effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
val inv_mixColumn (c: size_nat{c < 4}) (state: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state
val inv_mixColumn (c: size_nat{c < 4}) (state: block) : Tot block let inv_mixColumn (c: size_nat{c < 4}) (state: block) : Tot block =
false
null
false
let i0 = 4 * c in let s0 = state.[ i0 ] in let s1 = state.[ i0 + 1 ] in let s2 = state.[ i0 + 2 ] in let s3 = state.[ i0 + 3 ] in let state = state.[ i0 ] <- inv_mix4 s0 s1 s2 s3 in let state = state.[ i0 + 1 ] <- inv_mix4 s1 s2 s3 s0 in let state = state.[ i0 + 2 ] <- inv_mix4 s2 s3 s0 s1 in let state = state.[ i0 + 3 ] <- inv_mix4 s3 s0 s1 s2 in state
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan", "Spec.AES.block", "Lib.Sequence.lseq", "Spec.AES.elem", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Prims.op_Addition", "Spec.AES.inv_mix4", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.Sequence.op_String_Access", "Prims.int", "FStar.Mul.op_Star" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val inv_mixColumn (c: size_nat{c < 4}) (state: block) : Tot block
[]
Spec.AES.inv_mixColumn
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Lib.IntTypes.size_nat{c < 4} -> state: Spec.AES.block -> Spec.AES.block
{ "end_col": 7, "end_line": 142, "start_col": 65, "start_line": 132 }
Prims.Tot
val aes_ctr_key_block (v: variant) (k: aes_xkey v) (n: lbytes 12) (c: size_nat) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_ctr_key_block (v:variant) (k:aes_xkey v) (n:lbytes 12) (c:size_nat) : Tot block = let ctrby = nat_to_bytes_be 4 c in let input = create 16 (u8 0) in let input = repeati #(lbytes 16) 12 (fun i b -> b.[i] <- n.[i]) input in let input = repeati #(lbytes 16) 4 (fun i b -> b.[12+i] <- (Seq.index ctrby i)) input in aes_encrypt_block v k input
val aes_ctr_key_block (v: variant) (k: aes_xkey v) (n: lbytes 12) (c: size_nat) : Tot block let aes_ctr_key_block (v: variant) (k: aes_xkey v) (n: lbytes 12) (c: size_nat) : Tot block =
false
null
false
let ctrby = nat_to_bytes_be 4 c in let input = create 16 (u8 0) in let input = repeati #(lbytes 16) 12 (fun i b -> b.[ i ] <- n.[ i ]) input in let input = repeati #(lbytes 16) 4 (fun i b -> b.[ 12 + i ] <- (Seq.index ctrby i)) input in aes_encrypt_block v k input
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_xkey", "Lib.ByteSequence.lbytes", "Lib.IntTypes.size_nat", "Spec.AES.aes_encrypt_block", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.LoopCombinators.repeati", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint_t", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Access", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_Forall", "Prims.l_imp", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.u8", "Lib.Sequence.seq", "Lib.Sequence.length", "Prims.l_or", "Prims.pow2", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_to_bytes_be", "Spec.AES.block" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state let aes_encrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_enc_rounds v k state in let state = aes_enc_last kn state in state let aes_dec_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_dec (sub key (16*i) 16)) state let aes_decrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_ctr_key_block (v: variant) (k: aes_xkey v) (n: lbytes 12) (c: size_nat) : Tot block
[]
Spec.AES.aes_ctr_key_block
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> k: Spec.AES.aes_xkey v -> n: Lib.ByteSequence.lbytes 12 -> c: Lib.IntTypes.size_nat -> Spec.AES.block
{ "end_col": 29, "end_line": 334, "start_col": 89, "start_line": 329 }
Prims.Tot
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero = to_elem 0
let zero =
false
null
false
to_elem 0
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.to_elem" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero : Spec.GaloisField.felem Spec.AES.gf8
[]
Spec.AES.zero
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.GaloisField.felem Spec.AES.gf8
{ "end_col": 20, "end_line": 19, "start_col": 11, "start_line": 19 }
Prims.Tot
val aes128_key_expansion (key: lbytes 16) : Tot (lseq elem (11 * 16))
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex
val aes128_key_expansion (key: lbytes 16) : Tot (lseq elem (11 * 16)) let aes128_key_expansion (key: lbytes 16) : Tot (lseq elem (11 * 16)) =
false
null
false
let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i + 1)) p in let n = key_expansion_step p a in update_sub kex ((i + 1) * 16) 16 n) key_ex in key_ex
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Lib.Sequence.lseq", "Spec.AES.elem", "Prims.op_Multiply", "Lib.LoopCombinators.repeati", "FStar.Mul.op_Star", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.update_sub", "Prims.op_Addition", "Spec.AES.block", "Spec.AES.key_expansion_step", "Spec.AES.keygen_assist0", "Spec.AES.rcon_spec", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.l_Forall", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_LessThanOrEqual", "Lib.IntTypes.uint_t", "FStar.Seq.Base.create", "Spec.AES.to_elem", "Prims.l_imp", "Lib.Sequence.create" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes128_key_expansion (key: lbytes 16) : Tot (lseq elem (11 * 16))
[]
Spec.AES.aes128_key_expansion
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
key: Lib.ByteSequence.lbytes 16 -> Lib.Sequence.lseq Spec.AES.elem (11 * 16)
{ "end_col": 8, "end_line": 261, "start_col": 70, "start_line": 250 }
Prims.Tot
val subBytes (state: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subBytes (state:block) : Tot block = map sub_byte state
val subBytes (state: block) : Tot block let subBytes (state: block) : Tot block =
false
null
false
map sub_byte state
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.block", "Lib.Sequence.map", "Spec.AES.elem", "Spec.AES.sub_byte" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subBytes (state: block) : Tot block
[]
Spec.AES.subBytes
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
state: Spec.AES.block -> Spec.AES.block
{ "end_col": 20, "end_line": 68, "start_col": 2, "start_line": 68 }
Prims.Tot
val rcon_spec: i:size_nat -> Tot elem
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1)
val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i =
false
null
false
if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` (rcon_spec (i - 1))
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Lib.IntTypes.size_nat", "Prims.op_Equality", "Prims.int", "Spec.AES.to_elem", "Prims.bool", "Spec.GaloisField.fmul", "Spec.AES.gf8", "Spec.AES.two", "Spec.AES.rcon_spec", "Prims.op_Subtraction", "Spec.AES.elem" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rcon_spec: i:size_nat -> Tot elem
[ "recursion" ]
Spec.AES.rcon_spec
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Lib.IntTypes.size_nat -> Spec.AES.elem
{ "end_col": 35, "end_line": 193, "start_col": 2, "start_line": 191 }
Prims.Tot
val aes_ctr_add_counter (v: variant) (st: aes_ctr_state v) (incr: size_nat) : Tot (aes_ctr_state v)
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_ctr_add_counter (v:variant) (st:aes_ctr_state v) (incr:size_nat) : Tot (aes_ctr_state v) = let n = nat_from_bytes_be st.block in let n' = (n + incr) % pow2 128 in let nblock' = nat_to_bytes_be 16 n' in {st with block = nblock'}
val aes_ctr_add_counter (v: variant) (st: aes_ctr_state v) (incr: size_nat) : Tot (aes_ctr_state v) let aes_ctr_add_counter (v: variant) (st: aes_ctr_state v) (incr: size_nat) : Tot (aes_ctr_state v) =
false
null
false
let n = nat_from_bytes_be st.block in let n' = (n + incr) % pow2 128 in let nblock' = nat_to_bytes_be 16 n' in { st with block = nblock' }
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_ctr_state", "Lib.IntTypes.size_nat", "Spec.AES.Mkaes_ctr_state", "Spec.AES.__proj__Mkaes_ctr_state__item__key_ex", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.l_or", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_to_bytes_be", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "Spec.AES.__proj__Mkaes_ctr_state__item__block", "Lib.ByteSequence.nat_from_bytes_be" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state let aes_encrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_enc_rounds v k state in let state = aes_enc_last kn state in state let aes_dec_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_dec (sub key (16*i) 16)) state let aes_decrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state let aes_ctr_key_block (v:variant) (k:aes_xkey v) (n:lbytes 12) (c:size_nat) : Tot block = let ctrby = nat_to_bytes_be 4 c in let input = create 16 (u8 0) in let input = repeati #(lbytes 16) 12 (fun i b -> b.[i] <- n.[i]) input in let input = repeati #(lbytes 16) 4 (fun i b -> b.[12+i] <- (Seq.index ctrby i)) input in aes_encrypt_block v k input noeq type aes_ctr_state (v:variant) = { key_ex: lbytes ((num_rounds v + 1) * 16); block: lbytes 16; }
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_ctr_add_counter (v: variant) (st: aes_ctr_state v) (incr: size_nat) : Tot (aes_ctr_state v)
[]
Spec.AES.aes_ctr_add_counter
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> st: Spec.AES.aes_ctr_state v -> incr: Lib.IntTypes.size_nat -> Spec.AES.aes_ctr_state v
{ "end_col": 27, "end_line": 345, "start_col": 98, "start_line": 341 }
Prims.Tot
val aes_ctr_key_block0 (v: variant) (k: aes_key v) (n_len: size_nat{n_len <= 16}) (n: lbytes n_len) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_ctr_key_block0 (v:variant) (k:aes_key v) (n_len:size_nat{n_len <= 16}) (n:lbytes n_len) : Tot block = let st = aes_ctr_init v k n_len n 0 in aes_ctr_current_key_block v st
val aes_ctr_key_block0 (v: variant) (k: aes_key v) (n_len: size_nat{n_len <= 16}) (n: lbytes n_len) : Tot block let aes_ctr_key_block0 (v: variant) (k: aes_key v) (n_len: size_nat{n_len <= 16}) (n: lbytes n_len) : Tot block =
false
null
false
let st = aes_ctr_init v k n_len n 0 in aes_ctr_current_key_block v st
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_key", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.ByteSequence.lbytes", "Spec.AES.aes_ctr_current_key_block", "Spec.AES.aes_ctr_state", "Spec.AES.aes_ctr_init", "Spec.AES.block" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state let aes_encrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_enc_rounds v k state in let state = aes_enc_last kn state in state let aes_dec_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_dec (sub key (16*i) 16)) state let aes_decrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state let aes_ctr_key_block (v:variant) (k:aes_xkey v) (n:lbytes 12) (c:size_nat) : Tot block = let ctrby = nat_to_bytes_be 4 c in let input = create 16 (u8 0) in let input = repeati #(lbytes 16) 12 (fun i b -> b.[i] <- n.[i]) input in let input = repeati #(lbytes 16) 4 (fun i b -> b.[12+i] <- (Seq.index ctrby i)) input in aes_encrypt_block v k input noeq type aes_ctr_state (v:variant) = { key_ex: lbytes ((num_rounds v + 1) * 16); block: lbytes 16; } let aes_ctr_add_counter (v:variant) (st:aes_ctr_state v) (incr:size_nat) : Tot (aes_ctr_state v) = let n = nat_from_bytes_be st.block in let n' = (n + incr) % pow2 128 in let nblock' = nat_to_bytes_be 16 n' in {st with block = nblock'} let aes_ctr_init (v:variant) (k:aes_key v) (n_len:size_nat{n_len <= 16}) (n:lbytes n_len) (c0:size_nat) : Tot (aes_ctr_state v) = let input = create 16 (u8 0) in let input = repeati #(lbytes 16) n_len (fun i b -> b.[i] <- n.[i]) input in let key_ex = aes_key_expansion v k in let st0 = { key_ex = key_ex; block = input} in aes_ctr_add_counter v st0 c0 let aes_ctr_current_key_block (v:variant) (st:aes_ctr_state v) : Tot block = aes_encrypt_block v st.key_ex st.block
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_ctr_key_block0 (v: variant) (k: aes_key v) (n_len: size_nat{n_len <= 16}) (n: lbytes n_len) : Tot block
[]
Spec.AES.aes_ctr_key_block0
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> k: Spec.AES.aes_key v -> n_len: Lib.IntTypes.size_nat{n_len <= 16} -> n: Lib.ByteSequence.lbytes n_len -> Spec.AES.block
{ "end_col": 32, "end_line": 359, "start_col": 109, "start_line": 357 }
Prims.Tot
val aes_enc_rounds (v: variant) (key: aes_ikey v) (state: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state
val aes_enc_rounds (v: variant) (key: aes_ikey v) (state: block) : Tot block let aes_enc_rounds (v: variant) (key: aes_ikey v) (state: block) : Tot block =
false
null
false
repeati (num_rounds v - 1) (fun i -> aes_enc (sub key (16 * i) 16)) state
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_ikey", "Spec.AES.block", "Lib.LoopCombinators.repeati", "Prims.op_Subtraction", "Spec.AES.num_rounds", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Spec.AES.aes_enc", "Lib.Sequence.sub", "Spec.AES.elem", "FStar.Mul.op_Star" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_enc_rounds (v: variant) (key: aes_ikey v) (state: block) : Tot block
[]
Spec.AES.aes_enc_rounds
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> key: Spec.AES.aes_ikey v -> state: Spec.AES.block -> Spec.AES.block
{ "end_col": 71, "end_line": 304, "start_col": 2, "start_line": 304 }
Prims.Tot
val keygen_assist1 (s: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st
val keygen_assist1 (s: block) : Tot block let keygen_assist1 (s: block) : Tot block =
false
null
false
let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.block", "Lib.Sequence.lseq", "Spec.AES.elem", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Spec.AES.aes_keygen_assist", "Spec.AES.zero" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val keygen_assist1 (s: block) : Tot block
[]
Spec.AES.keygen_assist1
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Spec.AES.block -> Spec.AES.block
{ "end_col": 4, "end_line": 240, "start_col": 42, "start_line": 236 }
Prims.Tot
val rcon_seq:lseq elem 11
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l
val rcon_seq:lseq elem 11 let rcon_seq:lseq elem 11 =
false
null
false
assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Lib.Sequence.of_list", "Spec.AES.elem", "Spec.AES.rcon_l", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ]
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rcon_seq:lseq elem 11
[]
Spec.AES.rcon_seq
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Lib.Sequence.lseq Spec.AES.elem 11
{ "end_col": 16, "end_line": 203, "start_col": 2, "start_line": 202 }
Prims.Tot
val aes_decrypt_block (v: variant) (key: aes_xkey v) (input: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_decrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state
val aes_decrypt_block (v: variant) (key: aes_xkey v) (input: block) : Tot block let aes_decrypt_block (v: variant) (key: aes_xkey v) (input: block) : Tot block =
false
null
false
let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v - 1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_xkey", "Spec.AES.block", "Spec.AES.aes_dec_last", "Spec.AES.aes_dec_rounds", "Spec.AES.addRoundKey", "Lib.Sequence.lseq", "Spec.AES.elem", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.op_Addition", "Spec.AES.num_rounds", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Lib.Sequence.slice" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state let aes_encrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_enc_rounds v k state in let state = aes_enc_last kn state in state let aes_dec_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_dec (sub key (16*i) 16)) state
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_decrypt_block (v: variant) (key: aes_xkey v) (input: block) : Tot block
[]
Spec.AES.aes_decrypt_block
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> key: Spec.AES.aes_xkey v -> input: Spec.AES.block -> Spec.AES.block
{ "end_col": 7, "end_line": 327, "start_col": 78, "start_line": 319 }
Prims.Tot
val rotate_word (w: word) : Tot word
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]]
val rotate_word (w: word) : Tot word let rotate_word (w: word) : Tot word =
false
null
false
of_list [w.[ 1 ]; w.[ 2 ]; w.[ 3 ]; w.[ 0 ]]
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.word", "Lib.Sequence.of_list", "Spec.AES.elem", "Prims.Cons", "Lib.Sequence.op_String_Access", "Prims.Nil" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rotate_word (w: word) : Tot word
[]
Spec.AES.rotate_word
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
w: Spec.AES.word -> Spec.AES.word
{ "end_col": 38, "end_line": 184, "start_col": 2, "start_line": 184 }
Prims.Tot
val aes256_key_expansion (key: lbytes 32) : Tot (lseq elem (15 * 16))
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14
val aes256_key_expansion (key: lbytes 32) : Tot (lseq elem (15 * 16)) let aes256_key_expansion (key: lbytes 32) : Tot (lseq elem (15 * 16)) =
false
null
false
let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex ((2 * i) * 16) 16 in let p1 = sub key_ex (((2 * i) + 1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i + 1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2 * i) + 2) * 16) 16 n0 in update_sub key_ex (((2 * i) + 3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Lib.Sequence.update_sub", "Spec.AES.elem", "FStar.Mul.op_Star", "Spec.AES.block", "Spec.AES.key_expansion_step", "Spec.AES.keygen_assist0", "Spec.AES.rcon_spec", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Multiply", "Prims.op_Addition", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Lib.LoopCombinators.repeati", "Prims.op_LessThanOrEqual", "Spec.AES.keygen_assist1", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.uint_t", "FStar.Seq.Base.create", "Spec.AES.to_elem", "Prims.l_imp", "Lib.Sequence.create" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes256_key_expansion (key: lbytes 32) : Tot (lseq elem (15 * 16))
[]
Spec.AES.aes256_key_expansion
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
key: Lib.ByteSequence.lbytes 32 -> Lib.Sequence.lseq Spec.AES.elem (15 * 16)
{ "end_col": 36, "end_line": 282, "start_col": 70, "start_line": 263 }
Prims.Tot
val aes_ctr_encrypt_bytes: v:variant -> key:aes_key v -> n_len:size_nat{n_len <= 16} -> nonce:lbytes n_len -> c:size_nat -> msg:bytes{length msg / 16 + c <= max_size_t} -> Tot (ciphertext:bytes{length ciphertext == length msg})
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_ctr_encrypt_bytes v key n_len nonce ctr0 msg = let st0 = aes_ctr_init v key n_len nonce ctr0 in aes_ctr_encrypt_stream v st0 msg
