### examples/train_lora/llama3_lora_sft.yaml model_name_or_path: "meta-llama/Llama-Guard-3-1B" stage: sft do_train: true do_eval: true finetuning_type: lora lora_target: all dataset: train_sample eval_dataset: test_sample dataset_dir: ./data template: llama3 cutoff_len: 4096 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 64 output_dir: ./saves/llama3-1b/lora/sft logging_steps: 1 save_steps: 10 plot_loss: true overwrite_output_dir: true per_device_train_batch_size: 4 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 # val_size: 0.1 per_device_eval_batch_size: 16 eval_strategy: steps eval_steps: 1