File size: 25,136 Bytes
6c4307c 8982466 6c4307c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
## Dataset Summary
Original source - [https://github.com/microsoft/OpenKP](https://github.com/microsoft/OpenKP)
## Dataset Structure
### Data Fields
- **id**: unique identifier of the document.
- **document**: Whitespace separated list of words in the document.
- **doc_bio_tags**: BIO tags for each word in the document. B stands for the beginning of a keyphrase and I stands for inside the keyphrase. O stands for outside the keyphrase and represents the word that isn't a part of the keyphrase at all.
- **extractive_keyphrases**: List of all the present keyphrases.
- **abstractive_keyphrase**: List of all the absent keyphrases.
### Data Splits
|Split| #datapoints |
|--|--|
| Train | 134894 |
| Test | 6614 |
| Validation | 6616 |
## Usage
### Full Dataset
```python
from datasets import load_dataset
# get entire dataset
dataset = load_dataset("midas/openkp", "raw")
# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
```
**Output**
```bash
Sample from training data split
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
Tokenized Document: ['Star', 'Trek', 'Discovery', 'Season', '1', 'Director', 'NA', 'Actors', 'Jason', 'Isaacs', 'Doug', 'Jones', 'Shazad', 'Latif', 'Sonequa', 'MartinGreen', 'Genres', 'SciFi', 'Country', 'USA', 'Release', 'Year', '2017', 'Duration', 'NA', 'Synopsis', 'Ten', 'years', 'before', 'Kirk', 'Spock', 'and', 'the', 'Enterprise', 'the', 'USS', 'Discovery', 'discovers', 'new', 'worlds', 'and', 'lifeforms', 'as', 'one', 'Starfleet', 'officer', 'learns', 'to', 'understand', 'all', 'things', 'alien', 'YOU', 'ARE', 'WATCHING', 'Star', 'Trek', 'Discovery', 'Season', '1', '000', '000', 'Loaded', 'Progress', 'The', 'video', 'keeps', 'buffering', 'Just', 'pause', 'it', 'for', '510', 'minutes', 'then', 'continue', 'playing', 'Share', 'Star', 'Trek', 'Discovery', 'Season', '1', 'movie', 'to', 'your', 'friends', 'Share', 'to', 'support', 'Putlocker', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', 'Version', '1', 'Server', 'Mega', 'Play', 'Movie', 'Version', '2', 'Server', 'TheVideo', 'Link', '1', 'Play', 'Movie', 'Version', '3', 'Server', 'TheVideo', 'Link', '2', 'Play', 'Movie', 'Version', '4', 'Server', 'TheVideo', 'Link', '3', 'Play', 'Movie', 'Version', '5', 'Server', 'TheVideo', 'Link', '4', 'Play', 'Movie', 'Version', '6', 'Server', 'NowVideo', 'Play', 'Movie', 'Version', '7', 'Server', 'NovaMov', 'Play', 'Movie', 'Version', '8', 'Server', 'VideoWeed', 'Play', 'Movie', 'Version', '9', 'Server', 'MovShare', 'Play', 'Movie', 'Version', '10', 'Server', 'CloudTime', 'Play', 'Movie', 'Version', '11', 'Server', 'VShare', 'Link', '1', 'Play', 'Movie', 'Version', '12', 'Server', 'VShare', 'Link', '2', 'Play', 'Movie', 'Version', '13', 'Server', 'VShare', 'Link', '3', 'Play', 'Movie', 'Version', '14', 'Server', 'VShare', 'Link', '4', 'Play', 'Movie', 'Version', '15', 'Other', 'Link', '1', 'Play', 'Movie', 'Version', '16', 'Other', 'Link', '2', 'Play', 'Movie', 'Version', '17', 'Other', 'Link', '3', 'Play', 'Movie', 'Version', '18', 'Other', 'Link', '4', 'Play', 'Movie', 'Version', '19', 'Other', 'Link', '5', 'Play', 'Movie', 'Version', '20', 'Other', 'Link', '6', 'Play', 'Movie', 'Version', '21', 'Other', 'Link', '7', 'Play', 'Movie', 'Version', '22', 'Other', 'Link', '8', 'Play', 'Movie', 'Version', '23', 'Other', 'Link', '9', 'Play', 'Movie', 'Version', '24', 'Other', 'Link', '10', 'Play', 'Movie', 'Version', '25', 'Other', 'Link', '11', 'Play', 'Movie', 'Version', '26', 'Other', 'Link', '12', 'Play', 'Movie', 'Version', '27', 'Other', 'Link', '13', 'Play', 'Movie', 'Version', '28', 'Other', 'Link', '14', 'Play', 'Movie', 'Version', '29', 'Other', 'Link', '15', 'Play', 'Movie']