val aes_ctr_encrypt_bytes: v:variant -> key:aes_key v -> n_len:size_nat{n_len <= 16} -> nonce:lbytes n_len -> c:size_nat -> msg:bytes{length msg / 16 + c <= max_size_t} -> Tot (ciphertext:bytes{length ciphertext == length msg}) let aes_ctr_encrypt_bytes v key n_len nonce ctr0 msg =
false
null
false
let st0 = aes_ctr_init v key n_len nonce ctr0 in aes_ctr_encrypt_stream v st0 msg
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.variant", "Spec.AES.aes_key", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.ByteSequence.lbytes", "Lib.ByteSequence.bytes", "Prims.op_Addition", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.max_size_t", "Spec.AES.aes_ctr_encrypt_stream", "Spec.AES.aes_ctr_state", "Spec.AES.aes_ctr_init", "Prims.eq2", "Prims.nat" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100" let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st let keygen_assist0 (rcon:elem) (s:block) : Tot block = let st = aes_keygen_assist rcon s in let st = update_sub st 8 4 (sub st 12 4) in let st = update_sub st 0 8 (sub st 8 8) in st let keygen_assist1 (s:block) : Tot block = let st = aes_keygen_assist zero s in let st = update_sub st 12 4 (sub st 8 4) in let st = update_sub st 0 8 (sub st 8 8) in st let key_expansion_step (p:block) (assist:block) : Tot block = let p0 = create 16 (to_elem 0) in let k = p in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in let k = xor_block k (update_sub p0 4 12 (sub k 0 12)) in xor_block k assist let aes128_key_expansion (key:lbytes 16) : Tot (lseq elem (11 * 16)) = let key_ex = create (11 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 16 key in let key_ex = repeati #(lseq elem (11 * 16)) 10 (fun i kex -> let p = sub kex (i * 16) 16 in let a = keygen_assist0 (rcon_spec (i+1)) p in let n = key_expansion_step p a in update_sub kex ((i+1) * 16) 16 n) key_ex in key_ex let aes256_key_expansion (key:lbytes 32) : Tot (lseq elem (15 * 16)) = let key_ex = create (15 * 16) (to_elem 0) in let key_ex = update_sub key_ex 0 32 key in let key_ex = repeati #(lseq elem (15 * 16)) 6 (fun i key_ex -> let p0 = sub key_ex (2 * i * 16) 16 in let p1 = sub key_ex (((2*i)+1) * 16) 16 in let a0 = keygen_assist0 (rcon_spec (i+1)) p1 in let n0 = key_expansion_step p0 a0 in let a1 = keygen_assist1 n0 in let n1 = key_expansion_step p1 a1 in let key_ex = update_sub key_ex (((2*i)+2) * 16) 16 n0 in update_sub key_ex (((2*i)+3) * 16) 16 n1) key_ex in let p0 = sub key_ex (12 * 16) 16 in let p1 = sub key_ex (13 * 16) 16 in let a14 = keygen_assist0 (rcon_spec 7) p1 in let n14 = key_expansion_step p0 a14 in update_sub key_ex (14 * 16) 16 n14 let aes_key_expansion (v:variant) (key: aes_key v) : aes_xkey v = match v with | AES128 -> aes128_key_expansion key | AES256 -> aes256_key_expansion key let aes_dec_key_expansion (v:variant) (key:aes_key v): aes_xkey v = let ekey_ex : aes_xkey v = aes_key_expansion v key in let k0 = sub ekey_ex 0 16 in let kn = sub ekey_ex ((num_rounds v) * 16) 16 in let _,key_ex = generate_blocks 16 (num_rounds v + 1) (num_rounds v + 1) (fun i -> unit) (fun i a -> let b = sub ekey_ex ((num_rounds v - i) * 16) 16 in if i = 0 then (), b else if i < num_rounds v then (),inv_mixColumns b else (),b) () in key_ex let aes_enc_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_enc (sub key (16*i) 16)) state let aes_encrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_enc_rounds v k state in let state = aes_enc_last kn state in state let aes_dec_rounds (v:variant) (key:aes_ikey v) (state:block) : Tot block = repeati (num_rounds v-1) (fun i -> aes_dec (sub key (16*i) 16)) state let aes_decrypt_block (v:variant) (key:aes_xkey v) (input:block) : Tot block = let state = input in let k0 = slice key 0 16 in let k = sub key 16 ((num_rounds v-1) * 16) in let kn = sub key (num_rounds v * 16) 16 in let state = addRoundKey k0 state in let state = aes_dec_rounds v k state in let state = aes_dec_last kn state in state let aes_ctr_key_block (v:variant) (k:aes_xkey v) (n:lbytes 12) (c:size_nat) : Tot block = let ctrby = nat_to_bytes_be 4 c in let input = create 16 (u8 0) in let input = repeati #(lbytes 16) 12 (fun i b -> b.[i] <- n.[i]) input in let input = repeati #(lbytes 16) 4 (fun i b -> b.[12+i] <- (Seq.index ctrby i)) input in aes_encrypt_block v k input noeq type aes_ctr_state (v:variant) = { key_ex: lbytes ((num_rounds v + 1) * 16); block: lbytes 16; } let aes_ctr_add_counter (v:variant) (st:aes_ctr_state v) (incr:size_nat) : Tot (aes_ctr_state v) = let n = nat_from_bytes_be st.block in let n' = (n + incr) % pow2 128 in let nblock' = nat_to_bytes_be 16 n' in {st with block = nblock'} let aes_ctr_init (v:variant) (k:aes_key v) (n_len:size_nat{n_len <= 16}) (n:lbytes n_len) (c0:size_nat) : Tot (aes_ctr_state v) = let input = create 16 (u8 0) in let input = repeati #(lbytes 16) n_len (fun i b -> b.[i] <- n.[i]) input in let key_ex = aes_key_expansion v k in let st0 = { key_ex = key_ex; block = input} in aes_ctr_add_counter v st0 c0 let aes_ctr_current_key_block (v:variant) (st:aes_ctr_state v) : Tot block = aes_encrypt_block v st.key_ex st.block let aes_ctr_key_block0 (v:variant) (k:aes_key v) (n_len:size_nat{n_len <= 16}) (n:lbytes n_len) : Tot block = let st = aes_ctr_init v k n_len n 0 in aes_ctr_current_key_block v st let aes_ctr_key_block1 (v:variant) (k:aes_key v) (n_len:size_nat{n_len <= 16}) (n:lbytes n_len) : Tot block = let st = aes_ctr_init v k n_len n 1 in aes_ctr_current_key_block v st let aes_ctr_encrypt_block (v:variant) (st0:aes_ctr_state v) (incr:size_nat) (b:block) : Tot block = let st = aes_ctr_add_counter v st0 incr in let kb = aes_ctr_current_key_block v st in map2 (^.) b kb let aes_ctr_encrypt_last (v:variant) (st0:aes_ctr_state v) (incr:size_nat) (len:size_nat{len < 16}) (b:lbytes len): Tot (lbytes len) = let plain = create 16 (u8 0) in let plain = update_sub plain 0 (length b) b in let cipher = aes_ctr_encrypt_block v st0 incr plain in sub cipher 0 (length b) val aes_ctr_encrypt_stream: v:variant -> st:aes_ctr_state v -> msg:bytes{length msg / 16 <= max_size_t} -> Tot (ciphertext:bytes{length ciphertext == length msg}) let aes_ctr_encrypt_stream v st msg = map_blocks 16 msg (aes_ctr_encrypt_block v st) (aes_ctr_encrypt_last v st) val aes_ctr_encrypt_bytes: v:variant -> key:aes_key v -> n_len:size_nat{n_len <= 16} -> nonce:lbytes n_len -> c:size_nat -> msg:bytes{length msg / 16 + c <= max_size_t} -> Tot (ciphertext:bytes{length ciphertext == length msg})
false
false
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_ctr_encrypt_bytes: v:variant -> key:aes_key v -> n_len:size_nat{n_len <= 16} -> nonce:lbytes n_len -> c:size_nat -> msg:bytes{length msg / 16 + c <= max_size_t} -> Tot (ciphertext:bytes{length ciphertext == length msg})
[]
Spec.AES.aes_ctr_encrypt_bytes
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
v: Spec.AES.variant -> key: Spec.AES.aes_key v -> n_len: Lib.IntTypes.size_nat{n_len <= 16} -> nonce: Lib.ByteSequence.lbytes n_len -> c: Lib.IntTypes.size_nat -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg / 16 + c <= Lib.IntTypes.max_size_t} -> ciphertext: Lib.ByteSequence.bytes{Lib.Sequence.length ciphertext == Lib.Sequence.length msg}
{ "end_col": 34, "end_line": 412, "start_col": 54, "start_line": 410 }
Prims.Tot
val aes_keygen_assist (rcon: elem) (s: block) : Tot block
[ { "abbrev": false, "full_module": "Spec.GaloisField", "short_module": null }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aes_keygen_assist (rcon:elem) (s:block) : Tot block = let st = create 16 (to_elem 0) in let st = st.[0] <- sub_byte s.[4] in let st = st.[1] <- sub_byte s.[5] in let st = st.[2] <- sub_byte s.[6] in let st = st.[3] <- sub_byte s.[7] in let st = st.[4] <- rcon ^. sub_byte s.[5] in let st = st.[6] <- sub_byte s.[6] in let st = st.[6] <- sub_byte s.[7] in let st = st.[7] <- sub_byte s.[4] in let st = st.[8] <- sub_byte s.[12] in let st = st.[9] <- sub_byte s.[13] in let st = st.[10] <- sub_byte s.[14] in let st = st.[11] <- sub_byte s.[15] in let st = st.[12] <- rcon ^. sub_byte s.[13] in let st = st.[13] <- sub_byte s.[14] in let st = st.[14] <- sub_byte s.[15] in let st = st.[15] <- sub_byte s.[12] in st
val aes_keygen_assist (rcon: elem) (s: block) : Tot block let aes_keygen_assist (rcon: elem) (s: block) : Tot block =
false
null
false
let st = create 16 (to_elem 0) in let st = st.[ 0 ] <- sub_byte s.[ 4 ] in let st = st.[ 1 ] <- sub_byte s.[ 5 ] in let st = st.[ 2 ] <- sub_byte s.[ 6 ] in let st = st.[ 3 ] <- sub_byte s.[ 7 ] in let st = st.[ 4 ] <- rcon ^. sub_byte s.[ 5 ] in let st = st.[ 6 ] <- sub_byte s.[ 6 ] in let st = st.[ 6 ] <- sub_byte s.[ 7 ] in let st = st.[ 7 ] <- sub_byte s.[ 4 ] in let st = st.[ 8 ] <- sub_byte s.[ 12 ] in let st = st.[ 9 ] <- sub_byte s.[ 13 ] in let st = st.[ 10 ] <- sub_byte s.[ 14 ] in let st = st.[ 11 ] <- sub_byte s.[ 15 ] in let st = st.[ 12 ] <- rcon ^. sub_byte s.[ 13 ] in let st = st.[ 13 ] <- sub_byte s.[ 14 ] in let st = st.[ 14 ] <- sub_byte s.[ 15 ] in let st = st.[ 15 ] <- sub_byte s.[ 12 ] in st
{ "checked_file": "Spec.AES.fst.checked", "dependencies": [ "Spec.GaloisField.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.AES.fst" }
[ "total" ]
[ "Spec.AES.elem", "Spec.AES.block", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.AES.sub_byte", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.Sequence.op_String_Access", "Spec.AES.op_Hat_Dot", "FStar.Seq.Base.create", "Spec.AES.to_elem", "Lib.Sequence.create" ]
[]
module Spec.AES open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators open Spec.GaloisField /// Constants and Types (* GF(8) Field *) let irred = u8 0x1b let gf8 = gf U8 irred let elem = felem gf8 let to_elem = to_felem #gf8 let zero = to_elem 0 let two = to_elem 2 let three = to_elem 3 (* These operations are normalized here to avoid a huge blowup in generate code size *) let ( <<<. ) x y = normalize_term (rotate_left #U8 #SEC x y) let ( ^. ) x y = normalize_term (logxor #U8 #SEC x y) (* Specification of the Rijndael S-Box : *) type word = lseq elem 4 type block = lseq elem 16 type variant = | AES128 | AES256 let num_rounds (v:variant) = match v with | AES128 -> 10 | AES256 -> 14 let key_size (v:variant) = match v with | AES128 -> 16 | AES256 -> 32 let aes_key (v:variant) = lbytes (key_size v) let aes_xkey (v:variant) = lseq elem ((num_rounds v+1) * 16) let aes_ikey (v:variant) = lseq elem ((num_rounds v-1) * 16) let sub_byte (input:elem) = let s = finv input in s ^. (s <<<. size 1) ^. (s <<<. size 2) ^. (s <<<. size 3) ^. (s <<<. size 4) ^. (to_elem 99) let inv_sub_byte (input:elem) = let s = input in let s:elem = (s <<<. size 1) ^. (s <<<. size 3) ^. (s <<<. size 6) ^. (u8 5) in finv s let subBytes (state:block) : Tot block = map sub_byte state let inv_subBytes (state:block) : Tot block = map inv_sub_byte state let shiftRow (i:size_nat{i < 4}) (shift:size_nat{i < 4}) (state:block) : Tot block = let tmp0 = state.[i + (4 * (shift % 4))] in let tmp1 = state.[i + (4 * ((shift + 1) % 4))] in let tmp2 = state.[i + (4 * ((shift + 2) % 4))] in let tmp3 = state.[i + (4 * ((shift + 3) % 4))] in let state = state.[i] <- tmp0 in let state = state.[i+4] <- tmp1 in let state = state.[i+8] <- tmp2 in let state = state.[i+12] <- tmp3 in state let shiftRows (state: block) : Tot block = let state = shiftRow 1 1 state in let state = shiftRow 2 2 state in let state = shiftRow 3 3 state in state let inv_shiftRows (state: block) : Tot block = let state = shiftRow 1 3 state in let state = shiftRow 2 2 state in let state = shiftRow 3 1 state in state let mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (s0 `fmul` two) `fadd` (s1 `fmul` three) `fadd` s2 `fadd` s3 let inv_mix4 (s0:elem) (s1:elem) (s2:elem) (s3:elem) : Tot elem = (* (s0 `fmul` to_elem 11) `fadd` (s1 `fmul` to_elem 13) `fadd` (s2 `fmul` to_elem 9) `fadd` (s3 `fmul` to_elem 14) *) (s0 `fmul` to_elem 14) `fadd` (s1 `fmul` to_elem 11) `fadd` (s2 `fmul` to_elem 13) `fadd` (s3 `fmul` to_elem 9) let mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- mix4 s3 s0 s1 s2 in state let mixColumns (state:block) : Tot block = let state = mixColumn 0 state in let state = mixColumn 1 state in let state = mixColumn 2 state in let state = mixColumn 3 state in state let inv_mixColumn (c:size_nat{c < 4}) (state:block) : Tot block = let i0 = 4 * c in let s0 = state.[i0] in let s1 = state.[i0 + 1] in let s2 = state.[i0 + 2] in let s3 = state.[i0 + 3] in let state = state.[i0] <- inv_mix4 s0 s1 s2 s3 in let state = state.[i0+1] <- inv_mix4 s1 s2 s3 s0 in let state = state.[i0+2] <- inv_mix4 s2 s3 s0 s1 in let state = state.[i0+3] <- inv_mix4 s3 s0 s1 s2 in state let inv_mixColumns (state:block) : Tot block = let state = inv_mixColumn 0 state in let state = inv_mixColumn 1 state in let state = inv_mixColumn 2 state in let state = inv_mixColumn 3 state in state let xor_block (b1:block) (b2:block) : Tot block = map2 (logxor #U8) b1 b2 let addRoundKey (key:block) (state:block) : Tot block = xor_block state key let aes_enc (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = mixColumns state in let state = addRoundKey key state in state let aes_enc_last (key:block) (state:block) : Tot block = let state = subBytes state in let state = shiftRows state in let state = addRoundKey key state in state let aes_dec (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = inv_mixColumns state in let state = addRoundKey key state in state let aes_dec_last (key:block) (state:block) : Tot block = let state = inv_subBytes state in let state = inv_shiftRows state in let state = addRoundKey key state in state let rotate_word (w:word) : Tot word = of_list [w.[1]; w.[2]; w.[3]; w.[0]] let sub_word (w:word) : Tot word = map sub_byte w val rcon_spec: i:size_nat -> Tot elem let rec rcon_spec i = if i = 0 then to_elem 0x8d else if i = 1 then to_elem 1 else two `fmul` rcon_spec (i - 1) let rcon_l : list elem = [ to_elem 0x8d; to_elem 0x01; to_elem 0x02; to_elem 0x04; to_elem 0x08; to_elem 0x10; to_elem 0x20; to_elem 0x40; to_elem 0x80; to_elem 0x1b; to_elem 0x36 ] let rcon_seq : lseq elem 11 = assert_norm (List.Tot.length rcon_l == 11); of_list rcon_l #reset-options "--z3rlimit 100"
false
true
Spec.AES.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aes_keygen_assist (rcon: elem) (s: block) : Tot block
[]
Spec.AES.aes_keygen_assist
{ "file_name": "specs/Spec.AES.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
rcon: Spec.AES.elem -> s: Spec.AES.block -> Spec.AES.block
{ "end_col": 4, "end_line": 228, "start_col": 57, "start_line": 207 }
Prims.Tot
val openBase: openBase_st cs vale_p
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let openBase = hpke_openBase_higher #cs vale_p IAEAD.aead_decrypt_cp128 setupBaseR
val openBase: openBase_st cs vale_p let openBase =
false
null
false
hpke_openBase_higher #cs vale_p IAEAD.aead_decrypt_cp128 setupBaseR
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_openBase_higher", "Hacl.HPKE.Curve64_CP128_SHA256.cs", "Hacl.HPKE.Curve64_CP128_SHA256.vale_p", "Hacl.HPKE.Interface.AEAD.aead_decrypt_cp128", "Hacl.HPKE.Curve64_CP128_SHA256.setupBaseR" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 let sealBase = hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp128 setupBaseS
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val openBase: openBase_st cs vale_p
[]
Hacl.HPKE.Curve64_CP128_SHA256.openBase
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.openBase_st Hacl.HPKE.Curve64_CP128_SHA256.cs Hacl.HPKE.Curve64_CP128_SHA256.vale_p
{ "end_col": 82, "end_line": 20, "start_col": 15, "start_line": 20 }
Prims.Tot
val sealBase: sealBase_st cs vale_p
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sealBase = hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp128 setupBaseS
val sealBase: sealBase_st cs vale_p let sealBase =
false
null
false
hpke_sealBase_higher #cs vale_p IAEAD.aead_encrypt_cp128 setupBaseS
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_sealBase_higher", "Hacl.HPKE.Curve64_CP128_SHA256.cs", "Hacl.HPKE.Curve64_CP128_SHA256.vale_p", "Hacl.HPKE.Interface.AEAD.aead_encrypt_cp128", "Hacl.HPKE.Curve64_CP128_SHA256.setupBaseS" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sealBase: sealBase_st cs vale_p
[]
Hacl.HPKE.Curve64_CP128_SHA256.sealBase
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.sealBase_st Hacl.HPKE.Curve64_CP128_SHA256.cs Hacl.HPKE.Curve64_CP128_SHA256.vale_p
{ "end_col": 82, "end_line": 18, "start_col": 15, "start_line": 18 }
Prims.Tot
val setupBaseS: setupBaseS_st cs vale_p
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256
val setupBaseS: setupBaseS_st cs vale_p let setupBaseS =
false
null
false
hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_setupBaseS_higher", "Hacl.HPKE.Curve64_CP128_SHA256.cs", "Hacl.HPKE.Curve64_CP128_SHA256.vale_p", "Hacl.HPKE.Interface.HKDF.hkdf_expand256", "Hacl.HPKE.Interface.HKDF.hkdf_extract256", "Hacl.HPKE.Interface.DH.secret_to_public_c64", "Hacl.HPKE.Interface.DH.dh_c64" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0"
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseS: setupBaseS_st cs vale_p
[]
Hacl.HPKE.Curve64_CP128_SHA256.setupBaseS
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.setupBaseS_st Hacl.HPKE.Curve64_CP128_SHA256.cs Hacl.HPKE.Curve64_CP128_SHA256.vale_p
{ "end_col": 164, "end_line": 14, "start_col": 17, "start_line": 14 }
Prims.Tot
val setupBaseR: setupBaseR_st cs vale_p
[ { "abbrev": true, "full_module": "Hacl.HPKE.Interface.AEAD", "short_module": "IAEAD" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.Hash", "short_module": "IHash" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.HKDF", "short_module": "IHK" }, { "abbrev": true, "full_module": "Hacl.HPKE.Interface.DH", "short_module": "IDH" }, { "abbrev": false, "full_module": "Hacl.Meta.HPKE", "short_module": null }, { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let setupBaseR = hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64
val setupBaseR: setupBaseR_st cs vale_p let setupBaseR =
false
null
false
hpke_setupBaseR_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64
{ "checked_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst.checked", "dependencies": [ "prims.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.Meta.HPKE.fst.checked", "Hacl.HPKE.Interface.HKDF.fst.checked", "Hacl.HPKE.Interface.Hash.fst.checked", "Hacl.HPKE.Interface.DH.fst.checked", "Hacl.HPKE.Interface.AEAD.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.HPKE.Curve64_CP128_SHA256.fst" }
