File size: 8,932 Bytes
9ca02d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4265c24
9ca02d1
 
4265c24
9ca02d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef9755f
757f0f8
 
 
 
 
 
 
 
9ca02d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4265c24
9ca02d1
 
 
4265c24
9ca02d1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""NoMIRACL: A dataset to evaluation LLM robustness across 18 languages."""

import os
import json
import csv
import datasets

from collections import defaultdict


_CITATION = """\
@article{thakur2023nomiracl,
  title={NoMIRACL: Knowing When You Don't Know for Robust Multilingual Retrieval-Augmented Generation},
  author={Nandan Thakur and Luiz Bonifacio and Xinyu Zhang and Odunayo Ogundepo and Ehsan Kamalloo and David Alfonso-Hermelo and Xiaoguang Li and Qun Liu and Boxing Chen and Mehdi Rezagholizadeh and Jimmy Lin},
  journal={ArXiv},
  year={2023},
  volume={abs/2312.11361}
}
"""

_DESCRIPTION = """\
Data Loader for the NoMIRACL dataset.
"""

_URL = "https://github.com/project-miracl/nomiracl"

_DL_URL_FORMAT = "data/{name}"


def load_topics(filepath: str):
    """
    Loads queries from a file and stores them in a dictionary.
    """
    queries = {}
    with open(filepath, 'r', encoding='utf-8') as f:
        reader = csv.reader(f, delimiter='\t', quoting=csv.QUOTE_NONE)
        for row in reader:
            queries[row[0]] = row[1]
    return queries

def load_corpus(filepath: str):
    """
    Loads the corpus file as a dictionary.
    """
    corpus = {}
    with open(filepath, encoding='utf8') as fIn:
        for line in fIn:
            line = json.loads(line)
            corpus[line.get("docid")] = {
                "text": line.get("text", "").strip(),
                "title": line.get("title", "").strip(),
            }
    return corpus


def load_qrels(filepath: str):
    if filepath is None:
        return None

    qrels = defaultdict(dict)
    with open(filepath, encoding="utf-8") as f:
        for line in f:
            qid, _, docid, rel = line.strip().split('\t')
            qrels[qid][docid] = int(rel)
    return qrels


class NoMIRACLConfig(datasets.BuilderConfig):
    """BuilderConfig for NoMIRACL."""

    def __init__(self, name, **kwargs):
        """
        Args:
          name: `string`, name of dataset config (=language)
          **kwargs: keyword arguments forwarded to super.
        """
        super(NoMIRACLConfig, self).__init__(
            version=datasets.Version("1.0.0", ""), name=name.lower(), **kwargs
        )
        # relative path to full data inside a repo (for example `data/german`)
        self.data_root_url = _DL_URL_FORMAT.format(name=name)


class NoMIRACL(datasets.GeneratorBasedBuilder):
    """Multilingual NoMIRACL dataset."""

    BUILDER_CONFIGS = [
        NoMIRACLConfig(name="arabic", description="Arabic NoMIRACL dataset"),
        NoMIRACLConfig(name="chinese", description="Chinese NoMIRACL dataset"),
        NoMIRACLConfig(name="finnish", description="Finnish NoMIRACL dataset"),
        NoMIRACLConfig(name="german", description="German NoMIRACL dataset"),
        NoMIRACLConfig(name="indonesian", description="Indonesian NoMIRACL dataset"),
        NoMIRACLConfig(name="korean", description="Korean NoMIRACL dataset"),
        NoMIRACLConfig(name="russian", description="Russian NoMIRACL dataset"),
        NoMIRACLConfig(name="swahili", description="Swahili NoMIRACL dataset"),
        NoMIRACLConfig(name="thai", description="Thai NoMIRACL dataset"),
        NoMIRACLConfig(name="bengali", description="Bengali NoMIRACL dataset"),
        NoMIRACLConfig(name="english", description="English NoMIRACL dataset"),
        NoMIRACLConfig(name="french", description="French NoMIRACL dataset"),
        NoMIRACLConfig(name="hindi", description="Hindi NoMIRACL dataset"),
        NoMIRACLConfig(name="japanese", description="Japanese NoMIRACL dataset"),
        NoMIRACLConfig(name="persian", description="Persian NoMIRACL dataset"),
        NoMIRACLConfig(name="spanish", description="Spanish NoMIRACL dataset"),
        NoMIRACLConfig(name="telugu", description="Telugu NoMIRACL dataset"),
        NoMIRACLConfig(name="yoruba", description="Yoruba NoMIRACL dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                'query_id': datasets.Value('string'),
                'query': datasets.Value('string'),
                'positive_passages': [{
                    'docid': datasets.Value('string'), 
                    'text': datasets.Value('string'), 
                    'title': datasets.Value('string')
                    }],
                'negative_passages': [{
                    'docid': datasets.Value('string'),
                    'text': datasets.Value('string'), 
                    'title': datasets.Value('string'),
                }],
            }),
            supervised_keys=("file", "text"),
            homepage=_URL,
            citation=_CITATION,
            task_templates=None,
        )