Document BIO Tags: ['B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
Extractive/present Keyphrases: ['star trek', 'jason isaacs', 'doug jones']
Abstractive/absent Keyphrases: []
-----------
Sample from validation data split
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
Tokenized Document: ['Home', 'Keygen', 'NBA', '2K17', 'nba', '2k17', 'activation', 'key', 'generator', 'nba', '2k17', 'beta', 'keygen', 'free', 'nba', '2k17', 'cd', 'codes', 'free', 'nba', '2k17', 'cd', 'download', 'nba', '2k17', 'cd', 'generator', 'no', 'survey', 'nba', '2k17', 'cd', 'key', 'download', 'without', 'survey', 'NBA', '2K17', 'CD', 'Key', 'Generator', 'No', 'Survey', 'PC', 'PS34', 'Xbox', '360ONE', 'NBA', '2K17', 'CD', 'Key', 'Generator', 'No', 'Survey', 'PC', 'PS34', 'Xbox', '360ONE', 'Penulis', 'Hacker', 'Stock', 'on', 'Friday', '9', 'September', '2016', '1253', 'NBA', '2K17', 'CD', 'Key', 'Generator', 'No', 'Survey', 'PC', 'PS34', 'Xbox', '360ONE', 'Hello', 'everybody', 'welcome', 'on', 'our', 'web', 'site', 'HackerStockcom', 'these', 'days', 'weve', 'a', 'replacement', 'Key', 'Generator', 'for', 'you', 'that', 'is', 'known', 'as', 'NBA', '2K17', 'CD', 'Key', 'Generator', 'No', 'Survey', 'PC', 'PS34', 'Xbox', '360ONE', 'youll', 'be', 'ready', 'to', 'get', 'the', 'game', 'without', 'charge', 'this', 'keygen', 'will', 'find', 'unlimited', 'Activation', 'Codes', 'for', 'you', 'on', 'any', 'platform', 'Steam', 'or', 'Origin', 'on', 'computer', 'or', 'why', 'not', 'PlayStation', 'and', 'Xbox', 'Weve', 'ready', 'one', 'thing', 'special', 'for', 'all', 'NBA', 'fans', 'and', 'players', 'a', 'special', 'tool', 'that', 'were', 'certain', 'that', 'you', 'just', 'will', 'agree', 'Our', 'tool', 'may', 'generate', 'tons', 'of', 'key', 'codes', 'for', 'laptop', 'PlayStation', '3', 'PlayStation', '4', 'Xbox', '360', 'and', 'Xbox', 'ONE', 'So', 'youll', 'get', 'early', 'access', 'to', 'the', 'current', 'game', 'through', 'our', 'key', 'generator', 'for', 'NBA', '2K17', 'simply', 'with', 'few', 'clicks', 'This', 'tool', 'will', 'generate', 'over', '800', '000', 'key', 'codes', 'for', 'various', 'platforms', 'The', 'key', 'code', 'is', 'valid', 'and', 'youll', 'be', 'ready', 'to', 'try', 'it', 'and', 'be', 'able', 'to', 'play', 'NBA', '2K17', 'without', 'charge', 'Our', 'serial', 'key', 'generator', 'tool', 'is', 'NBA', '2K17', 'CD', 'Key', 'Generator', 'No', 'Survey', 'PC', 'PS34', 'Xbox', '360ONE', 'Instructions', 'using', 'the', 'NBA', '2K17', 'CD', 'Key', 'Generator', '2017', 'is', 'quick', 'and', 'easy', 'First', 'just', 'download', 'the', 'exe', 'file', 'and', 'install', 'it', 'on', 'your', 'computer', 'After', 'running', 'the', 'program', 'select', 'the', 'platform', 'on', 'which', 'you', 'want', 'to', 'play', 'NBA', '2K17', 'Next', 'click', 'the', 'GENERATE', 'button', 'This', 