[ "total" ]
[ "Hacl.Meta.HPKE.hpke_setupBaseR_higher", "Hacl.HPKE.Curve64_CP128_SHA256.cs", "Hacl.HPKE.Curve64_CP128_SHA256.vale_p", "Hacl.HPKE.Interface.HKDF.hkdf_expand256", "Hacl.HPKE.Interface.HKDF.hkdf_extract256", "Hacl.HPKE.Interface.DH.dh_c64", "Hacl.HPKE.Interface.DH.secret_to_public_c64" ]
[]
module Hacl.HPKE.Curve64_CP128_SHA256 open Hacl.Meta.HPKE module IDH = Hacl.HPKE.Interface.DH module IHK = Hacl.HPKE.Interface.HKDF module IHash = Hacl.HPKE.Interface.Hash module IAEAD = Hacl.HPKE.Interface.AEAD friend Hacl.Meta.HPKE #set-options "--fuel 0 --ifuel 0" let setupBaseS = hpke_setupBaseS_higher #cs vale_p IHK.hkdf_expand256 IHK.hkdf_extract256 IDH.secret_to_public_c64 IDH.dh_c64 IHK.hkdf_expand256 IHK.hkdf_extract256
false
true
Hacl.HPKE.Curve64_CP128_SHA256.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val setupBaseR: setupBaseR_st cs vale_p
[]
Hacl.HPKE.Curve64_CP128_SHA256.setupBaseR
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP128_SHA256.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.HPKE.setupBaseR_st Hacl.HPKE.Curve64_CP128_SHA256.cs Hacl.HPKE.Curve64_CP128_SHA256.vale_p
{ "end_col": 164, "end_line": 16, "start_col": 17, "start_line": 16 }
FStar.Tactics.Effect.Tac
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let collect_app = collect_app' []
let collect_app =
true
null
false
collect_app' []
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.V1.Formula.collect_app'", "Prims.Nil", "FStar.Reflection.V1.Data.argv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_app : t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac (FStar.Reflection.Types.term * Prims.list FStar.Reflection.V1.Data.argv)
[]
FStar.Reflection.V1.Formula.collect_app
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac (FStar.Reflection.Types.term * Prims.list FStar.Reflection.V1.Data.argv)
{ "end_col": 41, "end_line": 43, "start_col": 26, "start_line": 43 }
FStar.Tactics.Effect.Tac
val bv_to_string (bv: bv) : Tac string
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname)
val bv_to_string (bv: bv) : Tac string let bv_to_string (bv: bv) : Tac string =
true
null
false
let bvv = inspect_bv bv in unseal (bvv.bv_ppname)
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.bv", "FStar.Tactics.Unseal.unseal", "Prims.string", "FStar.Reflection.V1.Data.__proj__Mkbv_view__item__bv_ppname", "FStar.Reflection.V1.Data.bv_view", "Prims.precedes", "FStar.Reflection.V1.Builtins.inspect_bv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bv_to_string (bv: bv) : Tac string
[]
FStar.Reflection.V1.Formula.bv_to_string
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
bv: FStar.Reflection.Types.bv -> FStar.Tactics.Effect.Tac Prims.string
{ "end_col": 26, "end_line": 30, "start_col": 49, "start_line": 28 }
FStar.Tactics.Effect.Tac
val collect_app' (args: list argv) (t: term) : Tac (term * list argv)
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args)
val collect_app' (args: list argv) (t: term) : Tac (term * list argv) let rec collect_app' (args: list argv) (t: term) : Tac (term * list argv) =
true
null
false
match inspect_unascribe t with | Tv_App l r -> collect_app' (r :: args) l | _ -> (t, args)
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "Prims.list", "FStar.Reflection.V1.Data.argv", "FStar.Reflection.Types.term", "FStar.Reflection.V1.Formula.collect_app'", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V1.Data.term_view", "FStar.Pervasives.Native.Mktuple2", "Prims.b2t", "FStar.Reflection.V1.Data.notAscription", "FStar.Reflection.V1.Formula.inspect_unascribe" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term)
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val collect_app' (args: list argv) (t: term) : Tac (term * list argv)
[ "recursion" ]
FStar.Reflection.V1.Formula.collect_app'
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
args: Prims.list FStar.Reflection.V1.Data.argv -> t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac (FStar.Reflection.Types.term * Prims.list FStar.Reflection.V1.Data.argv)
{ "end_col": 20, "end_line": 42, "start_col": 4, "start_line": 39 }
Prims.Tot
val formula_as_term (f: formula) : Tot term
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let formula_as_term (f:formula) : Tot term = pack_ln (formula_as_term_view f)
val formula_as_term (f: formula) : Tot term let formula_as_term (f: formula) : Tot term =
false
null
false
pack_ln (formula_as_term_view f)
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[ "total" ]
[ "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Builtins.pack_ln", "FStar.Reflection.V1.Formula.formula_as_term_view", "FStar.Reflection.Types.term" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown // Unsquashing let term_as_formula (t:term) : Tac formula = match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t let term_as_formula_total (t:term) : Tac formula = term_as_formula' (maybe_unsquash_term t) let formula_as_term_view (f:formula) : Tot term_view = let mk_app' tv args = List.Tot.Base.fold_left (fun tv a -> Tv_App (pack_ln tv) a) tv args in let e = Q_Explicit in let i = Q_Implicit in match f with | True_ -> Tv_FVar (pack_fv true_qn) | False_ -> Tv_FVar (pack_fv false_qn) | Comp (Eq None) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(l,e);(r,e)] | Comp (Eq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(t,i);(l,e);(r,e)] | Comp (BoolEq None) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(l,e);(r,e)] | Comp (BoolEq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(t,i);(l,e);(r,e)] | Comp Lt l r -> mk_app' (Tv_FVar (pack_fv lt_qn)) [(l,e);(r,e)] | Comp Le l r -> mk_app' (Tv_FVar (pack_fv lte_qn)) [(l,e);(r,e)] | Comp Gt l r -> mk_app' (Tv_FVar (pack_fv gt_qn)) [(l,e);(r,e)] | Comp Ge l r -> mk_app' (Tv_FVar (pack_fv gte_qn)) [(l,e);(r,e)] | And p q -> mk_app' (Tv_FVar (pack_fv and_qn)) [(p,e);(q,e)] | Or p q -> mk_app' (Tv_FVar (pack_fv or_qn)) [(p,e);(q,e)] | Implies p q -> mk_app' (Tv_FVar (pack_fv imp_qn)) [(p,e);(q,e)] | Not p -> mk_app' (Tv_FVar (pack_fv not_qn)) [(p,e)] | Iff p q -> mk_app' (Tv_FVar (pack_fv iff_qn)) [(p,e);(q,e)] | Forall b sort t -> Tv_Unknown // TODO: decide on meaning of this | Exists b sort t -> Tv_Unknown // TODO: ^ | App p q -> Tv_App p (q, Q_Explicit) | Name b -> Tv_Var b | FV fv -> Tv_FVar fv | IntLit i -> Tv_Const (C_Int i) | F_Unknown -> Tv_Unknown
false
true
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val formula_as_term (f: formula) : Tot term
[]
FStar.Reflection.V1.Formula.formula_as_term
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Reflection.V1.Formula.formula -> FStar.Reflection.Types.term
{ "end_col": 36, "end_line": 205, "start_col": 4, "start_line": 205 }
FStar.Tactics.Effect.Tac
val mk_Forall (typ pred: term) : Tac formula
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
val mk_Forall (typ pred: term) : Tac formula let mk_Forall (typ pred: term) : Tac formula =
true
null
false
let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0 }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V1.Formula.Forall", "FStar.Reflection.V1.Builtins.pack_ln", "FStar.Reflection.V1.Data.Tv_App", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V1.Data.aqualv", "FStar.Reflection.V1.Data.Tv_BVar", "FStar.Reflection.V1.Data.Q_Explicit", "FStar.Reflection.Types.bv", "FStar.Reflection.V1.Builtins.pack_bv", "FStar.Reflection.V1.Data.Mkbv_view", "FStar.Reflection.V1.Data.as_ppname", "FStar.Reflection.V1.Formula.formula" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None"
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_Forall (typ pred: term) : Tac formula
[]
FStar.Reflection.V1.Formula.mk_Forall
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
typ: FStar.Reflection.Types.term -> pred: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.V1.Formula.formula
{ "end_col": 74, "end_line": 71, "start_col": 56, "start_line": 68 }
FStar.Tactics.Effect.Tac
val mk_Exists (typ pred: term) : Tac formula
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
val mk_Exists (typ pred: term) : Tac formula let mk_Exists (typ pred: term) : Tac formula =
true
null
false
let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0 }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V1.Formula.Exists", "FStar.Reflection.V1.Builtins.pack_ln", "FStar.Reflection.V1.Data.Tv_App", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V1.Data.aqualv", "FStar.Reflection.V1.Data.Tv_BVar", "FStar.Reflection.V1.Data.Q_Explicit", "FStar.Reflection.Types.bv", "FStar.Reflection.V1.Builtins.pack_bv", "FStar.Reflection.V1.Data.Mkbv_view", "FStar.Reflection.V1.Data.as_ppname", "FStar.Reflection.V1.Formula.formula" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_Exists (typ pred: term) : Tac formula
[]
FStar.Reflection.V1.Formula.mk_Exists
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
typ: FStar.Reflection.Types.term -> pred: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.V1.Formula.formula
{ "end_col": 74, "end_line": 76, "start_col": 56, "start_line": 73 }
FStar.Tactics.Effect.Tac
val term_as_formula_total (t: term) : Tac formula
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let term_as_formula_total (t:term) : Tac formula = term_as_formula' (maybe_unsquash_term t)
val term_as_formula_total (t: term) : Tac formula let term_as_formula_total (t: term) : Tac formula =
true
null
false
term_as_formula' (maybe_unsquash_term t)
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V1.Formula.term_as_formula'", "FStar.Reflection.V1.Derived.maybe_unsquash_term", "FStar.Reflection.V1.Formula.formula" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown // Unsquashing let term_as_formula (t:term) : Tac formula = match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val term_as_formula_total (t: term) : Tac formula
[]
FStar.Reflection.V1.Formula.term_as_formula_total
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.V1.Formula.formula
{ "end_col": 44, "end_line": 164, "start_col": 4, "start_line": 164 }
FStar.Tactics.Effect.Tac
val inspect_unascribe (t: term) : Tac (tv: term_view{notAscription tv})
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv
val inspect_unascribe (t: term) : Tac (tv: term_view{notAscription tv}) let rec inspect_unascribe (t: term) : Tac (tv: term_view{notAscription tv}) =
true
null
false
match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Pervasives.Native.option", "Prims.bool", "FStar.Reflection.V1.Formula.inspect_unascribe", "FStar.Reflection.V1.Data.term_view", "Prims.b2t", "FStar.Reflection.V1.Data.notAscription", "FStar.Reflection.Types.comp", "FStar.Tactics.V1.Builtins.inspect" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname)
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val inspect_unascribe (t: term) : Tac (tv: term_view{notAscription tv})
[ "recursion" ]
FStar.Reflection.V1.Formula.inspect_unascribe
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac (tv: FStar.Reflection.V1.Data.term_view{FStar.Reflection.V1.Data.notAscription tv})
{ "end_col": 12, "end_line": 36, "start_col": 2, "start_line": 32 }
FStar.Tactics.Effect.Tac
val term_as_formula (t: term) : Tac formula
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let term_as_formula (t:term) : Tac formula = match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t
val term_as_formula (t: term) : Tac formula let term_as_formula (t: term) : Tac formula =
true
null
false
match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.V1.Derived.unsquash_term", "FStar.Reflection.V1.Formula.F_Unknown", "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Formula.term_as_formula'" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown // Unsquashing
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val term_as_formula (t: term) : Tac formula
[]
FStar.Reflection.V1.Formula.term_as_formula
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.V1.Formula.formula
{ "end_col": 26, "end_line": 161, "start_col": 4, "start_line": 158 }
Prims.Tot
val formula_as_term_view (f: formula) : Tot term_view
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let formula_as_term_view (f:formula) : Tot term_view = let mk_app' tv args = List.Tot.Base.fold_left (fun tv a -> Tv_App (pack_ln tv) a) tv args in let e = Q_Explicit in let i = Q_Implicit in match f with | True_ -> Tv_FVar (pack_fv true_qn) | False_ -> Tv_FVar (pack_fv false_qn) | Comp (Eq None) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(l,e);(r,e)] | Comp (Eq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(t,i);(l,e);(r,e)] | Comp (BoolEq None) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(l,e);(r,e)] | Comp (BoolEq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(t,i);(l,e);(r,e)] | Comp Lt l r -> mk_app' (Tv_FVar (pack_fv lt_qn)) [(l,e);(r,e)] | Comp Le l r -> mk_app' (Tv_FVar (pack_fv lte_qn)) [(l,e);(r,e)] | Comp Gt l r -> mk_app' (Tv_FVar (pack_fv gt_qn)) [(l,e);(r,e)] | Comp Ge l r -> mk_app' (Tv_FVar (pack_fv gte_qn)) [(l,e);(r,e)] | And p q -> mk_app' (Tv_FVar (pack_fv and_qn)) [(p,e);(q,e)] | Or p q -> mk_app' (Tv_FVar (pack_fv or_qn)) [(p,e);(q,e)] | Implies p q -> mk_app' (Tv_FVar (pack_fv imp_qn)) [(p,e);(q,e)] | Not p -> mk_app' (Tv_FVar (pack_fv not_qn)) [(p,e)] | Iff p q -> mk_app' (Tv_FVar (pack_fv iff_qn)) [(p,e);(q,e)] | Forall b sort t -> Tv_Unknown // TODO: decide on meaning of this | Exists b sort t -> Tv_Unknown // TODO: ^ | App p q -> Tv_App p (q, Q_Explicit) | Name b -> Tv_Var b | FV fv -> Tv_FVar fv | IntLit i -> Tv_Const (C_Int i) | F_Unknown -> Tv_Unknown
val formula_as_term_view (f: formula) : Tot term_view let formula_as_term_view (f: formula) : Tot term_view =
false
null
false
let mk_app' tv args = List.Tot.Base.fold_left (fun tv a -> Tv_App (pack_ln tv) a) tv args in let e = Q_Explicit in let i = Q_Implicit in match f with | True_ -> Tv_FVar (pack_fv true_qn) | False_ -> Tv_FVar (pack_fv false_qn) | Comp (Eq None) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(l, e); (r, e)] | Comp (Eq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(t, i); (l, e); (r, e)] | Comp (BoolEq None) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(l, e); (r, e)] | Comp (BoolEq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(t, i); (l, e); (r, e)] | Comp Lt l r -> mk_app' (Tv_FVar (pack_fv lt_qn)) [(l, e); (r, e)] | Comp Le l r -> mk_app' (Tv_FVar (pack_fv lte_qn)) [(l, e); (r, e)] | Comp Gt l r -> mk_app' (Tv_FVar (pack_fv gt_qn)) [(l, e); (r, e)] | Comp Ge l r -> mk_app' (Tv_FVar (pack_fv gte_qn)) [(l, e); (r, e)] | And p q -> mk_app' (Tv_FVar (pack_fv and_qn)) [(p, e); (q, e)] | Or p q -> mk_app' (Tv_FVar (pack_fv or_qn)) [(p, e); (q, e)] | Implies p q -> mk_app' (Tv_FVar (pack_fv imp_qn)) [(p, e); (q, e)] | Not p -> mk_app' (Tv_FVar (pack_fv not_qn)) [(p, e)] | Iff p q -> mk_app' (Tv_FVar (pack_fv iff_qn)) [(p, e); (q, e)] | Forall b sort t -> Tv_Unknown | Exists b sort t -> Tv_Unknown | App p q -> Tv_App p (q, Q_Explicit) | Name b -> Tv_Var b | FV fv -> Tv_FVar fv | IntLit i -> Tv_Const (C_Int i) | F_Unknown -> Tv_Unknown
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[ "total" ]
[ "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.V1.Data.Tv_FVar", "FStar.Reflection.V1.Builtins.pack_fv", "FStar.Reflection.Const.true_qn", "FStar.Reflection.Const.false_qn", "FStar.Reflection.Types.term", "FStar.Reflection.Const.eq2_qn", "Prims.Cons", "FStar.Reflection.V1.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V1.Data.aqualv", "Prims.Nil", "FStar.Reflection.Types.typ", "FStar.Reflection.Const.eq1_qn", "FStar.Reflection.Const.lt_qn", "FStar.Reflection.Const.lte_qn", "FStar.Reflection.Const.gt_qn", "FStar.Reflection.Const.gte_qn", "FStar.Reflection.Const.and_qn", "FStar.Reflection.Const.or_qn", "FStar.Reflection.Const.imp_qn", "FStar.Reflection.Const.not_qn", "FStar.Reflection.Const.iff_qn", "FStar.Reflection.Types.bv", "FStar.Reflection.V1.Data.Tv_Unknown", "FStar.Reflection.V1.Data.Tv_App", "FStar.Reflection.V1.Data.Q_Explicit", "FStar.Reflection.V1.Data.Tv_Var", "FStar.Reflection.Types.fv", "Prims.int", "FStar.Reflection.V1.Data.Tv_Const", "FStar.Reflection.V1.Data.C_Int", "FStar.Reflection.V1.Data.term_view", "FStar.Reflection.V1.Data.Q_Implicit", "Prims.list", "FStar.List.Tot.Base.fold_left", "FStar.Reflection.V1.Builtins.pack_ln" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown // Unsquashing let term_as_formula (t:term) : Tac formula = match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t let term_as_formula_total (t:term) : Tac formula = term_as_formula' (maybe_unsquash_term t)
false
true
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val formula_as_term_view (f: formula) : Tot term_view
[]
FStar.Reflection.V1.Formula.formula_as_term_view
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Reflection.V1.Formula.formula -> FStar.Reflection.V1.Data.term_view
{ "end_col": 18, "end_line": 202, "start_col": 54, "start_line": 166 }
FStar.Tactics.Effect.Tac
val formula_to_string (f: formula) : Tac string
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let formula_to_string (f:formula) : Tac string = match f with | True_ -> "True_" | False_ -> "False_" | Comp (Eq mt) l r -> "Eq" ^ (match mt with | None -> "" | Some t -> " (" ^ term_to_string t ^ ")") ^ " (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp (BoolEq mt) l r -> "BoolEq" ^ (match mt with | None -> "" | Some t -> " (" ^ term_to_string t ^ ")") ^ " (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Lt l r -> "Lt (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Le l r -> "Le (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Gt l r -> "Gt (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Ge l r -> "Ge (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | And p q -> "And (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Or p q -> "Or (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Implies p q -> "Implies (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Not p -> "Not (" ^ term_to_string p ^ ")" | Iff p q -> "Iff (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Forall bs _sort t -> "Forall <bs> (" ^ term_to_string t ^ ")" | Exists bs _sort t -> "Exists <bs> (" ^ term_to_string t ^ ")" | App p q -> "App (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Name bv -> "Name (" ^ bv_to_string bv ^ ")" | FV fv -> "FV (" ^ flatten_name (inspect_fv fv) ^ ")" | IntLit i -> "Int " ^ string_of_int i | F_Unknown -> "?"
