File size: 3,833 Bytes
69c22e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import os
from helpers import (
get_combined_df,
save_final_df_as_jsonl,
handle_slug_column_mappings,
)
# In[3]:
DATA_DIR = "../data"
PROCESSED_DIR = "../processed/"
FACET_DIR = "rentals/"
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
# In[7]:
data_frames = []
slug_column_mappings = {"": "Rent"}
for filename in os.listdir(FULL_DATA_DIR_PATH):
if filename.endswith(".csv"):
# print("processing " + filename)
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
]
if "_sfrcondomfr_" in filename:
cur_df["Home Type"] = "all homes plus multifamily"
# change column type to string
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
if "City" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# City Specific
"State",
"Metro",
"CountyName",
]
elif "Zip" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# Zip Specific
"State",
"City",
"Metro",
"CountyName",
]
elif "County" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# County Specific
"State",
"Metro",
"StateCodeFIPS",
"MunicipalCodeFIPS",
]
elif "_sfr_" in filename:
cur_df["Home Type"] = "SFR"
elif "_mfr_" in filename:
cur_df["Home Type"] = "multifamily"
data_frames = handle_slug_column_mappings(
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
)
combined_df = get_combined_df(
data_frames,
[
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
"Date",
],
)
combined_df
# In[8]:
final_df = combined_df
for index, row in final_df.iterrows():
if row["RegionType"] == "city":
final_df.at[index, "City"] = row["RegionName"]
elif row["RegionType"] == "county":
final_df.at[index, "County"] = row["RegionName"]
# coalesce State and StateName columns
final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
final_df["State"] = final_df["County"].combine_first(final_df["CountyName"])
final_df = final_df.drop(columns=["StateName", "CountyName"])
final_df
# In[6]:
# Adjust column names
final_df = final_df.rename(
columns={
"RegionID": "Region ID",
"SizeRank": "Size Rank",
"RegionName": "Region",
"RegionType": "Region Type",
"StateCodeFIPS": "State Code FIPS",
"MunicipalCodeFIPS": "Municipal Code FIPS",
}
)
final_df
# In[7]:
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|