'will', 'produce', 'an', 'alphanumeric', 'code', 'also', 'known', 'as', 'your', 'product', 'key', 'You', 'will', 'use', 'it', 'to', 'validate', 'the', 'authenticity', 'of', 'your', 'NBA', '2K17', 'game', 'Now', 'copy', 'and', 'paste', 'the', 'product', 'key', 'onto', 'the', 'serial', 'number', 'window', 'prompt', 'of', 'your', 'NBA', '2K17', 'software', 'You', 'will', 'gain', 'access', 'to', 'NBA', '2K17', 'Finally', 'enjoy', 'your', 'game', 'We', 'designed', 'this', 'NBA', '2K17', 'game', 'key', 'generator', 'to', 'the', 'best', 'of', 'our', 'abilities', 'We', 'truly', 'hope', 'that', 'you', 'take', 'advantage', 'of', 'its', 'features', 'to', 'fully', 'enjoy', 'your', 'NBA', '2K17', 'Please', 'let', 'us', 'know', 'if', 'you', 'encounter', 'any', 'problems', 'with', 'our', 'software', 'We', 'would', 'love', 'to', 'help', 'you', 'out', 'NBA', '2K17', 'nba', '2k17', 'activation', 'key', 'generator', 'nba', '2k17', 'beta', 'keygen', 'free', 'nba', '2k17', 'cd', 'codes', 'free', 'nba', '2k17', 'cd', 'download', 'nba', '2k17', 'cd', 'generator', 'no', 'survey', 'nba', '2k17', 'cd', 'key', 'download', 'without', 'survey', 'nba', '2k17', 'cd', 'key', 'free', 'download', 'nba', '2k17', 'cd', 'key', 'free', 'online', 'nba', '2k17', 'cd', 'key', 'generator', 'no', 'survey', 'nba', '2k17', 'cd', 'key', 'pc', 'download', 'nba', '2k17', 'cd', 'key', 'ps4', 'free', 'download', 'nba', '2k17', 'cd', 'key', 'xbox', 'free', 'download', 'nba', '2k17', 'cd', 'keyexe', 'no', 'survey', 'nba', '2k17', 'crack', 'version', 'download', 'nba', '2k17', 'download', '2016', 'nba', '2k17', 'download', 'for', 'pc', '2016', 'nba', '2k17', 'download', 'full', 'crack', 'nba', 'Posted', 'by', 'Hacker', 'Stock', 'at', '1253', 'Email', 'This', 'BlogThis', 'Labels', 'Keygen', 'NBA', '2K17', 'nba', '2k17', 'activation', 'key', 'generator', 'nba', '2k17', 'beta', 'keygen', 'free', 'nba', '2k17', 'cd', 'codes', 'free', 'nba', '2k17', 'cd', 'download', 'nba', '2k17', 'cd', 'generator', 'no', 'survey', 'nba', '2k17', 'cd', 'key', 'download', 'without', 'survey', 'Older', 'Post', 'Home', 'Subscribe', 'to', 'Post', 'Comments', 'Atom']
Document BIO Tags: ['O', 'O', 'B', 'I', 'B', 'I', 'O', 'B', 'I', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'B', 'I', 'O', 'B', 'I', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'B', 'I', 'B', 'I', 'O', 'B', 'I', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'B', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
Extractive/present Keyphrases: ['nba 2k17', 'key generator', 'xbox']
Abstractive/absent Keyphrases: []
-----------
Sample from test data split
Fields in the sample: ['id', 'document', 'doc_bio_tags', 'extractive_keyphrases', 'abstractive_keyphrases', 'other_metadata']
Tokenized Document: ['KSLI', '1280', 'AM', 'LATEST', 'POSTS', 'Scotty', 'McCreery', 'and', 'Wife', 'Welcome', 'New', 'Addition', 'to', 'the', 'Family', 'The', 'McCreerys', 'have', 'an', 'announcement', 'to', 'share', 'with', 'fansthe', 'family', 'is', 'getting', 'bigger', 'Wendy', 'Hermanson', '13', 'hours', 'ago', 'Kane', 'Brown', 'Serenades', 'Fans', 'With', 'Michael', 'Jackson', 'Hit', 'Watch', 'Brown', 'dusted', 'off', 'an', '80s', 'gem', 'to', 'post', 'on', 'social', 'media', 'and', 'put', 'smiles', 'on', 'the', 'faces', 'of', 'his', 'followers', 