GaloisField.__proj__GF__item__t", "Spec.GaloisField.fadd", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.eq_mask", "Spec.GaloisField.get_ith_bit", "Spec.GaloisField.one", "Prims.unit", "Lib.IntTypes.logxor_lemma", "Spec.GaloisField.zero", "Prims.eq2", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Prims.bool" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)})
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)})
[]
Spec.GaloisField.mask_add
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.GaloisField.felem f -> y: Spec.GaloisField.felem f -> res: Spec.GaloisField.felem f -> i: Prims.nat{i < Lib.IntTypes.bits (GF?.t f)} -> r: Spec.GaloisField.felem f { r == (match Lib.IntTypes.v (Spec.GaloisField.get_ith_bit x i) = 1 with | true -> Spec.GaloisField.fadd res y | _ -> res) }
{ "end_col": 54, "end_line": 63, "start_col": 2, "start_line": 62 }
Prims.Tot
val reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
val reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC let reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC =
false
null
false
repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0)
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Lib.IntTypes.inttype", "Prims.b2t", "Lib.IntTypes.unsigned", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC", "Lib.LoopCombinators.repeati", "Lib.IntTypes.int_t", "Lib.IntTypes.bits", "Prims.nat", "Prims.op_LessThan", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Lib.IntTypes.uint", "Prims.op_Subtraction" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reverse (#t: inttype{unsigned t}) (a: uint_t t SEC) : uint_t t SEC
[]
Spec.GaloisField.reverse
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.IntTypes.uint_t t Lib.IntTypes.SEC -> Lib.IntTypes.uint_t t Lib.IntTypes.SEC
{ "end_col": 91, "end_line": 28, "start_col": 2, "start_line": 27 }
Prims.Tot
val finv (#f: field) (a: felem f) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finv (#f:field) (a:felem f) : felem f = fexp #f a (maxint f.t - 1)
val finv (#f: field) (a: felem f) : felem f let finv (#f: field) (a: felem f) : felem f =
false
null
false
fexp #f a (maxint f.t - 1)
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Spec.GaloisField.fexp", "Prims.op_Subtraction", "Lib.IntTypes.maxint", "Spec.GaloisField.__proj__GF__item__t" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2 let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p let op_Star_At #f e1 e2 = fmul #f e1 e2 val get_ith_bit: #f:field -> x:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{v r == v x / pow2 (bits f.t - 1 - i) % 2}) let get_ith_bit #f x i = logand_mask (x >>. size (bits f.t - 1 - i)) one 1; (x >>. size (bits f.t - 1 - i)) &. one val mask_add: #f:field -> x:felem f -> y:felem f -> res:felem f -> i:nat{i < bits f.t} -> Tot (r:felem f{r == (if v (get_ith_bit x i) = 1 then res `fadd` y else res)}) let mask_add #f x y res i = logxor_lemma res zero; res `fadd` (y &. eq_mask #f.t (get_ith_bit x i) one) val mask_shift_right_mod: #f:field -> y:felem f -> Tot (r:felem f{r == (if v (get_ith_bit y (bits f.t - 1)) = 1 then (y >>. 1ul) `fadd` f.irred else (y >>. 1ul))}) let mask_shift_right_mod #f y = logxor_lemma (y >>. 1ul) zero; (y >>. 1ul) `fadd` (f.irred &. eq_mask #f.t (get_ith_bit y (bits f.t - 1)) one) val fmul_be_f: #f:field -> x:felem f -> i:nat{i < bits f.t} -> res_y:tuple2 (felem f) (felem f) -> felem f & felem f let fmul_be_f #f x i (res, y) = let res = mask_add x y res i in let y = mask_shift_right_mod y in (res, y) let fmul_be (#f:field) (x:felem f) (y:felem f) : felem f = let (res, y) = repeati (bits f.t) (fmul_be_f x) (zero, y) in res val fexp: #f:field -> a:felem f -> n:nat{n >= 1} -> Tot (felem f) (decreases n) let rec fexp #f a x = if x = 1 then a else if x = 2 then fmul #f a a else let r = fexp #f a (x / 2) in let r' = fmul #f r r in if (x % 2) = 0 then r' else fmul #f a r' let op_Star_Star_At #f e1 e2 = fexp #f e1 e2