    def _split_generators(self, dl_manager):

        # Download downloaded_files        
        downloaded_files = dl_manager.download_and_extract({
            "corpus": self.config.data_root_url + "/corpus.jsonl.gz",
            "dev": {"qrels": {"relevant": self.config.data_root_url + "/qrels/dev.relevant.tsv", 
                              "non_relevant": self.config.data_root_url + "/qrels/dev.non_relevant.tsv"},
                    "topics": {"relevant": self.config.data_root_url + "/topics/dev.relevant.tsv",
                               "non_relevant": self.config.data_root_url + "/topics/dev.non_relevant.tsv"}},
            "test": {"qrels": {"relevant": self.config.data_root_url + "/qrels/test.relevant.tsv", 
                              "non_relevant": self.config.data_root_url + "/qrels/test.non_relevant.tsv"},
                    "topics": {"relevant": self.config.data_root_url + "/topics/test.relevant.tsv",
                               "non_relevant": self.config.data_root_url + "/topics/test.non_relevant.tsv"}},
        })

        splits = [
            datasets.SplitGenerator(
                name="dev.relevant",
                gen_kwargs={
                    "corpus_path": downloaded_files["corpus"],
                    "qrels_path": downloaded_files["dev"]["qrels"]["relevant"],
                    "topics_path": downloaded_files["dev"]["topics"]["relevant"],
                }
            ),
            datasets.SplitGenerator(
                name="dev.non_relevant",
                gen_kwargs={
                    "corpus_path": downloaded_files["corpus"],
                    "qrels_path": downloaded_files["dev"]["qrels"]["non_relevant"],
                    "topics_path": downloaded_files["dev"]["topics"]["non_relevant"],
                },
            ),
            datasets.SplitGenerator(
                name="test.relevant",
                gen_kwargs={
                    "corpus_path": downloaded_files["corpus"],
                    "qrels_path": downloaded_files["test"]["qrels"]["relevant"],
                    "topics_path": downloaded_files["test"]["topics"]["relevant"],
                }
            ),
            datasets.SplitGenerator(
                name="test.non_relevant",
                gen_kwargs={
                    "corpus_path": downloaded_files["corpus"],
                    "qrels_path": downloaded_files["test"]["qrels"]["non_relevant"],
                    "topics_path": downloaded_files["test"]["topics"]["non_relevant"],
                },
            ),
        ]

        return splits
    
    def _generate_examples(self, corpus_path, qrels_path, topics_path):
        
        corpus = load_corpus(corpus_path)
        qrels = load_qrels(qrels_path)
        topics = load_topics(topics_path)

        for qid in topics:
            data = {}
            data['query_id'] = qid
            data['query'] = topics[qid]
            
            pos_docids = [docid for docid, rel in qrels[qid].items() if rel == 1] if qrels is not None else []
            neg_docids = [docid for docid, rel in qrels[qid].items() if rel == 0] if qrels is not None else []
            data['positive_passages'] = [{
                'docid': docid, 
                **corpus[docid]
            } for docid in pos_docids if docid in corpus]
            data['negative_passages'] = [{
                'docid': docid, 
                **corpus[docid]
            } for docid in neg_docids if docid in corpus]
            yield qid, data