'Wendy', 'Hermanson', '20', 'hours', 'ago', 'Dolly', 'Parton', 'Scores', 'Golden', 'Globe', 'Nod', 'for', 'Girl', 'in', 'the', 'Movies', 'Congratulations', 'This', 'is', 'her', 'sixth', 'nomination', 'Sterling', 'Whitaker', '21', 'hours', 'ago', 'Remember', 'When', 'Johnny', 'Cash', 'Attacked', 'Homer', 'Simpson', 'It', 'was', 'one', 'of', 'the', 'coolest', 'guest', 'appearances', 'in', 'the', 'history', 'of', 'the', 'show', 'Sterling', 'Whitaker', '2', 'days', 'ago', 'Remember', 'Which', 'Country', 'Star', 'Murdered', 'His', 'Wife', 'The', 'career', 'of', 'one', 'of', 'country', 'musics', 'most', 'successful', 'early', 'stars', 'was', 'derailed', 'after', 'he', 'was', 'convicted', 'of', 'murdering', 'his', 'wife', 'Sterling', 'Whitaker', '2', 'days', 'ago', 'William', 'Shatner', 'to', 'Make', 'Grand', 'Ole', 'Opry', 'Debut', 'Hes', 'appearing', 'alongside', 'a', 'legendary', 'country', 'musician', 'Sterling', 'Whitaker', '2', 'days', 'ago', 'Remember', 'Who', 'First', 'Recorded', 'Garths', 'The', 'Thunder', 'Rolls', 'Have', 'you', 'ever', 'heard', 'the', 'extra', 'verse', 'Sterling', 'Whitaker', '2', 'days', 'ago', 'Danielle', 'Bradberys', 'Cover', 'of', 'Post', 'Malones', 'Psycho', 'Is', 'a', 'Stunner', 'Danielle', 'Bradbery', 'is', 'rounding', 'out', 'her', 'Yours', 'Truly', '2018', 'covers', 'project', 'by', 'sharing', 'her', 'take', 'on', 'rapper', 'Post', 'Malones', 'hit', 'Psycho', 'Angela', 'Stefano', '2', 'days', 'ago', 'Enjoy', 'Wild', 'Game', 'at', 'the', 'Texas', 'Wild', 'Bunch', 'Bonanza', 'Cook', 'Off', 'Its', 'time', 'for', 'the', 'Texas', 'Wild', 'Bunch', 'Bonanza', 'Cook', 'Off', 'and', 'Auction', 'All', 'attendees', 'get', 'to', 'sample', 'everything', 'from', 'deer', 'to', 'elk', 'to', 'bacon', 'wrapped', 'jalapeno', 'poppers', 'Rudy', 'Fernandez', '2', 'days', 'ago', 'Kid', 'Rocks', '20Foot', 'Butt', 'Bar', 'Sign', 'Gets', 'Approved', 'in', 'Nashville', 'The', 'crazy', 'sign', 'featuring', 'a', 'womans', 'rear', 'end', 'caused', 'a', 'swirl', 'of', 'discussion', 'Wendy', 'Hermanson', '2', 'days', 'ago', 'Remember', 'When', 'Dolly', 'Parton', 'Surprised', 'Reba', 'McEntire', 'on', 'the', 'Opry', 'Shes', 'made', 'so', 'many', 'special', 'memories', 'on', 'the', 'Opry', 'stage', 'Sterling', 'Whitaker', '3', 'days', 'ago', 'Chris', 'Young', 'Takes', 'on', 'the', 'Hag', 'With', 'Silver', 'Wings', 'Cover', 'Watch', 'In', 'his', 'new', 'single', 'Chris', 'Young', 'proudly', 'proclaims', 'that', 'he', 'was', 'raised', 'on', 'country', 'and', 'he', 'can', 'prove', 'it', 'Angela', 'Stefano', '3', 'days', 'ago', 'The', 'Tractors', 'Guitarist', 'Steve', 'Ripley', 'Dead', 'at', '69', 'Rest', 'in', 'peace', 'Steve', 'Carena', 'Liptak', '3', 'days', 'ago', 'Danielle', 'Bradbery', 'Rounds', 'Out', 'Yours', 'Truly', '2018', 'With', 'Psycho', 'The', 'final', 'third', 'of', 'Bradberys', 'Yours', 'Truly', '2018', 'tribute', 'project', 'is', 'here', 'Carena', 'Liptak', '3', 'days', 'ago', 'Load', 'More', 'Articles', 'Country', 'Music', 'News', 'Kane', 'Brown', 'Serenades', 'Fans', 'With', 'Michael', 'Jackson', 'Hit', 'Watch', 'Scotty', 'McCreery', 'and', 'Wife', 'Welcome', 'New', 'Addition', 'to', 'the', 'Family', 'Meet', 'the', 'Staff', 'Rudy', 'Fernandez', 'Shay', 'Hill', 'Chaz', 'Frank', 'Pain', 'Classic', 'Country', '1280', 