val formula_to_string (f: formula) : Tac string let formula_to_string (f: formula) : Tac string =
true
null
false
match f with | True_ -> "True_" | False_ -> "False_" | Comp (Eq mt) l r -> "Eq" ^ (match mt with | None -> "" | Some t -> " (" ^ term_to_string t ^ ")") ^ " (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp (BoolEq mt) l r -> "BoolEq" ^ (match mt with | None -> "" | Some t -> " (" ^ term_to_string t ^ ")") ^ " (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Lt l r -> "Lt (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Le l r -> "Le (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Gt l r -> "Gt (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | Comp Ge l r -> "Ge (" ^ term_to_string l ^ ") (" ^ term_to_string r ^ ")" | And p q -> "And (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Or p q -> "Or (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Implies p q -> "Implies (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Not p -> "Not (" ^ term_to_string p ^ ")" | Iff p q -> "Iff (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Forall bs _sort t -> "Forall <bs> (" ^ term_to_string t ^ ")" | Exists bs _sort t -> "Exists <bs> (" ^ term_to_string t ^ ")" | App p q -> "App (" ^ term_to_string p ^ ") (" ^ term_to_string q ^ ")" | Name bv -> "Name (" ^ bv_to_string bv ^ ")" | FV fv -> "FV (" ^ flatten_name (inspect_fv fv) ^ ")" | IntLit i -> "Int " ^ string_of_int i | F_Unknown -> "?"
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.V1.Formula.formula", "Prims.string", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.typ", "FStar.Reflection.Types.term", "Prims.op_Hat", "FStar.Tactics.V1.Builtins.term_to_string", "FStar.Reflection.Types.bv", "FStar.Reflection.V1.Formula.bv_to_string", "FStar.Reflection.Types.fv", "FStar.Reflection.V1.Derived.flatten_name", "FStar.Reflection.V1.Builtins.inspect_fv", "Prims.int", "Prims.string_of_int" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown // Unsquashing let term_as_formula (t:term) : Tac formula = match unsquash_term t with | None -> F_Unknown | Some t -> term_as_formula' t let term_as_formula_total (t:term) : Tac formula = term_as_formula' (maybe_unsquash_term t) let formula_as_term_view (f:formula) : Tot term_view = let mk_app' tv args = List.Tot.Base.fold_left (fun tv a -> Tv_App (pack_ln tv) a) tv args in let e = Q_Explicit in let i = Q_Implicit in match f with | True_ -> Tv_FVar (pack_fv true_qn) | False_ -> Tv_FVar (pack_fv false_qn) | Comp (Eq None) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(l,e);(r,e)] | Comp (Eq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq2_qn)) [(t,i);(l,e);(r,e)] | Comp (BoolEq None) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(l,e);(r,e)] | Comp (BoolEq (Some t)) l r -> mk_app' (Tv_FVar (pack_fv eq1_qn)) [(t,i);(l,e);(r,e)] | Comp Lt l r -> mk_app' (Tv_FVar (pack_fv lt_qn)) [(l,e);(r,e)] | Comp Le l r -> mk_app' (Tv_FVar (pack_fv lte_qn)) [(l,e);(r,e)] | Comp Gt l r -> mk_app' (Tv_FVar (pack_fv gt_qn)) [(l,e);(r,e)] | Comp Ge l r -> mk_app' (Tv_FVar (pack_fv gte_qn)) [(l,e);(r,e)] | And p q -> mk_app' (Tv_FVar (pack_fv and_qn)) [(p,e);(q,e)] | Or p q -> mk_app' (Tv_FVar (pack_fv or_qn)) [(p,e);(q,e)] | Implies p q -> mk_app' (Tv_FVar (pack_fv imp_qn)) [(p,e);(q,e)] | Not p -> mk_app' (Tv_FVar (pack_fv not_qn)) [(p,e)] | Iff p q -> mk_app' (Tv_FVar (pack_fv iff_qn)) [(p,e);(q,e)] | Forall b sort t -> Tv_Unknown // TODO: decide on meaning of this | Exists b sort t -> Tv_Unknown // TODO: ^ | App p q -> Tv_App p (q, Q_Explicit) | Name b -> Tv_Var b | FV fv -> Tv_FVar fv | IntLit i -> Tv_Const (C_Int i) | F_Unknown -> Tv_Unknown let formula_as_term (f:formula) : Tot term = pack_ln (formula_as_term_view f)
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val formula_to_string (f: formula) : Tac string
[]
FStar.Reflection.V1.Formula.formula_to_string
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
f: FStar.Reflection.V1.Formula.formula -> FStar.Tactics.Effect.Tac Prims.string
{ "end_col": 22, "end_line": 236, "start_col": 4, "start_line": 208 }
FStar.Tactics.Effect.Tac
val term_as_formula' (t: term) : Tac formula
[ { "abbrev": false, "full_module": "FStar.Reflection.V1.Data", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V1.Builtins", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V1", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let term_as_formula' (t:term) : Tac formula = match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> // Cannot use `when` clauses when verifying! let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv // TODO: l_Forall // ...or should we just try to drop all squashes? // TODO: b2t at this point ? | Tv_App h0 t -> begin let (h, ts) = collect_app h0 in let h = un_uinst h in match inspect_ln h, ts@[t] with | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit); (a3, Q_Explicit)] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Explicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 // Non-annotated comparisons else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a1, Q_Implicit); (a2, Q_Explicit)] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [(a, Q_Explicit)] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then begin if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) end else App h0 (fst t) | _ -> App h0 (fst t) end | Tv_Const (C_Int i) -> IntLit i (* Not formulas. *) | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown (* Other constants? *) | Tv_Const _ -> F_Unknown (* Should not occur, we're using inspect_ln *) | Tv_BVar _ -> F_Unknown
val term_as_formula' (t: term) : Tac formula let term_as_formula' (t: term) : Tac formula =
true
null
false
match inspect_unascribe t with | Tv_Var n -> Name n | Tv_FVar fv | Tv_UInst fv _ -> let qn = inspect_fv fv in if qn = true_qn then True_ else if qn = false_qn then False_ else FV fv | Tv_App h0 t -> let h, ts = collect_app h0 in let h = un_uinst h in (match inspect_ln h, ts @ [t] with | Tv_FVar fv, [a1, Q_Implicit ; a2, Q_Explicit ; a3, Q_Explicit] -> let qn = inspect_fv fv in if qn = eq2_qn then Comp (Eq (Some a1)) a2 a3 else if qn = eq1_qn then Comp (BoolEq (Some a1)) a2 a3 else if qn = lt_qn then Comp Lt a2 a3 else if qn = lte_qn then Comp Le a2 a3 else if qn = gt_qn then Comp Gt a2 a3 else if qn = gte_qn then Comp Ge a2 a3 else App h0 (fst t) | Tv_FVar fv, [a1, Q_Explicit ; a2, Q_Explicit] -> let qn = inspect_fv fv in if qn = imp_qn then Implies a1 a2 else if qn = and_qn then And a1 a2 else if qn = iff_qn then Iff a1 a2 else if qn = or_qn then Or a1 a2 else if qn = eq2_qn then Comp (Eq None) a1 a2 else if qn = eq1_qn then Comp (BoolEq None) a1 a2 else App h0 (fst t) | Tv_FVar fv, [a1, Q_Implicit ; a2, Q_Explicit] -> let qn = inspect_fv fv in if qn = forall_qn then mk_Forall a1 a2 else if qn = exists_qn then mk_Exists a1 a2 else App h0 (fst t) | Tv_FVar fv, [a, Q_Explicit] -> let qn = inspect_fv fv in if qn = not_qn then Not a else if qn = b2t_qn then if term_eq a (`false) then False_ else if term_eq a (`true) then True_ else App h0 (fst t) else App h0 (fst t) | _ -> App h0 (fst t)) | Tv_Const (C_Int i) -> IntLit i | Tv_Let _ _ _ _ _ _ | Tv_Match _ _ _ | Tv_Type _ | Tv_Abs _ _ | Tv_Arrow _ _ | Tv_Uvar _ _ | Tv_Unknown | Tv_Unsupp | Tv_Refine _ _ _ -> F_Unknown | Tv_Const _ -> F_Unknown | Tv_BVar _ -> F_Unknown
{ "checked_file": "FStar.Reflection.V1.Formula.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V1.Builtins.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V1.Derived.fst.checked", "FStar.Reflection.V1.Data.fsti.checked", "FStar.Reflection.V1.Builtins.fsti.checked", "FStar.Reflection.Types.fsti.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked" ], "interface_file": false, "source_file": "FStar.Reflection.V1.Formula.fst" }
[]
[ "FStar.Reflection.Types.term", "FStar.Reflection.Types.bv", "FStar.Reflection.V1.Formula.Name", "FStar.Reflection.V1.Formula.formula", "FStar.Reflection.Types.fv", "Prims.op_Equality", "Prims.list", "Prims.string", "FStar.Reflection.Const.true_qn", "FStar.Reflection.V1.Formula.True_", "Prims.bool", "FStar.Reflection.Const.false_qn", "FStar.Reflection.V1.Formula.False_", "FStar.Reflection.V1.Formula.FV", "FStar.Reflection.Types.name", "FStar.Reflection.V1.Builtins.inspect_fv", "FStar.Reflection.V1.Data.universes", "FStar.Reflection.V1.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Reflection.V1.Data.term_view", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V1.Data.aqualv", "FStar.Reflection.V1.Builtins.inspect_ln", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.Nil", "FStar.Reflection.Const.eq2_qn", "FStar.Reflection.V1.Formula.Comp", "FStar.Reflection.V1.Formula.Eq", "FStar.Pervasives.Native.Some", "FStar.Reflection.Types.typ", "FStar.Reflection.Const.eq1_qn", "FStar.Reflection.V1.Formula.BoolEq", "FStar.Reflection.Const.lt_qn", "FStar.Reflection.V1.Formula.Lt", "FStar.Reflection.Const.lte_qn", "FStar.Reflection.V1.Formula.Le", "FStar.Reflection.Const.gt_qn", "FStar.Reflection.V1.Formula.Gt", "FStar.Reflection.Const.gte_qn", "FStar.Reflection.V1.Formula.Ge", "FStar.Reflection.V1.Formula.App", "FStar.Pervasives.Native.fst", "FStar.Reflection.Const.imp_qn", "FStar.Reflection.V1.Formula.Implies", "FStar.Reflection.Const.and_qn", "FStar.Reflection.V1.Formula.And", "FStar.Reflection.Const.iff_qn", "FStar.Reflection.V1.Formula.Iff", "FStar.Reflection.Const.or_qn", "FStar.Reflection.V1.Formula.Or", "FStar.Pervasives.Native.None", "FStar.Reflection.Const.forall_qn", "FStar.Reflection.V1.Formula.mk_Forall", "FStar.Reflection.Const.exists_qn", "FStar.Reflection.V1.Formula.mk_Exists", "FStar.Reflection.Const.not_qn", "FStar.Reflection.V1.Formula.Not", "FStar.Reflection.Const.b2t_qn", "FStar.Reflection.V1.Builtins.term_eq", "FStar.Reflection.V1.Derived.un_uinst", "FStar.Reflection.V1.Formula.collect_app", "Prims.int", "FStar.Reflection.V1.Formula.IntLit", "FStar.Reflection.V1.Formula.F_Unknown", "FStar.Pervasives.Native.option", "FStar.Reflection.Types.match_returns_ascription", "FStar.Reflection.V1.Data.branch", "FStar.Reflection.Types.universe", "FStar.Reflection.Types.binder", "FStar.Reflection.Types.comp", "Prims.nat", "FStar.Reflection.Types.ctx_uvar_and_subst", "FStar.Reflection.V1.Data.vconst", "Prims.b2t", "FStar.Reflection.V1.Data.notAscription", "FStar.Reflection.V1.Formula.inspect_unascribe" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Reflection.V1.Formula open FStar.List.Tot.Base open FStar.Tactics.Effect open FStar.Tactics.V1.Builtins open FStar.Reflection.Types open FStar.Reflection.Const open FStar.Reflection.V1.Builtins open FStar.Reflection.V1.Derived open FStar.Reflection.V1.Data ///// Cannot open FStar.Tactics.Derived here ///// private let bv_to_string (bv : bv) : Tac string = let bvv = inspect_bv bv in unseal (bvv.bv_ppname) private let rec inspect_unascribe (t:term) : Tac (tv:term_view{notAscription tv}) = match inspect t with | Tv_AscribedT t _ _ _ | Tv_AscribedC t _ _ _ -> inspect_unascribe t | tv -> tv private let rec collect_app' (args : list argv) (t : term) : Tac (term * list argv) = match inspect_unascribe t with | Tv_App l r -> collect_app' (r::args) l | _ -> (t, args) private let collect_app = collect_app' [] ///// noeq type comparison = | Eq of option typ (* Propositional equality (eq2), maybe annotated *) | BoolEq of option typ (* Decidable, boolean equality (eq), maybe annotated *) | Lt | Le | Gt | Ge (* Orderings, at type `int` (and subtypes) *) noeq type formula = | True_ : formula | False_ : formula | Comp : comparison -> term -> term -> formula | And : term -> term -> formula | Or : term -> term -> formula | Not : term -> formula | Implies: term -> term -> formula | Iff : term -> term -> formula | Forall : bv -> typ -> term -> formula | Exists : bv -> typ -> term -> formula | App : term -> term -> formula | Name : bv -> formula | FV : fv -> formula | IntLit : int -> formula | F_Unknown : formula // Also a baked-in "None" let mk_Forall (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Forall b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit))) let mk_Exists (typ : term) (pred : term) : Tac formula = let b = pack_bv ({ bv_ppname = as_ppname "x"; bv_index = 0; }) in Exists b typ (pack_ln (Tv_App pred (pack_ln (Tv_BVar b), Q_Explicit)))
false
false
FStar.Reflection.V1.Formula.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val term_as_formula' (t: term) : Tac formula
[]
FStar.Reflection.V1.Formula.term_as_formula'
{ "file_name": "ulib/FStar.Reflection.V1.Formula.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
t: FStar.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Reflection.V1.Formula.formula
{ "end_col": 28, "end_line": 154, "start_col": 4, "start_line": 79 }
Prims.Tot
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v)
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1 let pts_to_sl r p v =
false
null
false
H.pts_to_sl r p (U.raise_val v)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.HigherReference.pts_to_sl", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1
[]
Steel.Reference.pts_to_sl
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Memory.slprop
{ "end_col": 53, "end_line": 34, "start_col": 22, "start_line": 34 }
Prims.Tot
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptrp r p = Mem.h_exists (pts_to_sl r p)
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1 let ptrp r p =
false
null
false
Mem.h_exists (pts_to_sl r p)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.h_exists", "Steel.Reference.pts_to_sl", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[]
Steel.Reference.ptrp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Memory.slprop
{ "end_col": 43, "end_line": 242, "start_col": 15, "start_line": 242 }
Prims.Tot
val ref ([@@@unused] a:Type0) : Type0
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ref a = H.ref (U.raise_t a)
val ref ([@@@unused] a:Type0) : Type0 let ref a =
false
null
false
H.ref (U.raise_t a)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.HigherReference.ref", "FStar.Universe.raise_t" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off"
false
true
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ref ([@@@unused] a:Type0) : Type0
[]
Steel.Reference.ref
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type0 -> Type0
{ "end_col": 31, "end_line": 29, "start_col": 12, "start_line": 29 }
Prims.Tot
val ghost_ptrp (#a: Type0) (r: ghost_ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p)
val ghost_ptrp (#a: Type0) (r: ghost_ref a) ([@@@smt_fallback] p: perm) : slprop u#1 let ghost_ptrp r p =
false
null
false
Mem.h_exists (ghost_pts_to_sl r p)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Memory.h_exists", "Steel.Reference.ghost_pts_to_sl", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptrp (#a: Type0) (r: ghost_ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[]
Steel.Reference.ghost_ptrp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> Steel.Memory.slprop
{ "end_col": 55, "end_line": 429, "start_col": 21, "start_line": 429 }
Prims.Tot
val null (#a:Type0) : ref a
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let null #a = H.null #(U.raise_t a)
val null (#a:Type0) : ref a let null #a =
false
null
false
H.null #(U.raise_t a)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.HigherReference.null", "FStar.Universe.raise_t", "Steel.Reference.ref" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val null (#a:Type0) : ref a
[]
Steel.Reference.null
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
Steel.Reference.ref a
{ "end_col": 35, "end_line": 31, "start_col": 14, "start_line": 31 }
Steel.Effect.Atomic.SteelGhost
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_perm r = H.ghost_pts_to_perm r
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm) let ghost_pts_to_perm r =
true
null
false
H.ghost_pts_to_perm r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.Reference.ghost_ref", "Steel.HigherReference.ghost_pts_to_perm", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a) : SteelGhost unit u (ghost_pts_to r p v) (fun _ -> ghost_pts_to r p v) (fun _ -> True) (fun _ _ _ -> p `lesser_equal_perm` full_perm)
[]
Steel.Reference.ghost_pts_to_perm
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 47, "end_line": 413, "start_col": 26, "start_line": 413 }
FStar.Pervasives.Lemma
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) let pts_to_witinv (#a: Type) (r: ref a) (p: perm) : Lemma (is_witness_invariant (pts_to_sl r p)) =
false
null
true
let aux (x y: a) (m: mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Classical.forall_intro_3", "Steel.Memory.mem", "Prims.l_imp", "Prims.l_and", "Steel.Memory.interp", "Steel.Reference.pts_to_sl", "Prims.eq2", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Reference.raise_val_inj", "Steel.HigherReference.pts_to_witinv", "FStar.Universe.raise_t", "Steel.Memory.is_witness_invariant" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = ()
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
[]
Steel.Reference.pts_to_witinv
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> FStar.Pervasives.Lemma (ensures Steel.Memory.is_witness_invariant (Steel.Reference.pts_to_sl r p))
{ "end_col": 73, "end_line": 88, "start_col": 95, "start_line": 81 }
Prims.Tot
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p) let ptrp_sel r p =
false
null
false
Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Reference.ptr_sel'", "Prims.unit", "FStar.Classical.forall_intro", "Steel.Memory.hmem", "Steel.Reference.ptrp", "Prims.eq2", "Steel.Memory.core_mem", "Steel.Reference.ptr_sel_depends_only_on_core", "FStar.Classical.forall_intro_2", "Steel.Memory.mem", "Steel.Memory.disjoint", "Steel.Memory.join", "Steel.Reference.ptr_sel_depends_only_on", "Steel.Effect.Common.selector" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p)
[]
Steel.Reference.ptrp_sel
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Common.selector a (Steel.Reference.ptrp r p)
{ "end_col": 14, "end_line": 267, "start_col": 2, "start_line": 265 }
FStar.Pervasives.Lemma
val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y
val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y =
false
null
true
U.downgrade_val_raise_val x; U.downgrade_val_raise_val y
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "FStar.Universe.downgrade_val_raise_val", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y)
[]
Steel.Reference.raise_val_inj
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: a -> y: a -> FStar.Pervasives.Lemma (requires FStar.Universe.raise_val x == FStar.Universe.raise_val y) (ensures x == y)
{ "end_col": 29, "end_line": 42, "start_col": 2, "start_line": 41 }
Prims.Tot
