File size: 16,492 Bytes
2de4a2f
cb40455
d476a52
 
2de4a2f
 
 
 
 
 
 
 
 
 
 
 
b0447c0
 
 
 
 
 
 
0eb69bd
b0447c0
0eb69bd
b0447c0
 
2de4a2f
 
 
 
 
 
 
f242074
2de4a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f242074
2de4a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
5658a7a
 
 
 
 
 
 
 
 
 
 
 
2de4a2f
 
 
 
5658a7a
 
 
 
 
 
 
 
 
 
 
 
2de4a2f
 
 
 
5658a7a
 
 
 
 
 
 
 
 
 
 
 
2de4a2f
 
 
 
5658a7a
 
 
 
 
 
 
 
 
 
 
 
b0447c0
2de4a2f
b0447c0
2de4a2f
b0447c0
2de4a2f
b0447c0
2de4a2f
b0447c0
2de4a2f
5658a7a
 
b0447c0
2de4a2f
5658a7a
 
 
 
 
 
2de4a2f
 
 
 
 
 
 
 
 
 
5658a7a
 
2de4a2f
 
5658a7a
 
 
 
 
 
2de4a2f
 
 
 
 
 
 
 
 
 
5658a7a
 
2de4a2f
 
5658a7a
 
 
 
 
 
b0447c0
 
 
 
 
 
 
 
 
 
5658a7a
 
b0447c0
 
5658a7a
 
 
 
 
 
2de4a2f
 
 
 
 
 
 
 
 
 
5658a7a
 
2de4a2f
 
5658a7a
 
 
 
 
 
2de4a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb69bd
2de4a2f
 
0eb69bd
2de4a2f
 
0eb69bd
2de4a2f
 
0eb69bd
2de4a2f
 
0eb69bd
2de4a2f
 
0eb69bd
2de4a2f
0eb69bd
 
2de4a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696321
 
 
 
 
 
 
5eec625
 
 
 
3434034
9733e21
05f0112
9733e21
3434034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b3b400
3434034
 