'on', 'Facebook', 'Abilene', 'TX', 'January', '7', '2019', '70000', 'AM', 'PST', 'January', '7', '2019', '70000', 'AM', 'PST', 'January', '7', '2019', '70000', 'AM', 'PSTth', '62', 'Clear', '71', '42', 'view', 'forecast', 'VIP', 'Contests', 'New', 'Year', 'New', 'You', '100', 'Amazon', 'Gift', 'Card', 'Small', 'Business', 'Solutions', 'Devote', 'more', 'time', 'to', 'running', 'your', 'business', 'Engage', 'your', 'clients', 'across', 'multiple', 'platforms', 'Reach', 'more', 'customers', 'than', 'ever', 'before', 'Get', 'an', 'Edge', 'on', 'the', 'Competition', 'Today', 'KSLIs', 'Daily', 'Deal', 'Certificate', 'for', 'a', 'Rhythm', 'USA', 'Clock', 'From', 'Jewels', 'of', 'Time']
Document BIO Tags: ['B', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']
Extractive/present Keyphrases: ['ksli 1280 am']
Abstractive/absent Keyphrases: []
-----------
```
### Keyphrase Extraction
```python
from datasets import load_dataset
# get the dataset only for keyphrase extraction
dataset = load_dataset("midas/openkp", "extraction")
print("Samples for Keyphrase Extraction")
# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Document BIO Tags: ", train_sample["doc_bio_tags"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Document BIO Tags: ", validation_sample["doc_bio_tags"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Document BIO Tags: ", test_sample["doc_bio_tags"])
print("\n-----------\n")
```
### Keyphrase Generation
```python
# get the dataset only for keyphrase generation
dataset = load_dataset("midas/openkp", "generation")
print("Samples for Keyphrase Generation")
# sample from the train split
print("Sample from training data split")
train_sample = dataset["train"][0]
print("Fields in the sample: ", [key for key in train_sample.keys()])
print("Tokenized Document: ", train_sample["document"])
print("Extractive/present Keyphrases: ", train_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", train_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the validation split
print("Sample from validation data split")
validation_sample = dataset["validation"][0]
print("Fields in the sample: ", [key for key in validation_sample.keys()])
print("Tokenized Document: ", validation_sample["document"])
print("Extractive/present Keyphrases: ", validation_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", validation_sample["abstractive_keyphrases"])
print("\n-----------\n")
# sample from the test split
print("Sample from test data split")
test_sample = dataset["test"][0]
print("Fields in the sample: ", [key for key in test_sample.keys()])
print("Tokenized Document: ", test_sample["document"])
print("Extractive/present Keyphrases: ", test_sample["extractive_keyphrases"])
print("Abstractive/absent Keyphrases: ", test_sample["abstractive_keyphrases"])
print("\n-----------\n")
```
## Citation Information
```
@inproceedings{Xiong2019OpenDW,
title={Open Domain Web Keyphrase Extraction Beyond Language Modeling},
author={Lee Xiong and Chuan Hu and Chenyan Xiong and Daniel Fernando Campos and Arnold Overwijk},
booktitle={EMNLP},
year={2019}
}
```
## Contributions
Thanks to [@debanjanbhucs](https://github.com/debanjanbhucs), [@dibyaaaaax](https://github.com/dibyaaaaax) and [@ad6398](https://github.com/ad6398) for adding this dataset
|