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finv (#f: field) (a: felem f) : felem f
[]
Spec.GaloisField.finv
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 28, "end_line": 94, "start_col": 2, "start_line": 94 }
Prims.Tot
val fmul (#f: field) (a b: felem f) : felem f
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul (#f:field) (a:felem f) (b:felem f) : felem f = let one = one #f in let zero = zero #f in let (p,a,b) = repeati (bits f.t - 1) (fun i (p,a,b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p,a,b)) (zero,a,b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p
val fmul (#f: field) (a b: felem f) : felem f let fmul (#f: field) (a b: felem f) : felem f =
false
null
false
let one = one #f in let zero = zero #f in let p, a, b = repeati (bits f.t - 1) (fun i (p, a, b) -> let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in let carry_mask = eq_mask #f.t (a >>. size (bits f.t - 1)) one in let a = a <<. size 1 in let a = a ^. (carry_mask &. f.irred) in let b = b >>. size 1 in (p, a, b)) (zero, a, b) in let b0 = eq_mask #f.t (b &. one) one in let p = p ^. (b0 &. a) in p
{ "checked_file": "Spec.GaloisField.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Spec.GaloisField.fst" }
[ "total" ]
[ "Spec.GaloisField.field", "Spec.GaloisField.felem", "Lib.IntTypes.int_t", "Spec.GaloisField.__proj__GF__item__t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Hat_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.eq_mask", "FStar.Pervasives.Native.tuple3", "Lib.LoopCombinators.repeati", "Prims.op_Subtraction", "Lib.IntTypes.bits", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.Mktuple3", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Spec.GaloisField.__proj__GF__item__irred", "Lib.IntTypes.op_Less_Less_Dot", "Spec.GaloisField.zero", "Spec.GaloisField.one" ]
[]
module Spec.GaloisField open Lib.IntTypes open Lib.Sequence open Lib.LoopCombinators open Lib.ByteSequence (* We represent GF(2^n) by uint_t along with some irreducible polynomial also of type uint_t *) (* Consequently this module is specialized for GF(8/16/32/64/128) but can be generalized to other sizes if needed *) #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" noeq type field = | GF: t:inttype{unsigned t /\ t <> U1} -> irred: uint_t t SEC -> field let gf t irred = GF t irred type felem (f:field) = uint_t f.t SEC let to_felem (#f:field) (n:nat{n <= maxint f.t}) : felem f = uint #f.t #SEC n let from_felem (#f:field) (e:felem f) : n:nat{n <= maxint f.t} = uint_v #f.t #SEC e let zero (#f:field) : felem f = to_felem 0 let one (#f:field) : felem f = to_felem 1 let load_felem_be (#f:field) (b:lbytes (numbytes f.t)) : felem f = uint_from_bytes_be #f.t #SEC b let store_felem_be (#f:field) (e:felem f): lbytes (numbytes f.t) = uint_to_bytes_be #f.t #SEC e let reverse (#t:inttype{unsigned t}) (a:uint_t t SEC) : uint_t t SEC = repeati (bits t) (fun i u -> u |. (((a >>. size i) &. uint #t #SEC 1) <<. (size (bits t - 1 - i)))) (uint #t #SEC 0) let load_felem_le (#f:field) (b:lbytes (numbytes f.t)) : felem f = reverse #f.t (load_felem_be #f b) let store_felem_le (#f:field) (e:felem f) : lbytes (numbytes f.t) = store_felem_be #f (reverse #f.t e) let fadd (#f:field) (a:felem f) (b:felem f) : felem f = a ^. b let op_Plus_At #f e1 e2 = fadd #f e1 e2
false
false
Spec.GaloisField.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul (#f: field) (a b: felem f) : felem f
[]
Spec.GaloisField.fmul
{ "file_name": "specs/Spec.GaloisField.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.GaloisField.felem f -> b: Spec.GaloisField.felem f -> Spec.GaloisField.felem f
{ "end_col": 3, "end_line": 50, "start_col": 55, "start_line": 36 }