 
e54b151
73a3369
e54b151
3434034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
---
license: cc-by-4.0
size_categories:
- 1K<n<10K
dataset_info:
  features:
  - name: plot_uid
    dtype: string
  - name: yearsite_uid
    dtype: string
  - name: crop_type
    dtype: string
  - name: experiment_number
    dtype: uint8
  - name: plot_number
    dtype: int16
  - name: range
    dtype: uint8
  - name: row
    dtype: uint8
  - name: lot
    dtype: uint8
  - name: latitude
    dtype: float64
  - name: longitude
    dtype: float64
  - name: spatial_check
    dtype: int32
  - name: sowing_date
    dtype: date32
  - name: harvest_date
    dtype: date32
  - name: harvest_year
    dtype: uint16
  - name: images
    sequence: string
  - name: image_dates
    sequence: date32
  - name: image_times
    sequence: time32[s]
  - name: alignment_plot_soil_polygons
    sequence:
      sequence:
        sequence: float16
  - name: alignment_num_steps
    sequence: uint8
  - name: alignment_dates
    sequence: date32
  - name: alignment_times
    sequence: time32[s]
  - name: alignment_initial_date
    dtype: date32
  - name: alignment_inner_plot_transform
    sequence:
      sequence: float16
  - name: inner_plot_images
    sequence: string
  - name: image_inner_plot_transforms
    sequence:
      sequence:
        sequence: float16
  - name: genotype_id
    dtype: string
  - name: marker_biallelic_codes
    sequence: uint8
  - name: marker_metadata_strings
    sequence: string
  - name: canopy_cover_values
    sequence: float16
  - name: canopy_cover_dates
    sequence: date32
  - name: canopy_cover_trait_id
    dtype: uint8
  - name: canopy_cover_trait_name
    dtype: string
  - name: canopy_cover_method_id
    dtype: uint16
  - name: canopy_cover_method_name
    dtype: string
  - name: canopy_cover_si_unit
    dtype: string
  - name: canopy_cover_responsible
    dtype: string
  - name: height_values
    sequence: float16
  - name: height_dates
    sequence: date32
  - name: height_trait_id
    dtype: uint8
  - name: height_trait_name
    dtype: string
  - name: height_method_id
    dtype: uint16
  - name: height_method_name
    dtype: string
  - name: height_si_unit
    dtype: string
  - name: height_responsible
    dtype: string
  - name: spike_count_values
    sequence: float16
  - name: spike_count_dates
    sequence: date32
  - name: spike_count_trait_id
    dtype: uint8
  - name: spike_count_trait_name
    dtype: string
  - name: spike_count_method_id
    dtype: uint16
  - name: spike_count_method_name
    dtype: string
  - name: spike_count_si_unit
    dtype: string
  - name: spike_count_responsible
    dtype: string
  - name: senescence_values
    sequence: float16
  - name: senescence_dates
    sequence: date32
  - name: senescence_trait_id
    dtype: uint8
  - name: senescence_trait_name
    dtype: string
  - name: senescence_method_id
    dtype: uint16
  - name: senescence_method_name
    dtype: string
  - name: senescence_si_unit
    dtype: string
  - name: senescence_responsible
    dtype: string
  - name: heading_value
    dtype: float16
  - name: heading_date
    dtype: date32
  - name: heading_blue
    dtype: float16
  - name: heading_heritability
    dtype: float16
  - name: heading_trait_id
    dtype: uint8
  - name: heading_trait_name
    dtype: string
  - name: heading_method_id
    dtype: uint16
  - name: heading_method_name
    dtype: string
  - name: heading_si_unit
    dtype: string
  - name: heading_responsible
    dtype: string
  - name: height_final_value
    dtype: float16
  - name: height_final_date
    dtype: date32
  - name: height_final_blue
    dtype: float16
  - name: height_final_heritability
    dtype: float16
  - name: height_final_trait_id
    dtype: uint8
  - name: height_final_trait_name
    dtype: string
  - name: height_final_method_id
    dtype: uint16
  - name: height_final_method_name
    dtype: string
  - name: height_final_si_unit
    dtype: string
  - name: height_final_responsible
    dtype: string
  - name: yield_value
    dtype: float16
  - name: yield_date
    dtype: date32
  - name: yield_blue
    dtype: float16
  - name: yield_heritability
    dtype: float16
  - name: yield_trait_id
    dtype: uint8
  - name: yield_trait_name
    dtype: string
  - name: yield_method_id
    dtype: uint16
  - name: yield_method_name
    dtype: string
  - name: yield_si_unit
    dtype: string
  - name: yield_responsible
    dtype: string
  - name: yield_adjusted_value
    dtype: float16
  - name: yield_adjusted_date
    dtype: date32
  - name: yield_adjusted_blue
    dtype: float16
  - name: yield_adjusted_heritability
    dtype: float16
  - name: yield_adjusted_trait_id
    dtype: uint8
  - name: yield_adjusted_trait_name
    dtype: string
  - name: yield_adjusted_method_id
    dtype: uint16
  - name: yield_adjusted_method_name
    dtype: string
  - name: yield_adjusted_si_unit
    dtype: string
  - name: yield_adjusted_responsible
    dtype: string
  - name: protein_value
    dtype: float16
  - name: protein_date
    dtype: date32
  - name: protein_blue
    dtype: float16
  - name: protein_heritability
    dtype: float16
  - name: protein_trait_id
    dtype: uint8
  - name: protein_trait_name
    dtype: string
  - name: protein_method_id
    dtype: uint16
  - name: protein_method_name
    dtype: string
  - name: protein_si_unit
    dtype: string
  - name: protein_responsible
    dtype: string
  - name: temperature_air_10cm_values
    sequence: float16
  - name: temperature_air_10cm_dates
    sequence: date32
  - name: temperature_air_10cm_times
    sequence: time32[s]
  - name: temperature_air_200cm_values
    sequence: float16
  - name: temperature_air_200cm_dates
    sequence: date32
  - name: temperature_air_200cm_times
    sequence: time32[s]
  - name: temperature_soil_5cm_values
    sequence: float16
  - name: temperature_soil_5cm_dates
    sequence: date32
  - name: temperature_soil_5cm_times
    sequence: time32[s]
  - name: humidity_air_10cm_values
    sequence: float16
  - name: humidity_air_10cm_dates
    sequence: date32
  - name: humidity_air_10cm_times
    sequence: time32[s]
  - name: humidity_air_200cm_values
    sequence: float16
  - name: humidity_air_200cm_dates
    sequence: date32
  - name: humidity_air_200cm_times
    sequence: time32[s]
  - name: precipitation_200cm_values
    sequence: float16
  - name: precipitation_200cm_dates
    sequence: date32
  - name: precipitation_200cm_times
    sequence: time32[s]
  - name: irradiance_solar_200cm_values
    sequence: float16
  - name: irradiance_solar_200cm_dates
    sequence: date32
  - name: irradiance_solar_200cm_times
    sequence: time32[s]
  splits:
  - name: train
    num_bytes: 3196147599
    num_examples: 2930
  - name: validation
    num_bytes: 673564266
    num_examples: 380
  - name: test_plot
    num_bytes: 443112041
    num_examples: 250
  - name: test_genotype
    num_bytes: 436276173
    num_examples: 246
  - name: test_environment
    num_bytes: 161988616
    num_examples: 190
  - name: test_genotype_environment
    num_bytes: 109816338
    num_examples: 62
  download_size: 1375752424
  dataset_size: 5020905033
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
  - split: test_plot
    path: data/test_plot-*
  - split: test_genotype
    path: data/test_genotype-*
  - split: test_environment
    path: data/test_environment-*
  - split: test_genotype_environment
    path: data/test_genotype_environment-*
tags:
- phenotyping
- wheat
- plant
- regression
- trait
- pheno
task_categories:
- time-series-forecasting
- feature-extraction
- tabular-regression
---