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null})
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_null #a r = H.is_null #(U.raise_t a) r
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null}) let is_null #a r =
false
null
false
H.is_null #(U.raise_t a) r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Steel.HigherReference.is_null", "FStar.Universe.raise_t", "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "Steel.Reference.null" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null})
[]
Steel.Reference.is_null
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> b: Prims.bool{b <==> r == Steel.Reference.null}
{ "end_col": 45, "end_line": 32, "start_col": 19, "start_line": 32 }
FStar.Pervasives.Lemma
val raise_equiv (#t: Type) (x y: t) : Lemma (U.raise_val x == U.raise_val y <==> x == y)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y)
val raise_equiv (#t: Type) (x y: t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) let raise_equiv (#t: Type) (x y: t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) =
false
null
true
assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Prims._assert", "Prims.eq2", "FStar.Universe.downgrade_val", "FStar.Universe.raise_val", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.Universe.raise_t", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==>
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val raise_equiv (#t: Type) (x y: t) : Lemma (U.raise_val x == U.raise_val y <==> x == y)
[]
Steel.Reference.raise_equiv
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: t -> y: t -> FStar.Pervasives.Lemma (ensures FStar.Universe.raise_val x == FStar.Universe.raise_val y <==> x == y)
{ "end_col": 49, "end_line": 162, "start_col": 4, "start_line": 161 }
FStar.Pervasives.Lemma
val intro_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p
val intro_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) let intro_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) =
false
null
true
Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Memory.mem", "Steel.Reference.pts_to_witinv", "Prims.unit", "Steel.Memory.intro_h_exists", "FStar.Ghost.reveal", "Steel.Reference.pts_to_sl", "Steel.Memory.interp", "Prims.squash", "Prims.l_and", "Steel.Reference.ptrp", "Prims.eq2", "Steel.Reference.ptrp_sel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v)
[]
Steel.Reference.intro_vptr_lemma
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.pts_to_sl r p (FStar.Ghost.reveal v)) m) (ensures Steel.Memory.interp (Steel.Reference.ptrp r p) m /\ Steel.Reference.ptrp_sel r p m == FStar.Ghost.reveal v)
{ "end_col": 21, "end_line": 277, "start_col": 4, "start_line": 276 }
FStar.Pervasives.Lemma
val elim_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p
val elim_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) let elim_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) =
false
null
true
Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Memory.mem", "Steel.Reference.pts_to_witinv", "Prims.unit", "Steel.Memory.elim_h_exists", "Steel.Reference.pts_to_sl", "Prims.l_and", "Steel.Memory.interp", "Steel.Reference.ptrp", "Prims.eq2", "Steel.Reference.ptrp_sel", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_vptr_lemma (#a: Type) (r: ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m)
[]
Steel.Reference.elim_vptr_lemma
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.ptrp r p) m /\ Steel.Reference.ptrp_sel r p m == FStar.Ghost.reveal v) (ensures Steel.Memory.interp (Steel.Reference.pts_to_sl r p (FStar.Ghost.reveal v)) m)
{ "end_col": 21, "end_line": 283, "start_col": 4, "start_line": 282 }
FStar.Pervasives.Lemma
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma (requires interp (ptrp r p) m) (ensures interp (pts_to_sl r p (ptrp_sel r p m)) m)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptrp_sel_interp #a r p m = pts_to_witinv r p
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma (requires interp (ptrp r p) m) (ensures interp (pts_to_sl r p (ptrp_sel r p m)) m) let ptrp_sel_interp #a r p m =
false
null
true
pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.Reference.pts_to_witinv", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma (requires interp (ptrp r p) m) (ensures interp (pts_to_sl r p (ptrp_sel r p m)) m)
[]
Steel.Reference.ptrp_sel_interp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.ptrp r p) m) (ensures Steel.Memory.interp (Steel.Reference.pts_to_sl r p (Steel.Reference.ptrp_sel r p m)) m)
{ "end_col": 48, "end_line": 269, "start_col": 31, "start_line": 269 }
FStar.Pervasives.Lemma
val elim_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p
val elim_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) let elim_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) =
false
null
true
Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Memory.mem", "Steel.Reference.ghost_pts_to_witinv", "Prims.unit", "Steel.Memory.elim_h_exists", "Steel.Reference.ghost_pts_to_sl", "Prims.l_and", "Steel.Memory.interp", "Steel.Reference.ghost_ptrp", "Prims.eq2", "Steel.Reference.ghost_ptrp_sel", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m)
[]
Steel.Reference.elim_ghost_vptr_lemma
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.ghost_ptrp r p) m /\ Steel.Reference.ghost_ptrp_sel r p m == FStar.Ghost.reveal v) (ensures Steel.Memory.interp (Steel.Reference.ghost_pts_to_sl r p (FStar.Ghost.reveal v)) m)
{ "end_col": 27, "end_line": 469, "start_col": 4, "start_line": 468 }
FStar.Pervasives.Lemma
val pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m
val pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) let pts_to_not_null (#a: Type u#0) (x: ref a) (p: perm) (v: a) (m: mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) =
false
null
true
let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.HigherReference.pts_to_not_null", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Prims.unit", "Steel.Memory.interp", "Steel.Reference.pts_to_sl", "Prims.squash", "Prims.l_not", "Prims.eq2", "Steel.Reference.null", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null)
[]
Steel.Reference.pts_to_not_null
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.pts_to_sl x p v) m) (ensures ~(x == Steel.Reference.null))
{ "end_col": 44, "end_line": 68, "start_col": 3, "start_line": 67 }
Prims.Tot
val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h
val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p =
false
null
false
fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ghost_ptrp", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Steel.Reference.ghost_pts_to_sl" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p)
[]
Steel.Reference.ghost_ptr_sel'
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Common.selector' a (Steel.Reference.ghost_ptrp r p)
{ "end_col": 78, "end_line": 432, "start_col": 28, "start_line": 432 }
FStar.Pervasives.Lemma
val ghost_ptr_sel_depends_only_on (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1)
val ghost_ptr_sel_depends_only_on (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) let ghost_ptr_sel_depends_only_on (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) =
false
null
true
let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ghost_ptrp", "Steel.Memory.mem", "Steel.Memory.disjoint", "Steel.Memory.elim_wi", "Steel.Reference.ghost_pts_to_sl", "Steel.Memory.join", "Prims.unit", "Steel.Reference.ghost_pts_to_witinv", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Prims.l_True", "Prims.squash", "Prims.eq2", "Steel.Reference.ghost_ptr_sel'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1})
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptr_sel_depends_only_on (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1))
[]
Steel.Reference.ghost_ptr_sel_depends_only_on
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> m0: Steel.Memory.hmem (Steel.Reference.ghost_ptrp r p) -> m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1} -> FStar.Pervasives.Lemma (ensures Steel.Reference.ghost_ptr_sel' r p m0 == Steel.Reference.ghost_ptr_sel' r p (Steel.Memory.join m0 m1))
{ "end_col": 54, "end_line": 441, "start_col": 3, "start_line": 438 }
FStar.Pervasives.Lemma
val intro_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p
val intro_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) let intro_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) =
false
null
true
Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Memory.mem", "Steel.Reference.ghost_pts_to_witinv", "Prims.unit", "Steel.Memory.intro_h_exists", "FStar.Ghost.reveal", "Steel.Reference.ghost_pts_to_sl", "Steel.Memory.interp", "Prims.squash", "Prims.l_and", "Steel.Reference.ghost_ptrp", "Prims.eq2", "Steel.Reference.ghost_ptrp_sel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_ghost_vptr_lemma (#a: Type) (r: ghost_ref a) (p: perm) (v: erased a) (m: mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v)
[]
Steel.Reference.intro_ghost_vptr_lemma
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.ghost_pts_to_sl r p (FStar.Ghost.reveal v)) m) (ensures Steel.Memory.interp (Steel.Reference.ghost_ptrp r p) m /\ Steel.Reference.ghost_ptrp_sel r p m == FStar.Ghost.reveal v)
{ "end_col": 27, "end_line": 463, "start_col": 4, "start_line": 462 }
Steel.Effect.Atomic.SteelGhostT
val ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r
val ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x) let ghost_share_pt (#a: Type) (#u: _) (#p: perm) (#x: erased a) (r: ghost_ref a) =
true
null
false
H.ghost_share #_ #_ #_ #(raise_erased x) r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Steel.HigherReference.ghost_share", "FStar.Universe.raise_t", "Steel.Reference.raise_erased", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r p x) (fun _ -> ghost_pts_to r (half_perm p) x `star` ghost_pts_to r (half_perm p) x)
[]
Steel.Reference.ghost_share_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 47, "end_line": 391, "start_col": 5, "start_line": 391 }
FStar.Pervasives.Lemma
val ptr_sel_depends_only_on (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1)
val ptr_sel_depends_only_on (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) let ptr_sel_depends_only_on (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) =
false
null
true
let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ptrp", "Steel.Memory.mem", "Steel.Memory.disjoint", "Steel.Memory.elim_wi", "Steel.Reference.pts_to_sl", "Steel.Memory.join", "Prims.unit", "Steel.Reference.pts_to_witinv", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Prims.l_True", "Prims.squash", "Prims.eq2", "Steel.Reference.ptr_sel'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1})
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptr_sel_depends_only_on (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) (m1: mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1))
[]
Steel.Reference.ptr_sel_depends_only_on
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> m0: Steel.Memory.hmem (Steel.Reference.ptrp r p) -> m1: Steel.Memory.mem{Steel.Memory.disjoint m0 m1} -> FStar.Pervasives.Lemma (ensures Steel.Reference.ptr_sel' r p m0 == Steel.Reference.ptr_sel' r p (Steel.Memory.join m0 m1))
{ "end_col": 48, "end_line": 254, "start_col": 3, "start_line": 251 }
Steel.Memory.MstTot
val cas_action (#t: eqtype) (#uses: inames) (r: ref t) (v: Ghost.erased t) (v_old v_new: t) (frame: slprop) : MstTot (b: bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b
val cas_action (#t: eqtype) (#uses: inames) (r: ref t) (v: Ghost.erased t) (v_old v_new: t) (frame: slprop) : MstTot (b: bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) let cas_action (#t: eqtype) (#uses: inames) (r: ref t) (v: Ghost.erased t) (v_old v_new: t) (frame: slprop) : MstTot (b: bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) =
true
null
false
let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Prims.eqtype", "Steel.Memory.inames", "Steel.Reference.ref", "FStar.Ghost.erased", "Steel.Memory.slprop", "Prims.unit", "Steel.Reference.raise_equiv", "FStar.Ghost.reveal", "Prims._assert", "Prims.l_iff", "Prims.b2t", "Prims.eq2", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Prims.bool", "Steel.HigherReference.cas_action", "Steel.Reference.lift_eq", "FStar.Ghost.hide", "Steel.Reference.pts_to_sl", "Steel.FractionalPermission.full_perm", "Steel.Memory.mem", "Prims.l_True", "Prims.prop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cas_action (#t: eqtype) (#uses: inames) (r: ref t) (v: Ghost.erased t) (v_old v_new: t) (frame: slprop) : MstTot (b: bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True)
[]
Steel.Reference.cas_action
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref t -> v: FStar.Ghost.erased t -> v_old: t -> v_new: t -> frame: Steel.Memory.slprop -> Steel.Memory.MstTot (b: Prims.bool{b <==> FStar.Ghost.reveal v == v_old})
{ "end_col": 6, "end_line": 203, "start_col": 4, "start_line": 190 }
FStar.Pervasives.Lemma
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) let ghost_pts_to_witinv (#a: Type) (r: ghost_ref a) (p: perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) =
false
null
true
let aux (x y: a) (m: mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Classical.forall_intro_3", "Steel.Memory.mem", "Prims.l_imp", "Prims.l_and", "Steel.Memory.interp", "Steel.Reference.ghost_pts_to_sl", "Prims.eq2", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Reference.raise_val_inj", "Steel.HigherReference.ghost_pts_to_witinv", "FStar.Universe.raise_t", "Steel.Memory.is_witness_invariant" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p))
[]
Steel.Reference.ghost_pts_to_witinv
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> FStar.Pervasives.Lemma (ensures Steel.Memory.is_witness_invariant (Steel.Reference.ghost_pts_to_sl r p))
{ "end_col": 73, "end_line": 372, "start_col": 113, "start_line": 365 }
FStar.Pervasives.Lemma
val ghost_ptr_sel_depends_only_on_core (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0)
val ghost_ptr_sel_depends_only_on_core (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) let ghost_ptr_sel_depends_only_on_core (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) =
false
null
true
let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ghost_ptrp", "Steel.Memory.elim_wi", "Steel.Reference.ghost_pts_to_sl", "Steel.Memory.core_mem", "Prims.unit", "Steel.Reference.ghost_pts_to_witinv", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Prims.l_True", "Prims.squash", "Prims.eq2", "Steel.Reference.ghost_ptr_sel'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p))
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptr_sel_depends_only_on_core (#a: Type0) (r: ghost_ref a) (p: perm) (m0: Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0))
[]
Steel.Reference.ghost_ptr_sel_depends_only_on_core
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> m0: Steel.Memory.hmem (Steel.Reference.ghost_ptrp r p) -> FStar.Pervasives.Lemma (ensures Steel.Reference.ghost_ptr_sel' r p m0 == Steel.Reference.ghost_ptr_sel' r p (Steel.Memory.core_mem m0))
{ "end_col": 51, "end_line": 449, "start_col": 3, "start_line": 446 }
FStar.Pervasives.Lemma
val pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1
val pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1: perm) (v0 v1: a) (m: mem) : Lemma (requires interp ((pts_to_sl r p0 v0) `Mem.star` (pts_to_sl r p1 v1)) m) (ensures v0 == v1) =
false
null
true
let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.Reference.raise_val_inj", "Prims.unit", "Steel.HigherReference.pts_to_ref_injective", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Steel.Memory.interp", "Steel.Memory.star", "Steel.Reference.pts_to_sl", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1)
[]
Steel.Reference.pts_to_ref_injective
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p0: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> v0: a -> v1: a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Memory.star (Steel.Reference.pts_to_sl r p0 v0) (Steel.Reference.pts_to_sl r p1 v1)) m) (ensures v0 == v1)
{ "end_col": 25, "end_line": 58, "start_col": 5, "start_line": 55 }
FStar.Pervasives.Lemma
val hide_raise_reveal (#a: Type) (v0 v1: erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))]
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1)
val hide_raise_reveal (#a: Type) (v0 v1: erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] let hide_raise_reveal (#a: Type) (v0 v1: erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] =
false
null
true
let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "FStar.Ghost.erased", "Prims._assert", "Prims.l_iff", "Prims.eq2", "FStar.Universe.downgrade_val", "FStar.Universe.raise_val", "FStar.Ghost.reveal", "FStar.Universe.raise_t", "FStar.Ghost.hide", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0)));
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hide_raise_reveal (#a: Type) (v0 v1: erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))]
[]
Steel.Reference.hide_raise_reveal
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> FStar.Pervasives.Lemma (ensures FStar.Ghost.hide (FStar.Universe.raise_val (FStar.Ghost.reveal v0)) == FStar.Ghost.hide (FStar.Universe.raise_val (FStar.Ghost.reveal v1)) <==> v0 == v1) [ SMTPat (FStar.Ghost.hide (FStar.Universe.raise_val (FStar.Ghost.reveal v0))); SMTPat (FStar.Ghost.hide (FStar.Universe.raise_val (FStar.Ghost.reveal v1))) ]
{ "end_col": 21, "end_line": 147, "start_col": 3, "start_line": 144 }
Steel.Effect.Atomic.SteelGhost
val ghost_free (#a:Type0) (#opened:inames) (r:ghost_ref a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_free r = let _ = elim_ghost_vptr r _ in ghost_free_pt r
val ghost_free (#a:Type0) (#opened:inames) (r:ghost_ref a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True) let ghost_free r =
true
null
false
let _ = elim_ghost_vptr r _ in ghost_free_pt r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "Steel.Reference.ghost_free_pt", "Prims.unit", "FStar.Ghost.erased", "Steel.Reference.elim_ghost_vptr", "Steel.FractionalPermission.full_perm" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_free (#a:Type0) (#opened:inames) (r:ghost_ref a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
[]
Steel.Reference.ghost_free
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 17, "end_line": 493, "start_col": 18, "start_line": 491 }
Prims.Tot
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (v:a) : slprop u#1
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x)
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (v:a) : slprop u#1 let ghost_pts_to_sl #a r p x =
false
null
false
