File size: 24,721 Bytes
9c2505d 399e20c 53fe7a6 306f96f 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 53fe7a6 96047e1 9c2505d e10c179 7249126 e10c179 7249126 cf9e214 4740530 399e20c 4740530 399e20c 4740530 9711680 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 9711680 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 4740530 e10c179 78c4c36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 |
---
language:
- en
license: other
task_categories:
- tabular-regression
- time-series-forecasting
pretty_name: Zillow
description: 'This dataset is comprised of seven different configurations of data
covering different aspects of the housing market in the United States. All data
is provided by Zillow. The seven configurations are: home_values_forecasts, new_construction,
for_sale_listings, rentals, sales, home_values, and days_on_market. Each configuration
has a different set of features and target variables. The data is provided in JSONL
format.'
homepage: https://www.zillow.com/research/data/
dataset_info:
- config_name: days_on_market
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': zip
'1': city
'2': county
'3': msa
'4': state
'5': country
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': multifamily
'1': condo/co-op
'2': SFR
'3': all homes
'4': all homes plus multifamily
- name: Date
dtype: timestamp[ms]
id: Date
- name: Mean Listings Price Cut Amount (Smoothed)
dtype: float32
id: Mean Listings Price Cut Amount (Smoothed)
- name: Percent Listings Price Cut
dtype: float32
id: Percent Listings Price Cut
- name: Mean Listings Price Cut Amount
dtype: float32
id: Mean Listings Price Cut Amount
- name: Percent Listings Price Cut (Smoothed)
dtype: float32
id: Percent Listings Price Cut (Smoothed)
- name: Median Days on Pending (Smoothed)
dtype: float32
id: Median Days on Pending (Smoothed)
- name: Median Days on Pending
dtype: float32
id: Median Days on Pending
splits:
- name: train
num_bytes: 50107320
num_examples: 586714
download_size: 229118598
dataset_size: 50107320
- config_name: for_sale_listings
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': county
'1': city
'2': zip
'3': country
'4': msa
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': all homes
'1': all homes plus multifamily
'2': SFR
'3': condo/co-op
'4': multifamily
- name: Date
dtype: timestamp[ms]
id: Date
- name: Median Listing Price
dtype: float32
id: Median Listing Price
- name: Median Listing Price (Smoothed)
dtype: float32
id: Median Listing Price (Smoothed)
- name: New Listings
dtype: int32
id: New Listings
- name: New Listings (Smoothed)
dtype: int32
id: New Listings (Smoothed)
- name: New Pending (Smoothed)
dtype: int32
id: New Pending (Smoothed)
- name: New Pending
dtype: int32
id: New Pending
splits:
- name: train
num_bytes: 49412198
num_examples: 578653
download_size: 180206592
dataset_size: 49412198
- config_name: home_values
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': zip
'1': city
'2': county
'3': msa
'4': state
'5': country
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': multifamily
'1': condo/co-op
'2': SFR
'3': all homes
'4': all homes plus multifamily
- name: Bedroom Count
dtype:
class_label:
names:
'0': 1-Bedroom
'1': 2-Bedrooms
'2': 3-Bedrooms
'3': 4-Bedrooms
'4': 5+-Bedrooms
'5': All Bedrooms
- name: Date
dtype: timestamp[ms]
id: Date
- name: Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)
- name: Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)
- name: Top Tier ZHVI (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Top Tier ZHVI (Smoothed) (Seasonally Adjusted)
splits:
- name: train
num_bytes: 9377759
num_examples: 117912
download_size: 41145800
dataset_size: 9377759
- config_name: home_values_forecasts
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': county
'1': city
'2': zip
'3': country
'4': msa
- name: State
dtype: string
id: State
- name: City
dtype: string
id: City
- name: Metro
dtype: string
id: Metro
- name: County
dtype: string
id: County
- name: Date
dtype: timestamp[ms]
id: Date
- name: Month Over Month % (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Month Over Month % (Smoothed) (Seasonally Adjusted)
- name: Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Quarter Over Quarter % (Smoothed) (Seasonally Adjusted)
- name: Year Over Year % (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Year Over Year % (Smoothed) (Seasonally Adjusted)
- name: Month Over Month %
dtype: float32
id: Month Over Month %
- name: Quarter Over Quarter %
dtype: float32
id: Quarter Over Quarter %
- name: Year Over Year %
dtype: float32
id: Year Over Year %
splits:
- name: train
num_bytes: 3976869
num_examples: 31854
download_size: 14081979
dataset_size: 3976869
- config_name: new_construction
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': county
'1': city
'2': zip
'3': country
'4': msa
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': all homes
'1': all homes plus multifamily
'2': SFR
'3': condo/co-op
'4': multifamily
- name: Date
dtype: timestamp[ms]
id: Date
- name: Median Sale Price
dtype: float32
id: Median Sale Price
- name: Median Sale Price per Sqft
dtype: float32
id: Sale Price per Sqft
- name: Sales Count
dtype: int32
id: Sales Count
splits:
- name: train
num_bytes: 3624631
num_examples: 49487
download_size: 10937317
dataset_size: 3624631