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/6304a1226dbbb80f16365385/bqNwyQLxpOYCBxE2v5ggm.jpeg)

# The FIP 1.0 Data Set: Highly Resolved Annotated Image Time Series of 4,000 Wheat Plots Grown in Six Years

## Dataset Details

### Dataset Description

We provide time series data for more than 4,000 wheat plots, including aligned high-resolution image sequences totaling more than 151,000 aligned images across six years.
Measurement data for eight key wheat traits is included, namely canopy cover values, plant heights, wheat head counts, senescence ratings, heading date, final plant height, grain yield, and protein content. 
Genetic marker information and environmental data complement the time series.
Data quality is demonstrated through heritability analyses and genomic prediction models, achieving accuracies aligned with previous research.


- **Curated by:** Mike Boss, Lukas Roth, Norbert Kirchgessner
- **License:** CC-BY

### Dataset Sources

<!-- Provide the basic links for the dataset. -->

- **Data:** [https://doi.org/20.500.11850/697773](https://doi.org/20.500.11850/697773)
  > Note that only the aligned inner plot images are contained in this repo, the original image paths point to */data/image* and have to be downloaded separately from the [ETH research collection](https://doi.org/10.3929/ethz-b-000697773).
- **Paper:** [https://doi.org/10.1101/2024.10.04.616624](https://doi.org/10.1101/2024.10.04.616624)

## Uses

We see the largest re-use potential of the presented data set for the development and evaluation of new modelling and prediction approaches in crop genomics and phenomics.
The multi-faceted data set allows modelling approaches on various levels:
- Genomic prediction approaches that include genotype-environment interactions: The presented data enhance the data by Gogna et al. by 6 environments, totalling to 14 environments that are characterized by environmental covariates. The presented benchmark of a genomic prediction with random regressions to environmental covariates  provides a baseline that novel approaches can challenge.
- Modelling plant growth and development with longitudinal modelling approaches: The four low-level traits canopy cover, plant height, wheat head count and senescence cover the full growing season of winter wheat in 6 environments that are characterized by environmental covariates. Baseline approaches for plant height growth modelling, canopy cover growth modelling and senescence dynamics modelling for subsets of the presented data exist.
- Image-based phenomic predictions and combined phenomic and genomic prediction approaches: The dense time series of images allow training and analysing end-to-end modelling approaches (e.g., deep learning based) that predict target traits such as yield based on images.

## Dataset Structure

The data is structured such that each row contains all data for a plot in a given year.
The plot can be identified by it's *plot_uid* which is also available in parts as *yearsite_uid*, *crop_type*, etc.
If data does not exist for a certain plot it is *None*, while if time series data does not exist for a certain date it is simply not present.

The image data is in the *images* and *inner_plot_images* colums.
*images* are the original images while *inner_plot_images* are aligned cutouts of the inner wheat plot.
Trait data is included as the values in *trait_value(s)* and the dates *trait_date(s)*.
Marker data includes an anyomized *genotype_id* string, biallelic codes and corresponding metadata strings.
Enviroment variables are also included as *_value(s)*, *_date(s)* and in addition *_time(s)*.