H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.HigherReference.ghost_pts_to_sl", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Steel.Memory.slprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (v:a) : slprop u#1
[]
Steel.Reference.ghost_pts_to_sl
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> v: a -> Steel.Memory.slprop
{ "end_col": 83, "end_line": 363, "start_col": 31, "start_line": 363 }
Prims.Tot
val ghost_ref (a:Type u#0) : Type u#0
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ref a = H.ghost_ref (U.raise_t a)
val ghost_ref (a:Type u#0) : Type u#0 let ghost_ref a =
false
null
false
H.ghost_ref (U.raise_t a)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.HigherReference.ghost_ref", "FStar.Universe.raise_t" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *)
false
true
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ref (a:Type u#0) : Type u#0
[]
Steel.Reference.ghost_ref
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type0 -> Type0
{ "end_col": 43, "end_line": 360, "start_col": 18, "start_line": 360 }
Prims.Tot
val raise_erased (#a: Type0) (x: erased a) : erased (U.raise_t u#0 u#1 a)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x))
val raise_erased (#a: Type0) (x: erased a) : erased (U.raise_t u#0 u#1 a) let raise_erased (#a: Type0) (x: erased a) : erased (U.raise_t u#0 u#1 a) =
false
null
false
Ghost.hide (U.raise_val (Ghost.reveal x))
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "FStar.Ghost.erased", "FStar.Ghost.hide", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "FStar.Ghost.reveal" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val raise_erased (#a: Type0) (x: erased a) : erased (U.raise_t u#0 u#1 a)
[]
Steel.Reference.raise_erased
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Ghost.erased a -> FStar.Ghost.erased (FStar.Universe.raise_t a)
{ "end_col": 45, "end_line": 377, "start_col": 4, "start_line": 377 }
FStar.Pervasives.Lemma
val downgrade_equiv (#t: Type) (x y: U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y)
val downgrade_equiv (#t: Type) (x y: U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) let downgrade_equiv (#t: Type) (x y: U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) =
false
null
true
assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "FStar.Universe.raise_t", "Prims._assert", "Prims.eq2", "FStar.Universe.raise_val", "FStar.Universe.downgrade_val", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==>
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val downgrade_equiv (#t: Type) (x y: U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y)
[]
Steel.Reference.downgrade_equiv
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Universe.raise_t t -> y: FStar.Universe.raise_t t -> FStar.Pervasives.Lemma (ensures FStar.Universe.downgrade_val x == FStar.Universe.downgrade_val y <==> x == y)
{ "end_col": 49, "end_line": 169, "start_col": 4, "start_line": 168 }
Steel.Effect.Atomic.SteelGhostT
val ghost_free_pt (#a:Type0) (#u:_) (#v:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> emp)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_free_pt r = H.ghost_free r
val ghost_free_pt (#a:Type0) (#u:_) (#v:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> emp) let ghost_free_pt r =
true
null
false
H.ghost_free r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Steel.HigherReference.ghost_free", "FStar.Universe.raise_t", "FStar.Ghost.hide", "FStar.Universe.raise_val", "FStar.Ghost.reveal", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_free_pt (#a:Type0) (#u:_) (#v:erased a) (r:ghost_ref a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> emp)
[]
Steel.Reference.ghost_free_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 36, "end_line": 385, "start_col": 22, "start_line": 385 }
Prims.Tot
val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h
val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p =
false
null
false
fun h -> id_elim_exists #a (pts_to_sl r p) h
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ptrp", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Steel.Reference.pts_to_sl" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p)
[]
Steel.Reference.ptr_sel'
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Common.selector' a (Steel.Reference.ptrp r p)
{ "end_col": 66, "end_line": 245, "start_col": 22, "start_line": 245 }
FStar.Pervasives.Lemma
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m) let intro_ptrp_interp r p v m =
false
null
true
intro_h_exists (reveal v) (pts_to_sl r p) m
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Memory.mem", "Steel.Memory.intro_h_exists", "FStar.Ghost.reveal", "Steel.Reference.pts_to_sl", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m)
[]
Steel.Reference.intro_ptrp_interp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.pts_to_sl r p (FStar.Ghost.reveal v)) m) (ensures Steel.Memory.interp (Steel.Reference.ptrp r p) m)
{ "end_col": 75, "end_line": 271, "start_col": 32, "start_line": 271 }
FStar.Pervasives.Lemma
val ptr_sel_depends_only_on_core (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0)
val ptr_sel_depends_only_on_core (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) let ptr_sel_depends_only_on_core (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) =
false
null
true
let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Memory.hmem", "Steel.Reference.ptrp", "Steel.Memory.elim_wi", "Steel.Reference.pts_to_sl", "Steel.Memory.core_mem", "Prims.unit", "Steel.Reference.pts_to_witinv", "FStar.Ghost.reveal", "Steel.Memory.id_elim_exists", "Prims.l_True", "Prims.squash", "Prims.eq2", "Steel.Reference.ptr_sel'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p))
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ptr_sel_depends_only_on_core (#a: Type0) (r: ref a) (p: perm) (m0: Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0))
[]
Steel.Reference.ptr_sel_depends_only_on_core
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> m0: Steel.Memory.hmem (Steel.Reference.ptrp r p) -> FStar.Pervasives.Lemma (ensures Steel.Reference.ptr_sel' r p m0 == Steel.Reference.ptr_sel' r p (Steel.Memory.core_mem m0))
{ "end_col": 45, "end_line": 262, "start_col": 3, "start_line": 259 }
Prims.Tot
val lift_eq (#t: eqtype) (x y: U.raise_t t) : b: bool{b <==> x == y}
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y
val lift_eq (#t: eqtype) (x y: U.raise_t t) : b: bool{b <==> x == y} let lift_eq (#t: eqtype) (x y: U.raise_t t) : b: bool{b <==> x == y} =
false
null
false
downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Prims.eqtype", "FStar.Universe.raise_t", "Prims.op_Equality", "FStar.Universe.downgrade_val", "Prims.unit", "Steel.Reference.downgrade_equiv", "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lift_eq (#t: eqtype) (x y: U.raise_t t) : b: bool{b <==> x == y}
[]
Steel.Reference.lift_eq
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Universe.raise_t t -> y: FStar.Universe.raise_t t -> b: Prims.bool{b <==> x == y}
{ "end_col": 62, "end_line": 173, "start_col": 4, "start_line": 173 }
Steel.Effect.Atomic.SteelGhostT
val ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x)
val ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) let ghost_write_pt (#a: Type) (#u: _) (#v: erased a) (r: ghost_ref a) (x: erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) =
true
null
false
H.ghost_write r (raise_erased x)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Steel.HigherReference.ghost_write", "FStar.Universe.raise_t", "FStar.Ghost.hide", "FStar.Universe.raise_val", "FStar.Ghost.reveal", "Steel.Reference.raise_erased", "Prims.unit", "Steel.Reference.ghost_pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x)
[]
Steel.Reference.ghost_write_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 36, "end_line": 425, "start_col": 4, "start_line": 425 }
Prims.Tot
val ghost_ptrp_sel (#a:Type0) (r:ghost_ref a) (p: perm) : selector a (ghost_ptrp r p)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p
val ghost_ptrp_sel (#a:Type0) (r:ghost_ref a) (p: perm) : selector a (ghost_ptrp r p) let ghost_ptrp_sel r p =
false
null
false
Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "total" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Reference.ghost_ptr_sel'", "Prims.unit", "FStar.Classical.forall_intro", "Steel.Memory.hmem", "Steel.Reference.ghost_ptrp", "Prims.eq2", "Steel.Memory.core_mem", "Steel.Reference.ghost_ptr_sel_depends_only_on_core", "FStar.Classical.forall_intro_2", "Steel.Memory.mem", "Steel.Memory.disjoint", "Steel.Memory.join", "Steel.Reference.ghost_ptr_sel_depends_only_on", "Steel.Effect.Common.selector" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptrp_sel (#a:Type0) (r:ghost_ref a) (p: perm) : selector a (ghost_ptrp r p)
[]
Steel.Reference.ghost_ptrp_sel
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Common.selector a (Steel.Reference.ghost_ptrp r p)
{ "end_col": 20, "end_line": 454, "start_col": 2, "start_line": 452 }
FStar.Pervasives.Lemma
val ghost_ptrp_sel_interp (#a:Type0) (r:ghost_ref a) (p: perm) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m) (ensures interp (ghost_pts_to_sl r p (ghost_ptrp_sel r p m)) m)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p
val ghost_ptrp_sel_interp (#a:Type0) (r:ghost_ref a) (p: perm) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m) (ensures interp (ghost_pts_to_sl r p (ghost_ptrp_sel r p m)) m) let ghost_ptrp_sel_interp #a r p m =
false
null
true
ghost_pts_to_witinv r p
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[ "lemma" ]
[ "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.Memory.mem", "Steel.Reference.ghost_pts_to_witinv", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_ptrp_sel_interp (#a:Type0) (r:ghost_ref a) (p: perm) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m) (ensures interp (ghost_pts_to_sl r p (ghost_ptrp_sel r p m)) m)
[]
Steel.Reference.ghost_ptrp_sel_interp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Reference.ghost_ptrp r p) m) (ensures Steel.Memory.interp (Steel.Reference.ghost_pts_to_sl r p (Steel.Reference.ghost_ptrp_sel r p m)) m)
{ "end_col": 60, "end_line": 456, "start_col": 37, "start_line": 456 }
Steel.Effect.Atomic.SteelGhost
val intro_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) (v: erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v)
val intro_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) (v: erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) let intro_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) (v: erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) =
true
null
false
change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Effect.Atomic.change_slprop_2", "Steel.Reference.ghost_pts_to", "FStar.Ghost.reveal", "Steel.Reference.ghost_vptrp", "Steel.Reference.intro_ghost_vptr_lemma", "Prims.unit", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) (v: erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v)
[]
Steel.Reference.intro_ghost_vptr
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 91, "end_line": 475, "start_col": 4, "start_line": 475 }
Steel.Effect.Atomic.SteelGhost
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v)
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) let intro_vptr (#a: Type) (#opened: inames) (r: ref a) (p: perm) (v: erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) =
true
null
false
change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Effect.Atomic.change_slprop_2", "Steel.Reference.pts_to", "FStar.Ghost.reveal", "Steel.Reference.vptrp", "Steel.Reference.intro_vptr_lemma", "Prims.unit", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v)
[]
Steel.Reference.intro_vptr
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> v: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 73, "end_line": 289, "start_col": 4, "start_line": 289 }
Steel.Effect.SteelT
val free_pt (#a:Type0) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r
val free_pt (#a:Type0) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp) let free_pt #a #v r =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.HigherReference.free", "FStar.Universe.raise_t", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.HigherReference.pts_to", "Steel.Memory.mem", "FStar.Universe.raise_val" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ())
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free_pt (#a:Type0) (#v:erased a) (r:ref a) : SteelT unit (pts_to r full_perm v) (fun _ -> emp)
[]
Steel.Reference.free_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.SteelT Prims.unit
{ "end_col": 10, "end_line": 130, "start_col": 21, "start_line": 127 }
Steel.Effect.Atomic.SteelGhost
val vptrp_not_null (#opened: _) (#a: Type) (r: ref a) (p: perm) : SteelGhost unit opened (vptrp r p) (fun _ -> vptrp r p) (fun _ -> True) (fun h0 _ h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ is_null r == false )
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m)
val vptrp_not_null (#opened: _) (#a: Type) (r: ref a) (p: perm) : SteelGhost unit opened (vptrp r p) (fun _ -> vptrp r p) (fun _ -> True) (fun h0 _ h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ is_null r == false ) let vptrp_not_null #opened #a r p =
true
null
false
change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Effect.Atomic.change_slprop_rel", "Steel.Reference.vptrp", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.l_and", "Prims.eq2", "Prims.bool", "Steel.Reference.is_null", "Prims.prop", "Steel.Memory.mem", "Steel.Reference.pts_to_not_null", "Steel.Reference.ptrp_sel", "Prims.unit" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val vptrp_not_null (#opened: _) (#a: Type) (r: ref a) (p: perm) : SteelGhost unit opened (vptrp r p) (fun _ -> vptrp r p) (fun _ -> True) (fun h0 _ h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ is_null r == false )
[]
Steel.Reference.vptrp_not_null
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 53, "end_line": 355, "start_col": 2, "start_line": 351 }
Steel.Effect.Steel
val free (#a:Type0) (r:ref a) : Steel unit (vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let free r = let _ = elim_vptr r _ in free_pt r
val free (#a:Type0) (r:ref a) : Steel unit (vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True) let free r =
true
null
false
let _ = elim_vptr r _ in free_pt r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Reference.ref", "Steel.Reference.free_pt", "Prims.unit", "FStar.Ghost.erased", "Steel.Reference.elim_vptr", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.FractionalPermission.full_perm" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val free (#a:Type0) (r:ref a) : Steel unit (vptr r) (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
[]
Steel.Reference.free
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Steel Prims.unit
{ "end_col": 11, "end_line": 306, "start_col": 12, "start_line": 304 }
Steel.Effect.Atomic.SteelGhostT
val ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x)
val ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) let ghost_alloc_pt (#a: Type) (#u: _) (x: erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) =
true
null
false
H.ghost_alloc (raise_erased x)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.HigherReference.ghost_alloc", "FStar.Universe.raise_t", "Steel.Reference.raise_erased", "Steel.HigherReference.ghost_ref", "Steel.Reference.ghost_ref", "Steel.Effect.Common.emp", "Steel.Reference.ghost_pts_to", "Steel.FractionalPermission.full_perm", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x)
[]
Steel.Reference.ghost_alloc_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhostT (Steel.Reference.ghost_ref a)
{ "end_col": 34, "end_line": 383, "start_col": 4, "start_line": 383 }
Steel.Effect.Atomic.SteelGhost
val pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
val pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r =
true
null
false
extract_info_raw ((pts_to r p0 v0) `star` (pts_to r p1 v1)) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Reference.pts_to", "FStar.Ghost.reveal", "Steel.Memory.mem", "Prims.unit", "Steel.Effect.Atomic.extract_info_raw", "Steel.Effect.Common.star", "Prims.eq2", "Steel.Reference.pts_to_ref_injective" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y))
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1: erased a) (r: ref a) : SteelGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[]
Steel.Reference.pts_to_injective_eq
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 64, "end_line": 93, "start_col": 2, "start_line": 91 }
Steel.Effect.Atomic.SteelGhost
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1)
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) let ghost_pts_to_injective_eq (#a #u #p #q: _) (r: ghost_ref a) (v0 v1: Ghost.erased a) : SteelGhost unit u ((ghost_pts_to r p v0) `star` (ghost_pts_to r q v1)) (fun _ -> (ghost_pts_to r p v0) `star` (ghost_pts_to r q v0)) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) =
true
null
false
H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.Reference.ghost_ref", "FStar.Ghost.erased", "Steel.HigherReference.ghost_pts_to_injective_eq", "FStar.Universe.raise_t", "Steel.Reference.raise_erased", "Prims.unit", "Steel.Effect.Common.star", "Steel.Reference.ghost_pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1)
[]
Steel.Reference.ghost_pts_to_injective_eq
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 81, "end_line": 411, "start_col": 4, "start_line": 411 }
Steel.Effect.Atomic.SteelGhost
val ghost_read_pt (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ghost_ref a) : SteelGhost (erased a) u (ghost_pts_to r p v) (fun x -> ghost_pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x'
val ghost_read_pt (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ghost_ref a) : SteelGhost (erased a) u (ghost_pts_to r p v) (fun x -> ghost_pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == v) let ghost_read_pt #a #u #p #v r =
true
null
false
let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x'
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.ghost_pts_to", "FStar.Universe.raise_t", "FStar.Ghost.reveal", "Steel.Reference.ghost_pts_to", "Steel.Memory.mem", "FStar.Ghost.hide", "FStar.Universe.downgrade_val", "Steel.HigherReference.ghost_read", "FStar.Universe.raise_val" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_read_pt (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ghost_ref a) : SteelGhost (erased a) u (ghost_pts_to r p v) (fun x -> ghost_pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == v)
[]
Steel.Reference.ghost_read_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased a)