- config_name: rentals
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': county
'1': city
'2': zip
'3': country
'4': msa
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': all homes
'1': all homes plus multifamily
'2': SFR
'3': condo/co-op
'4': multifamily
- name: Date
dtype: timestamp[ms]
id: Date
- name: Rent (Smoothed)
dtype: float32
id: Rent (Smoothed)
- name: Rent (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Rent (Smoothed) (Seasonally Adjusted)
splits:
- name: train
num_bytes: 92914681
num_examples: 1258740
download_size: 447425069
dataset_size: 92914681
- config_name: sales
features:
- name: Region ID
dtype: string
id: Region ID
- name: Size Rank
dtype: int32
id: Size Rank
- name: Region
dtype: string
id: Region
- name: Region Type
dtype:
class_label:
names:
'0': county
'1': city
'2': zip
'3': country
'4': msa
- name: State
dtype: string
id: State
- name: Home Type
dtype:
class_label:
names:
'0': all homes
'1': all homes plus multifamily
'2': SFR
'3': condo/co-op
'4': multifamily
- name: Date
dtype: timestamp[ms]
id: Date
- name: Mean Sale to List Ratio (Smoothed)
dtype: float32
id: Mean Sale to List Ratio (Smoothed)
- name: Median Sale to List Ratio
dtype: float32
id: Median Sale to List Ratio
- name: Median Sale Price
dtype: float32
id: Median Sale Price
- name: Median Sale Price (Smoothed) (Seasonally Adjusted)
dtype: float32
id: Median Sale Price (Smoothed) (Seasonally Adjusted)
- name: Median Sale Price (Smoothed)
dtype: float32
id: Median Sale Price (Smoothed)
- name: Median Sale to List Ratio (Smoothed)
dtype: float32
id: Median Sale to List Ratio (Smoothed)
- name: '% Sold Below List'
dtype: float32
id: '% Sold Below List'
- name: '% Sold Below List (Smoothed)'
dtype: float32
id: '% Sold Below List (Smoothed)'
- name: '% Sold Above List'
dtype: float32
id: '% Sold Above List'
- name: '% Sold Above List (Smoothed)'
dtype: float32
id: '% Sold Above List (Smoothed)'
- name: Mean Sale to List Ratio
dtype: float32
id: Mean Sale to List Ratio
splits:
- name: train
num_bytes: 27088039
num_examples: 255024
download_size: 139297577
dataset_size: 27088039
---
# Housing Data Provided by Zillow
Updated: 2023-02-01
This dataset contains several configs produced based on files available at https://www.zillow.com/research/data/.
# Viewer Notes
Because this repository includes the code used to process the raw Zillow data, the dataset viewer is not enabled. This is because the dataset viewer is not enabled for datasets that run arbitrary python code. For a normal viewer experience, please see the simplified version of this dataset at https://huggingface.co/datasets/misikoff/zillow-viewer. The viewer should be enabled there and the config files should match what is found here.
Supported configs:
- [`days_on_market`](#days-on-market): Days to pending, days to close, share of listings with a price cut, and price cuts.
- [`for_sale_listings`](#for-sale-listings): Median listing price, new listings, and new pending listings.
- [`home_values`](#home-values): Zillow Home Value Index (ZHVI) for all homes, mid-tier, bottom-tier, and top-tier homes.
- [`home_values_forecasts`](#home-values-forecasts): Zillow Home Value Forecast (ZHVF) for all homes, mid-tier, bottom-tier, and top-tier homes.
- [`new_construction`](#new-construction): Median sale price, median sale price per square foot, and sales count.
- [`rentals`](#rentals): Zillow Observed Rent Index (ZORI) for all homes, mid-tier, bottom-tier, and top-tier homes.
- [`sales`](#sales): Median sale price, median sale price per square foot, and sales count.
## DAYS ON MARKET AND PRICE CUTS
Days to Pending: How long it takes homes in a region to change to pending status on Zillow.com after first being shown as for sale. The reported figure indicates the number of days (mean or median) that it took for homes that went pending during the week being reported, to go pending. This differs from the old “Days on Zillow” metric in that it excludes the in-contract period before a home sells.
Days to Close (mean/median): Number of days between the listing going pending and the sale date.
Share of Listings With a Price Cut: The number of unique properties with a list price at the end of the month that’s less than the list price at the beginning of the month, divided by the number of unique properties with an active listing at some point during the month.
Price Cuts: The mean and median price cut for listings in a given region during a given time period, expressed as both dollars ($) and as a percentage (%) of list price.
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': zip
- '1': city
- '2': county
- '3': msa
- '4': state
- '5': country
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="string", the type of home
- '0': multifamily
- '1': condo/co-op
- '2': SFR
- '3': all homes
- '4': all homes plus multifamily
- `Date`: dtype="timestamp[ms]", the date of the last day of the week for this data
Value Columns
- `Mean Listings Price Cut Amount (Smoothed)`: dtype="float32"
- `Percent Listings Price Cut`: dtype="float32", The number of unique properties with a list price at the end of the month that’s less than the list price at the beginning of the month, divided by the number of unique properties with an active listing at some point during the month.