The sowing date, harvest date and harvest_year are included.
The data set includes additional data used for the creation of the data set itself such as the alignments.

## Dataset Creation

### Curation Rationale

Winter wheat provides a crucial share of calories for human nutrition, with global demand steadily increasing. 
However, crop production faces challenges due to limited resources like water, agrochemicals, and land. 
Climate change further threatens crop yields, necessitating responsible and efficient resource use.

Crop yields are substantially driven by complex interactions between plant genetics and environmental factors.
For instance, genes involved in fruit formation interact with temperatures at flowering, influencing growth and yield potential. 
Limited phenotyping data is seen as the major reason for the incomplete understanding of such genotype-environment interactions.

HTFP was developed to address this data gap.
Imaging HTFP platforms allow researchers to monitor crop canopy development over time, generating dense time series data of plant growth. 
There are many approaches to process such data ranging from extracting traits at critical time points to modeling growth dynamics and finally using end-to-end methods that directly analyze image time series.

This data set aims to provide a comprehensive foundation for these diverse approaches. 
Our goal is to foster collaboration between plant physiology, biometrics, and computer vision research, ultimately improving the ability to predict genotype-environment interactions for current and future climates.

### Source Data

The FIP at ETH was established in 2015 to collect image time series of crops growing under realistic field conditions.
The FIP's cable carrying system is capable of carrying a 90 kg sensor head.
The original sensor head, hereafter referred to as the FIP 1.0 head, was equipped with a red, green, and blue (RGB) camera and a TLS, among other sensors.
Wheat field experiments were observed using FIP 1.0 over an eight-year period from 2015 to 2022, yielding six years of data collection, with 2015 and 2020 excluded due to incomplete measuring seasons .
Up to three times a week, RGB images of all experimental units (so-called `plots') were collected, and plant heights were measured simultaneously using either the TLS (2016, 2017) or drones (2018--2022) .
In 2023, the FIP 1.0 sensor head was replaced with a new, multi-view RGB sensor head.
The described data set includes all RGB and height data collected in winter wheat experiments up to this replacement.

The area of approximately one ha that the FIP can monitor is divided into six smaller parts (so-called `lots') that are integrated into a crop rotation. 
The two FIP lots dedicated to winter wheat provide space for ~350 genotypes, replicated once per lot.
For the first three years (2016--2018), the GABI-WHEAT panel was grown as the genotype set.
From 2019--2022, a subset of the GABI-WHEAT panel was grown in addition to other genotypes .
The GABI-WHEAT panel consists of registered genotypes from different climatic regions of Europe .
Genetic marker data and MET data from eight year-locations for GABI-WHEAT are publicly available.

The GABI-WHEAT panel was largely superseded by the Swiss breeding set in 2021 . 
This new set primarily consists of eighth-generation (F8) breeding genotypes.
For the Swiss breeding set, genetic marker data exists but remains confidential.
The remaining genotypes, linked to specific projects such as INVITE, were present throughout all years but were generally only grown in a single year each . 
These genotypes currently lack available marker data.

Regular measurements with the FIP 1.0 head were accompanied by reference measurement campaigns as part of several projects.
The heading date and senescence ratings were performed to investigate the relationships of senescence dynamics and diseases .
Yield measurements taken on the FIP field were combined with data from other locations to train phenomic prediction models .
The plant height measurements served as a basis to quantify the temperature response of wheat genotypes in the stem elongation phase .
The extracted plant height values demonstrated their usefulness in improving trait extraction methods from longitudinal data .

The images collected were used to quantify canopy covers and examine their relationship to frost damage events using CNNs.
Using a combination of drone data and the high-resolution images the rows in the individual plots were identified .
In a small subset (375 images), the wheat heads were annotated and the data was integrated into the public global wheat head detection data set .
The image-based canopy cover values served as a test data set to evaluate the cultivar-specific extensions of the thermal time concept .


<!--
### Annotations [optional]


#### Annotation process


[More Information Needed]



[More Information Needed]


## Citation [optional]


**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

[More Information Needed]
-->


## Dataset Card Authors

Mike Boss, Lukas Roth, Norbert Kirchgessner

## Dataset Card Contact

Mike Boss ([email protected])