{ "end_col": 4, "end_line": 419, "start_col": 33, "start_line": 415 }
Steel.Effect.Atomic.SteelGhost
val gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) )
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p)
val gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses ((vptrp r (half_perm p)) `star` (vptrp r (half_perm p))) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p))) =
true
null
false
let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.Reference.ref", "Steel.Effect.Atomic.change_equal_slprop", "Steel.Reference.vptrp", "Prims.unit", "Steel.Reference.gather_gen", "Steel.FractionalPermission.half_perm", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p))
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) )
[]
Steel.Reference.gather
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 17, "end_line": 344, "start_col": 3, "start_line": 341 }
Steel.Effect.Atomic.SteelGhost
val ghost_write (#a:Type0) (#opened:inames) (r:ghost_ref a) (x:Ghost.erased a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> Ghost.reveal x == h1 (ghost_vptr r))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_write r x = let _ = elim_ghost_vptr r _ in ghost_write_pt r x; intro_ghost_vptr r _ x
val ghost_write (#a:Type0) (#opened:inames) (r:ghost_ref a) (x:Ghost.erased a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> Ghost.reveal x == h1 (ghost_vptr r)) let ghost_write r x =
true
null
false
let _ = elim_ghost_vptr r _ in ghost_write_pt r x; intro_ghost_vptr r _ x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "FStar.Ghost.erased", "Steel.Reference.intro_ghost_vptr", "Steel.FractionalPermission.full_perm", "Prims.unit", "Steel.Reference.ghost_write_pt", "Steel.Reference.elim_ghost_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r let ghost_free r = let _ = elim_ghost_vptr r _ in ghost_free_pt r let ghost_readp r _ = let _ = elim_ghost_vptr r _ in let x = ghost_read_pt r in intro_ghost_vptr r _ x; x
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_write (#a:Type0) (#opened:inames) (r:ghost_ref a) (x:Ghost.erased a) : SteelGhost unit opened (ghost_vptr r) (fun _ -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> Ghost.reveal x == h1 (ghost_vptr r))
[]
Steel.Reference.ghost_write
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 24, "end_line": 504, "start_col": 21, "start_line": 501 }
Steel.Effect.Steel
val alloc_pt (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r
val alloc_pt (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r)) let alloc_pt x =
true
null
false
let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Effect.Atomic.return", "Steel.Reference.ref", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "FStar.Universe.raise_val", "Steel.Memory.mem", "Steel.HigherReference.ref", "Steel.HigherReference.alloc" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ())
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val alloc_pt (#a:Type) (x:a) : Steel (ref a) emp (fun r -> pts_to r full_perm x) (requires fun _ -> True) (ensures fun _ r _ -> not (is_null r))
[]
Steel.Reference.alloc_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: a -> Steel.Effect.Steel (Steel.Reference.ref a)
{ "end_col": 10, "end_line": 98, "start_col": 16, "start_line": 95 }
Steel.Effect.Steel
val malloc (#a:Type0) (x:a) : Steel (ref a) emp (fun r -> vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r
val malloc (#a:Type0) (x:a) : Steel (ref a) emp (fun r -> vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r)) let malloc x =
true
null
false
let r = alloc_pt x in intro_vptr r _ (hide x); return r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Effect.Atomic.return", "Steel.Reference.ref", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Reference.vptrp", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Reference.intro_vptr", "Steel.Reference.alloc_pt" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val malloc (#a:Type0) (x:a) : Steel (ref a) emp (fun r -> vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r))
[]
Steel.Reference.malloc
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: a -> Steel.Effect.Steel (Steel.Reference.ref a)
{ "end_col": 10, "end_line": 302, "start_col": 14, "start_line": 299 }
Steel.Effect.Atomic.SteelGhost
val ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r
val ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) let ghost_gather_pt (#a: Type) (#u: _) (#p0 #p1: perm) (#x0 #x1: erased a) (r: ghost_ref a) : SteelGhost unit u ((ghost_pts_to r p0 x0) `star` (ghost_pts_to r p1 x1)) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) =
true
null
false
H.ghost_gather r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Steel.HigherReference.ghost_gather", "FStar.Universe.raise_t", "FStar.Ghost.hide", "FStar.Universe.raise_val", "FStar.Ghost.reveal", "Prims.unit", "Steel.Effect.Common.star", "Steel.Reference.ghost_pts_to", "Steel.FractionalPermission.sum_perm", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.b2t", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1)
[]
Steel.Reference.ghost_gather_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 20, "end_line": 403, "start_col": 4, "start_line": 403 }
Steel.Effect.Atomic.SteelAtomicT
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ())
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) let atomic_write_pt_u32 #_ #v r x =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ())
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "FStar.UInt32.t", "Steel.Reference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "Steel.FractionalPermission.full_perm", "Steel.Reference.pts_to", "Steel.Memory.mem", "Prims.unit", "Steel.HigherReference.atomic_write", "FStar.Universe.raise_val", "FStar.Ghost.reveal", "FStar.Ghost.hide" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t) : SteelAtomicT unit opened (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[]
Steel.Reference.atomic_write_pt_u32
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref FStar.UInt32.t -> x: FStar.UInt32.t -> Steel.Effect.Atomic.SteelAtomicT Prims.unit
{ "end_col": 86, "end_line": 218, "start_col": 35, "start_line": 213 }
Steel.Effect.Steel
val write (#a:Type0) (r:ref a) (x:a) : Steel unit (vptr r) (fun _ -> vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> x == sel r h1)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x
val write (#a:Type0) (r:ref a) (x:a) : Steel unit (vptr r) (fun _ -> vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> x == sel r h1) let write r x =
true
null
false
let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Reference.ref", "Steel.Reference.intro_vptr", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.FractionalPermission.full_perm", "Prims.unit", "Steel.Reference.write_pt", "FStar.Ghost.erased", "Steel.Reference.elim_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val write (#a:Type0) (r:ref a) (x:a) : Steel unit (vptr r) (fun _ -> vptr r) (requires fun _ -> True) (ensures fun _ _ h1 -> x == sel r h1)
[]
Steel.Reference.write
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> x: a -> Steel.Effect.Steel Prims.unit
{ "end_col": 18, "end_line": 317, "start_col": 15, "start_line": 314 }
Steel.Effect.Atomic.SteelGhost
val ghost_alloc (#a:Type0) (#opened:inames) (x:Ghost.erased a) : SteelGhost (ghost_ref a) opened emp (fun r -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> ghost_sel r h1 == Ghost.reveal x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r
val ghost_alloc (#a:Type0) (#opened:inames) (x:Ghost.erased a) : SteelGhost (ghost_ref a) opened emp (fun r -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> ghost_sel r h1 == Ghost.reveal x) let ghost_alloc x =
true
null
false
let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Steel.Reference.ghost_ref", "Prims.unit", "Steel.Reference.intro_ghost_vptr", "Steel.FractionalPermission.full_perm", "Steel.Reference.ghost_alloc_pt" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_alloc (#a:Type0) (#opened:inames) (x:Ghost.erased a) : SteelGhost (ghost_ref a) opened emp (fun r -> ghost_vptr r) (requires fun _ -> True) (ensures fun _ r h1 -> ghost_sel r h1 == Ghost.reveal x)
[]
Steel.Reference.ghost_alloc
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
x: FStar.Ghost.erased a -> Steel.Effect.Atomic.SteelGhost (Steel.Reference.ghost_ref a)
{ "end_col": 3, "end_line": 489, "start_col": 19, "start_line": 486 }
Steel.Effect.SteelT
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ())
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) let write_pt #a #v r x =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ())
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "Steel.FractionalPermission.full_perm", "Steel.Reference.pts_to", "Steel.Memory.mem", "Prims.unit", "Steel.HigherReference.write", "FStar.Universe.raise_val", "FStar.Ghost.reveal" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a) : SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
[]
Steel.Reference.write_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> x: a -> Steel.Effect.SteelT Prims.unit
{ "end_col": 86, "end_line": 125, "start_col": 24, "start_line": 120 }
Steel.Effect.Atomic.SteelGhost
val ghost_readp (#a:Type0) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (Ghost.erased a) opened (ghost_vptrp r p) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (ghost_vptrp r p) == h1 (ghost_vptrp r p) /\ Ghost.reveal x == h1 (ghost_vptrp r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_readp r _ = let _ = elim_ghost_vptr r _ in let x = ghost_read_pt r in intro_ghost_vptr r _ x; x
val ghost_readp (#a:Type0) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (Ghost.erased a) opened (ghost_vptrp r p) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (ghost_vptrp r p) == h1 (ghost_vptrp r p) /\ Ghost.reveal x == h1 (ghost_vptrp r p)) let ghost_readp r _ =
true
null
false
let _ = elim_ghost_vptr r _ in let x = ghost_read_pt r in intro_ghost_vptr r _ x; x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Prims.unit", "Steel.Reference.intro_ghost_vptr", "Steel.Reference.ghost_read_pt", "Steel.Reference.elim_ghost_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r let ghost_free r = let _ = elim_ghost_vptr r _ in ghost_free_pt r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_readp (#a:Type0) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (Ghost.erased a) opened (ghost_vptrp r p) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (ghost_vptrp r p) == h1 (ghost_vptrp r p) /\ Ghost.reveal x == h1 (ghost_vptrp r p))
[]
Steel.Reference.ghost_readp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased a)
{ "end_col": 3, "end_line": 499, "start_col": 21, "start_line": 495 }
Steel.Effect.Atomic.SteelGhost
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) let elim_vptr (#a: Type) (#opened: inames) (r: ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) =
true
null
false
let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Prims.unit", "Steel.Effect.Atomic.change_slprop", "Steel.Reference.vptrp", "Steel.Reference.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.t_of", "FStar.Ghost.hide", "Steel.Effect.Common.normal", "Steel.Reference.elim_vptr_lemma", "Steel.Effect.Common.VUnit", "Steel.Reference.vptr'", "Steel.Effect.Atomic.gget", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p))
[]
Steel.Reference.elim_vptr
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased a)
{ "end_col": 5, "end_line": 297, "start_col": 3, "start_line": 295 }
Steel.Effect.Atomic.SteelGhost
val elim_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v
val elim_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) let elim_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) =
true
null
false
let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Prims.unit", "Steel.Effect.Atomic.change_slprop", "Steel.Reference.ghost_vptrp", "Steel.Reference.ghost_pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.t_of", "FStar.Ghost.hide", "Steel.Effect.Common.normal", "Steel.Reference.elim_ghost_vptr_lemma", "Steel.Effect.Common.VUnit", "Steel.Reference.ghost_vptr'", "Steel.Effect.Atomic.gget", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.eq2" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True)
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_ghost_vptr (#a: Type) (#opened: inames) (r: ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p))
[]
Steel.Reference.elim_ghost_vptr
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased a)
{ "end_col": 5, "end_line": 484, "start_col": 3, "start_line": 482 }
Steel.Effect.Atomic.SteelGhost
val ghost_share (#a:Type0) (#uses:_) (#p: perm) (r:ghost_ref a) : SteelGhost unit uses (ghost_vptrp r p) (fun _ -> ghost_vptrp r (half_perm p) `star` ghost_vptrp r (half_perm p)) (fun _ -> True) (fun h res h' -> h' (ghost_vptrp r (half_perm p)) == h (ghost_vptrp r p) )
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_share #a #_ #p r = let x = elim_ghost_vptr r p in ghost_share_pt r; intro_ghost_vptr r _ x; intro_ghost_vptr r _ x
val ghost_share (#a:Type0) (#uses:_) (#p: perm) (r:ghost_ref a) : SteelGhost unit uses (ghost_vptrp r p) (fun _ -> ghost_vptrp r (half_perm p) `star` ghost_vptrp r (half_perm p)) (fun _ -> True) (fun h res h' -> h' (ghost_vptrp r (half_perm p)) == h (ghost_vptrp r p) ) let ghost_share #a #_ #p r =
true
null
false
let x = elim_ghost_vptr r p in ghost_share_pt r; intro_ghost_vptr r _ x; intro_ghost_vptr r _ x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.Reference.ghost_ref", "Steel.Reference.intro_ghost_vptr", "Steel.FractionalPermission.half_perm", "Prims.unit", "Steel.Reference.ghost_share_pt", "FStar.Ghost.erased", "Steel.Reference.elim_ghost_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r let ghost_free r = let _ = elim_ghost_vptr r _ in ghost_free_pt r let ghost_readp r _ = let _ = elim_ghost_vptr r _ in let x = ghost_read_pt r in intro_ghost_vptr r _ x; x let ghost_write r x = let _ = elim_ghost_vptr r _ in ghost_write_pt r x; intro_ghost_vptr r _ x
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_share (#a:Type0) (#uses:_) (#p: perm) (r:ghost_ref a) : SteelGhost unit uses (ghost_vptrp r p) (fun _ -> ghost_vptrp r (half_perm p) `star` ghost_vptrp r (half_perm p)) (fun _ -> True) (fun h res h' -> h' (ghost_vptrp r (half_perm p)) == h (ghost_vptrp r p) )
[]
Steel.Reference.ghost_share
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 24, "end_line": 510, "start_col": 28, "start_line": 506 }
Steel.Effect.Atomic.SteelAtomic
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t) : SteelAtomic U32.t opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t) : SteelAtomic U32.t opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v) let atomic_read_pt_u32 #_ #p #v r =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.UInt32.t", "Steel.Reference.ref", "Steel.Effect.Atomic.return", "Steel.Reference.pts_to", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "Steel.Memory.mem", "FStar.Universe.downgrade_val", "Steel.HigherReference.atomic_read", "FStar.Ghost.reveal", "FStar.Ghost.hide", "FStar.Universe.raise_val" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t) : SteelAtomic U32.t opened (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[]
Steel.Reference.atomic_read_pt_u32
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref FStar.UInt32.t -> Steel.Effect.Atomic.SteelAtomic FStar.UInt32.t
{ "end_col": 11, "end_line": 211, "start_col": 35, "start_line": 205 }
Steel.Effect.Atomic.SteelGhostT
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ())
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v) let share_pt #a #uses #p #v r =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ())
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "Steel.FractionalPermission.half_perm", "FStar.Ghost.reveal", "Steel.Reference.pts_to", "Steel.Memory.mem", "Prims.unit", "Steel.HigherReference.share", "FStar.Ghost.hide", "FStar.Universe.raise_val" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a) : SteelGhostT unit uses (pts_to r p v) (fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
[]
Steel.Reference.share_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
{ "end_col": 87, "end_line": 137, "start_col": 31, "start_line": 132 }
Steel.Effect.Steel
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a (vptrp r p) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p))
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a (vptrp r p) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p)) let readp r _ =
true
null
false
let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Reference.ref", "Steel.FractionalPermission.perm", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Reference.vptrp", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Reference.intro_vptr", "Steel.Reference.read_pt", "FStar.Ghost.erased", "Steel.Reference.elim_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a (vptrp r p) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p))
[]
Steel.Reference.readp
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> p: Steel.FractionalPermission.perm -> Steel.Effect.Steel a
{ "end_col": 10, "end_line": 312, "start_col": 15, "start_line": 308 }
Steel.Effect.Steel
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v) let read_pt #a #p #v r =
true
null
false
let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Reference.pts_to", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "Steel.Memory.mem", "FStar.Universe.downgrade_val", "Steel.HigherReference.read", "FStar.Ghost.reveal", "FStar.Universe.raise_val" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : Steel a (pts_to r p v) (fun x -> pts_to r p x) (requires fun _ -> True) (ensures fun _ x _ -> x == Ghost.reveal v)
[]
Steel.Reference.read_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Steel a
{ "end_col": 11, "end_line": 106, "start_col": 24, "start_line": 100 }
Steel.Effect.Atomic.SteelGhost
val share (#a:Type0) (#uses:_) (#p: perm) (r:ref a) : SteelGhost unit uses (vptrp r p) (fun _ -> vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> True) (fun h _ h' -> h' (vptrp r (half_perm p)) == h (vptrp r p) )
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x
val share (#a:Type0) (#uses:_) (#p: perm) (r:ref a) : SteelGhost unit uses (vptrp r p) (fun _ -> vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> True) (fun h _ h' -> h' (vptrp r (half_perm p)) == h (vptrp r p) ) let share #a #_ #p r =
true
null
false
let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "Steel.Reference.ref", "Steel.Reference.intro_vptr", "Steel.FractionalPermission.half_perm", "Prims.unit", "Steel.Reference.share_pt", "FStar.Ghost.erased", "Steel.Reference.elim_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val share (#a:Type0) (#uses:_) (#p: perm) (r:ref a) : SteelGhost unit uses (vptrp r p) (fun _ -> vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> True) (fun h _ h' -> h' (vptrp r (half_perm p)) == h (vptrp r p) )
[]
Steel.Reference.share
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
{ "end_col": 18, "end_line": 323, "start_col": 22, "start_line": 319 }
Steel.Effect.Atomic.SteelGhost
val ghost_gather_gen (#a:Type0) (#uses:_) (r:ghost_ref a) (p0:perm) (p1:perm) : SteelGhost perm uses (ghost_vptrp r p0 `star` ghost_vptrp r p1) (fun res -> ghost_vptrp r res) (fun _ -> True) (fun h res h' -> res == sum_perm p0 p1 /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p0) /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p1) )
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ghost_gather_gen #a #_ r p0 p1 = let x1 = elim_ghost_vptr r p1 in let x0 = elim_ghost_vptr r p0 in ghost_gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_ghost_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1
val ghost_gather_gen (#a:Type0) (#uses:_) (r:ghost_ref a) (p0:perm) (p1:perm) : SteelGhost perm uses (ghost_vptrp r p0 `star` ghost_vptrp r p1) (fun res -> ghost_vptrp r res) (fun _ -> True) (fun h res h' -> res == sum_perm p0 p1 /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p0) /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p1) ) let ghost_gather_gen #a #_ r p0 p1 =
true
null
false
let x1 = elim_ghost_vptr r p1 in let x0 = elim_ghost_vptr r p0 in ghost_gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_ghost_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.Memory.inames", "Steel.Reference.ghost_ref", "Steel.FractionalPermission.perm", "Steel.FractionalPermission.sum_perm", "Prims.unit", "Steel.Reference.intro_ghost_vptr", "Steel.Reference.ghost_gather_pt", "FStar.Ghost.erased", "Steel.Reference.elim_ghost_vptr" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x) let write_pt #a #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let free_pt #a #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); H.free r let share_pt #a #uses #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); H.share r; rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()); rewrite_slprop (H.pts_to r (half_perm p) v') (pts_to r (half_perm p) v) (fun _ -> ()) let hide_raise_reveal (#a:Type) (v0:erased a) (v1:erased a) : Lemma (hide (U.raise_val (reveal v0)) == hide (U.raise_val (reveal v1)) <==> v0 == v1) [SMTPat (hide (U.raise_val (reveal v0))); SMTPat (hide (U.raise_val (reveal v1)))] = let u0 = hide (U.raise_val (reveal v0)) in let u1 = hide (U.raise_val (reveal v1)) in assert (U.downgrade_val (U.raise_val (reveal v0)) == U.downgrade_val (U.raise_val (reveal v1)) <==> v0 == v1) let gather_pt #a #uses #p0 #p1 #v0 #v1 r = let v0' = Ghost.hide (U.raise_val (Ghost.reveal v0)) in let v1' = Ghost.hide (U.raise_val (Ghost.reveal v1)) in rewrite_slprop (pts_to r p0 v0) (H.pts_to r p0 v0') (fun _ -> ()); rewrite_slprop (pts_to r p1 v1) (H.pts_to r p1 v1') (fun _ -> ()); let (u:unit{v0' == v1'}) = H.gather #_ #_ #p0 #p1 #v0' #v1' r in rewrite_slprop (H.pts_to r (sum_perm p0 p1) v0') (pts_to r (sum_perm p0 p1) v0) (fun _ -> ()); u let raise_equiv (#t:Type) (x y:t) : Lemma (U.raise_val x == U.raise_val y <==> x == y) = assert (U.downgrade_val (U.raise_val x) == x); assert (U.downgrade_val (U.raise_val y) == y) let downgrade_equiv (#t:Type) (x y:U.raise_t t) : Lemma (U.downgrade_val x == U.downgrade_val y <==> x == y) = assert (U.raise_val (U.downgrade_val x) == x); assert (U.raise_val (U.downgrade_val y) == y) let lift_eq (#t:eqtype) (x y:U.raise_t t) : b:bool{b <==> x==y} = downgrade_equiv x y; U.downgrade_val x = U.downgrade_val y let cas_action (#t:eqtype) (#uses:inames) (r:ref t) (v:Ghost.erased t) (v_old:t) (v_new:t) (frame:slprop) : MstTot (b:bool{b <==> (Ghost.reveal v == v_old)}) uses (pts_to_sl r full_perm v) (fun b -> if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v) frame (fun _ -> True) (fun _ _ _ -> True) = let hv = (Ghost.hide (U.raise_val (Ghost.reveal v))) in let b = H.cas_action #(U.raise_t t) (lift_eq #t) #uses r hv (U.raise_val v_old) (U.raise_val v_new) frame in assert (b <==> (Ghost.reveal hv == U.raise_val v_old)); assert (b <==> U.raise_val (Ghost.reveal v) == U.raise_val v_old); raise_equiv (Ghost.reveal v) v_old; b let atomic_read_pt_u32 #_ #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.atomic_read r in let v':U32.t = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v' let atomic_write_pt_u32 #_ #v r x = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r full_perm v) (H.pts_to r full_perm v') (fun _ -> ()); let x' = U.raise_val x in H.atomic_write r x'; rewrite_slprop (H.pts_to r full_perm (hide x')) (pts_to r full_perm x) (fun _ -> ()) let cas_pt_u32 #uses r v v_old v_new = let b = as_atomic_action (cas_action #U32.t #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b let cas_pt_bool #uses r v v_old v_new = let b = as_atomic_action (cas_action #bool #uses r v v_old v_new) in rewrite_slprop (to_vprop (if b then pts_to_sl r full_perm v_new else pts_to_sl r full_perm v)) (if b then pts_to r full_perm v_new else pts_to r full_perm v) (fun _ -> ()); return b (* Library for references with fractional permissions. Permissions need to be an index of the vprop ptr. It cannot be part of a selector, as it is not invariant when joining with a disjoint memory Using the value of the ref as a selector is ok because refs with fractional permissions all share the same value. Refs on PCM are more complicated, and likely not usable with selectors *) let ptrp r p = Mem.h_exists (pts_to_sl r p) val ptr_sel' (#a:Type0) (r: ref a) (p: perm) : selector' a (ptrp r p) let ptr_sel' #a r p = fun h -> id_elim_exists #a (pts_to_sl r p) h let ptr_sel_depends_only_on (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (Mem.join m0 m1)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (Mem.join m0 m1) let ptr_sel_depends_only_on_core (#a:Type0) (r:ref a) (p: perm) (m0:Mem.hmem (ptrp r p)) : Lemma (ptr_sel' r p m0 == ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (pts_to_sl r p) (core_mem m0)) in pts_to_witinv r p; elim_wi (pts_to_sl r p) x y (core_mem m0) let ptrp_sel r p = Classical.forall_intro_2 (ptr_sel_depends_only_on r p); Classical.forall_intro (ptr_sel_depends_only_on_core r p); ptr_sel' r p let ptrp_sel_interp #a r p m = pts_to_witinv r p let intro_ptrp_interp r p v m = intro_h_exists (reveal v) (pts_to_sl r p) m let intro_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (pts_to_sl r p v) m) (ensures interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (pts_to_sl r p) m; pts_to_witinv r p let elim_vptr_lemma (#a:Type) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ptrp r p) m /\ ptrp_sel r p m == reveal v) (ensures interp (pts_to_sl r p v) m) = Mem.elim_h_exists (pts_to_sl r p) m; pts_to_witinv r p let intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a) : SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v) = change_slprop_2 (pts_to r p v) (vptrp r p) v (intro_vptr_lemma r p v) let elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) : SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (vptrp r p)) = let v = gget (vptrp r p) in change_slprop (vptrp r p) (pts_to r p v) v () (elim_vptr_lemma r p v); v let malloc x = let r = alloc_pt x in intro_vptr r _ (hide x); return r let free r = let _ = elim_vptr r _ in free_pt r let readp r _ = let _ = elim_vptr r _ in let x = read_pt r in intro_vptr r _ x; return x let write r x = let _ = elim_vptr r _ in write_pt r x; intro_vptr r _ x let share #a #_ #p r = let x = elim_vptr r p in share_pt r; intro_vptr r _ x; intro_vptr r _ x let gather_gen #a #_ r p0 p1 = let x1 = elim_vptr r p1 in let x0 = elim_vptr r p0 in gather_pt #_ #_ #p0 #p1 #x0 #x1 r; intro_vptr r (sum_perm p0 p1) x0; sum_perm p0 p1 let gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a) : SteelGhost unit uses (vptrp r (half_perm p) `star` vptrp r (half_perm p)) (fun _ -> vptrp r p) (fun _ -> True) (fun h _ h' -> h' (vptrp r p) == h (vptrp r (half_perm p)) ) = let _ = gather_gen r _ _ in change_equal_slprop (vptrp r _) (vptrp r p) (*** Lemmas on references *) let vptrp_not_null #opened #a r p = change_slprop_rel (vptrp r p) (vptrp r p) (fun x y -> x == y /\ is_null r == false) (fun m -> pts_to_not_null r p (ptrp_sel r p m) m) (*** Ghost pointers *) (*** GHOST REFERENCES ***) let ghost_ref a = H.ghost_ref (U.raise_t a) [@__reduce__] let ghost_pts_to_sl #a r p x = H.ghost_pts_to_sl #(U.raise_t a) r p (U.raise_val x) let ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm) : Lemma (is_witness_invariant (ghost_pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (ghost_pts_to_sl r p x) m /\ interp (ghost_pts_to_sl r p y) m)) (ensures (x == y)) = H.ghost_pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) [@@__reduce__] let raise_erased (#a:Type0) (x:erased a) : erased (U.raise_t u#0 u#1 a) = Ghost.hide (U.raise_val (Ghost.reveal x)) let ghost_alloc_pt (#a:Type) (#u:_) (x:erased a) : SteelGhostT (ghost_ref a) u emp (fun r -> ghost_pts_to r full_perm x) = H.ghost_alloc (raise_erased x) let ghost_free_pt r = H.ghost_free r let ghost_share_pt (#a:Type) (#u:_) (#p:perm) (#x:erased a) (r:ghost_ref a) = H.ghost_share #_ #_ #_ #(raise_erased x) r let ghost_gather_pt (#a:Type) (#u:_) (#p0 #p1:perm) (#x0 #x1:erased a) (r:ghost_ref a) : SteelGhost unit u (ghost_pts_to r p0 x0 `star` ghost_pts_to r p1 x1) (fun _ -> ghost_pts_to r (sum_perm p0 p1) x0) (requires fun _ -> true) (ensures fun _ _ _ -> x0 == x1) = H.ghost_gather r let ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a) : SteelGhost unit u (ghost_pts_to r p v0 `star` ghost_pts_to r q v1) (fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0) (requires fun _ -> True) (ensures fun _ _ _ -> v0 == v1) = H.ghost_pts_to_injective_eq #_ #_ #p #q r (raise_erased v0) (raise_erased v1) let ghost_pts_to_perm r = H.ghost_pts_to_perm r let ghost_read_pt #a #u #p #v r = let x = H.ghost_read r in let x' = hide (U.downgrade_val (reveal x)) in rewrite_slprop (H.ghost_pts_to r p x) (ghost_pts_to r p x') (fun _ -> ()); x' let ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a) : SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> ghost_pts_to r full_perm x) = H.ghost_write r (raise_erased x) (* Selector version of ghost pointers *) let ghost_ptrp r p = Mem.h_exists (ghost_pts_to_sl r p) val ghost_ptr_sel' (#a:Type0) (r: ghost_ref a) (p: perm) : selector' a (ghost_ptrp r p) let ghost_ptr_sel' #a r p = fun h -> id_elim_exists #a (ghost_pts_to_sl r p) h let ghost_ptr_sel_depends_only_on (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) (m1:mem{disjoint m0 m1}) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (Mem.join m0 m1)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (Mem.join m0 m1)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (Mem.join m0 m1) let ghost_ptr_sel_depends_only_on_core (#a:Type0) (r:ghost_ref a) (p: perm) (m0:Mem.hmem (ghost_ptrp r p)) : Lemma (ghost_ptr_sel' r p m0 == ghost_ptr_sel' r p (core_mem m0)) = let x = reveal (id_elim_exists #a (ghost_pts_to_sl r p) m0) in let y = reveal (id_elim_exists #a (ghost_pts_to_sl r p) (core_mem m0)) in ghost_pts_to_witinv r p; elim_wi (ghost_pts_to_sl r p) x y (core_mem m0) let ghost_ptrp_sel r p = Classical.forall_intro_2 (ghost_ptr_sel_depends_only_on r p); Classical.forall_intro (ghost_ptr_sel_depends_only_on_core r p); ghost_ptr_sel' r p let ghost_ptrp_sel_interp #a r p m = ghost_pts_to_witinv r p let intro_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_pts_to_sl r p v) m) (ensures interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) = Mem.intro_h_exists (reveal v) (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let elim_ghost_vptr_lemma (#a:Type) (r:ghost_ref a) (p: perm) (v:erased a) (m:mem) : Lemma (requires interp (ghost_ptrp r p) m /\ ghost_ptrp_sel r p m == reveal v) (ensures interp (ghost_pts_to_sl r p v) m) = Mem.elim_h_exists (ghost_pts_to_sl r p) m; ghost_pts_to_witinv r p let intro_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) (v:erased a) : SteelGhost unit opened (ghost_pts_to r p v) (fun _ -> ghost_vptrp r p) (requires fun _ -> True) (ensures fun _ _ h1 -> h1 (ghost_vptrp r p) == reveal v) = change_slprop_2 (ghost_pts_to r p v) (ghost_vptrp r p) v (intro_ghost_vptr_lemma r p v) let elim_ghost_vptr (#a:Type) (#opened:inames) (r:ghost_ref a) (p: perm) : SteelGhost (erased a) opened (ghost_vptrp r p) (fun v -> ghost_pts_to r p v) (requires fun _ -> True) (ensures fun h0 v _ -> reveal v == h0 (ghost_vptrp r p)) = let v = gget (ghost_vptrp r p) in change_slprop (ghost_vptrp r p) (ghost_pts_to r p v) v () (elim_ghost_vptr_lemma r p v); v let ghost_alloc x = let r = ghost_alloc_pt x in intro_ghost_vptr r _ x; r let ghost_free r = let _ = elim_ghost_vptr r _ in ghost_free_pt r let ghost_readp r _ = let _ = elim_ghost_vptr r _ in let x = ghost_read_pt r in intro_ghost_vptr r _ x; x let ghost_write r x = let _ = elim_ghost_vptr r _ in ghost_write_pt r x; intro_ghost_vptr r _ x let ghost_share #a #_ #p r = let x = elim_ghost_vptr r p in ghost_share_pt r; intro_ghost_vptr r _ x; intro_ghost_vptr r _ x
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ghost_gather_gen (#a:Type0) (#uses:_) (r:ghost_ref a) (p0:perm) (p1:perm) : SteelGhost perm uses (ghost_vptrp r p0 `star` ghost_vptrp r p1) (fun res -> ghost_vptrp r res) (fun _ -> True) (fun h res h' -> res == sum_perm p0 p1 /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p0) /\ h' (ghost_vptrp r res) == h (ghost_vptrp r p1) )
[]
Steel.Reference.ghost_gather_gen
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
r: Steel.Reference.ghost_ref a -> p0: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> Steel.Effect.Atomic.SteelGhost Steel.FractionalPermission.perm
{ "end_col": 16, "end_line": 517, "start_col": 36, "start_line": 512 }
Steel.Effect.SteelT
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v)
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let read_refine_pt #a #p q r = Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v:a) -> pts_to r p v `star` q v); exists_cong (fun (v:U.raise_t a) -> pts_to r p (U.downgrade_val v) `star` q (U.downgrade_val v)) (fun (v:U.raise_t a) -> H.pts_to r p v `star` U.lift_dom q v); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop (H.pts_to r p (hide x) `star` U.lift_dom q x) (pts_to r p (U.downgrade_val x) `star` q (U.downgrade_val x)) (fun _ -> ()); return (U.downgrade_val x)
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v) let read_refine_pt #a #p q r =
true
null
false
Classical.forall_intro_2 reveal_equiv; lift_exists (fun (v: a) -> (pts_to r p v) `star` (q v)); exists_cong (fun (v: U.raise_t a) -> (pts_to r p (U.downgrade_val v)) `star` (q (U.downgrade_val v)) ) (fun (v: U.raise_t a) -> (H.pts_to r p v) `star` (U.lift_dom q v)); let x = H.read_refine (U.lift_dom q) r in rewrite_slprop ((H.pts_to r p (hide x)) `star` (U.lift_dom q x)) ((pts_to r p (U.downgrade_val x)) `star` (q (U.downgrade_val x))) (fun _ -> ()); return (U.downgrade_val x)
{ "checked_file": "Steel.Reference.fst.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Reference.fst" }
[]
[ "Steel.FractionalPermission.perm", "Steel.Effect.Common.vprop", "Steel.Reference.ref", "Steel.Effect.Atomic.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.VStar", "Steel.Reference.pts_to", "FStar.Universe.downgrade_val", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.star", "Steel.HigherReference.pts_to", "FStar.Universe.raise_t", "FStar.Universe.lift_dom", "Steel.Memory.mem", "Steel.HigherReference.read_refine", "Steel.Effect.Atomic.exists_cong", "Steel.Effect.Atomic.lift_exists", "FStar.Classical.forall_intro_2", "Prims.l_iff", "Steel.Effect.Common.equiv", "Steel.Memory.equiv", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.reveal_equiv" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Reference open FStar.Ghost open Steel.Memory open Steel.Effect.Atomic open Steel.Effect module Mem = Steel.Memory module H = Steel.HigherReference module U = FStar.Universe #set-options "--ide_id_info_off" let ref a = H.ref (U.raise_t a) let null #a = H.null #(U.raise_t a) let is_null #a r = H.is_null #(U.raise_t a) r let pts_to_sl r p v = H.pts_to_sl r p (U.raise_val v) val raise_val_inj (#a:Type) (x y:a) : Lemma (requires U.raise_val x == U.raise_val y) (ensures x == y) let raise_val_inj x y = U.downgrade_val_raise_val x; U.downgrade_val_raise_val y let pts_to_ref_injective (#a: Type u#0) (r: ref a) (p0 p1:perm) (v0 v1:a) (m:mem) : Lemma (requires interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m) (ensures v0 == v1) = let v0' = U.raise_val v0 in let v1' = U.raise_val v1 in H.pts_to_ref_injective r p0 p1 v0' v1' m; raise_val_inj v0 v1 let pts_to_not_null (#a:Type u#0) (x:ref a) (p:perm) (v:a) (m:mem) : Lemma (requires interp (pts_to_sl x p v) m) (ensures x =!= null) = let v = U.raise_val v in H.pts_to_not_null #(U.raise_t a) x p v m // let pts_to_not_null' (#a:Type u#0) // (x:ref a) // (p:perm) // (v: erased a) // (m:mem) // (m1:mem{disjoint m m1}) // : Lemma (requires interp (pts_to_sl x p v) m) // (ensures interp (pts_to_sl x p v) (Mem.join m m1)) // = () let pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p)) = let aux (x y : a) (m:mem) : Lemma (requires (interp (pts_to_sl r p x) m /\ interp (pts_to_sl r p y) m)) (ensures (x == y)) = H.pts_to_witinv r p; raise_val_inj x y in Classical.forall_intro_3 (fun x y -> Classical.move_requires (aux x y)) let pts_to_injective_eq #a #opened #p0 #p1 #v0 #v1 r = extract_info_raw (pts_to r p0 v0 `star` pts_to r p1 v1) (v0 == v1) (fun m -> pts_to_ref_injective r p0 p1 v0 v1 m); rewrite_slprop (pts_to r p1 v1) (pts_to r p1 v0) (fun _ -> ()) let alloc_pt x = let r = H.alloc (U.raise_val x) in rewrite_slprop (H.pts_to r full_perm (U.raise_val x)) (pts_to r full_perm x) (fun _ -> ()); return r let read_pt #a #p #v r = let v' = Ghost.hide (U.raise_val (Ghost.reveal v)) in rewrite_slprop (pts_to r p v) (H.pts_to r p v') (fun _ -> ()); let x = H.read r in let v':a = U.downgrade_val x in rewrite_slprop (H.pts_to r p (hide x)) (pts_to r p v') (fun _ -> ()); return v'
false
false
Steel.Reference.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a) : SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v)) (fun v -> pts_to r p v `star` q v)
[]
Steel.Reference.read_refine_pt
{ "file_name": "lib/steel/Steel.Reference.fst", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
q: (_: a -> Steel.Effect.Common.vprop) -> r: Steel.Reference.ref a -> Steel.Effect.SteelT a
{ "end_col": 28, "end_line": 118, "start_col": 2, "start_line": 109 }