- `Mean Listings Price Cut Amount`: dtype="float32"
- `Percent Listings Price Cut (Smoothed)`: dtype="float32"
- `Median Days on Pending (Smoothed)`: dtype="float32", median number of days it takes for homes in a region to change to pending status on Zillow.com after first being shown as for sale. (smoothed)
- `Median Days on Pending`: dtype="float32", median number of days it takes for homes in a region to change to pending status on Zillow.com after first being shown as for sale.
## FOR-SALE LISTINGS
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': zip
- '1': city
- '2': county
- '3': msa
- '4': state
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="string", the type of home
- '0': all homes
- '1': all homes plus multifamily
- '2': SFR
- '3': condo/co-op
- '4': multifamily
- `Date`: dtype="timestamp[ms]", the date of the last day of the month for this data
Value Columns
- `Median Listing Price`: dtype="float32", The median price at which homes across various geographies were listed.
- `Median Listing Price (Smoothed)`: dtype="float32", The median price at which homes across various geographies were listed. (smoothed)
- `New Listings`: dtype="int32", how many new listings have come on the market in a given month
- `New Listings (Smoothed)`: dtype="int32", how many new listings have come on the market in a given month. (smoothed)
- `New Pending (Smoothed)`: dtype="int32", The count of listings that changed from for-sale to pending status on Zillow.com in a given time period. (smoothed)
- `New Pending`: dtype="int32", The count of listings that changed from for-sale to pending status on Zillow.com in a given time period.
## HOME VALUES
<!-- Zillow Home Value Index (ZHVI): A measure of the typical home value and market changes across a given region and housing type. It reflects the typical value for homes in the 35th to 65th percentile range. Available as a smoothed, seasonally adjusted measure and as a raw measure. -->
<!-- Zillow publishes top-tier ZHVI (\$, typical value for homes within the 65th to 95th percentile range for a given region) and bottom-tier ZHVI (\$, typical value for homes within the 5th to 35th percentile range for a given region). -->
<!-- Zillow also publishes ZHVI for all single-family residences (\$, typical value for all single-family homes in a given region), for condo/coops (\$), for all homes with 1, 2, 3, 4 and 5+ bedrooms (\$), and the ZHVI per square foot (\$, typical value of all homes per square foot calculated by taking the estimated home value for each home in a given region and dividing it by the home’s square footage). -->
<!-- Note: Starting with the January 2023 data release, and for all subsequent releases, the full ZHVI time series has been upgraded to harness the power of the neural Zestimate. -->
<!-- More information about what ZHVI is and how it’s calculated is available on this overview page. Here’s a handy ZHVI User Guide for information about properly citing and making calculations with this metric. -->
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': zip
- '1': city
- '2': county
- '3': msa
- '4': state
- '5': country"
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="class_label", the type of home
- '0': multifamily
- '1': condo/co-op
- '2': SFR
- '3': all homes
- '4': all homes plus multifamily
- `Bedroom Count`: dtype="class_label", the number of bedrooms
- '0': 1-Bedroom
- '1': 2-Bedrooms
- '2': 3-Bedrooms
- '3': 4-Bedrooms
- '4': 5+-Bedrooms
- '5': All Bedrooms
- `Date`: dtype="timestamp[ms]", the date of the last day of the month for this data
Value Columns
- `Mid Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
- `Bottom Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
- `Top Tier ZHVI (Smoothed) (Seasonally Adjusted)`: dtype="float32",
- `ZHVI`: dtype="float32",
- `Mid Tier ZHVI`: dtype="float32"
## HOME VALUES FORECASTS
<!-- Zillow Home Value Forecast (ZHVF): A month-ahead, quarter-ahead and year-ahead forecast of the Zillow Home Value Index (ZHVI). ZHVF is created using the all homes, mid-tier cut of ZHVI and is available both raw and smoothed, seasonally adjusted. -->
<!-- Note: Starting with the January 2023 forecast (made available in February 2023), Zillow’s Home Value Forecast is based on the upgraded ZHVI that harnesses the power of the neural Zestimate. More information about what ZHVI is and how it’s calculated is available on this overview page. -->
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': county
- '1': city
- '2': zip
- '3': country
- '4': msa
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `City`: dtype="string",
- `Metro`: dtype="string",
- `County`: dtype="string",
- `Home Type`: dtype="string", the type of home
- `Date`: dtype="timestamp[ms]", the date of these forecasts
Value Columns
- `Month Over Month % (Smoothed)`: dtype="float32",
- `Quarter Over Quarter % (Smoothed)`: dtype="float32",
- `Year Over Year % (Smoothed)`: dtype="float32"
- `Month Over Month % (Raw)`: dtype="float32"
- `Quarter Over Quarter % (Raw)`: dtype="float32"
- `Year Over Year % (Raw)`: dtype="float32"
## NEW CONSTRUCTION
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': county
- '1': city
- '2': zip
- '3': country
- '4': msa
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="class_label", the type of home
- '0': all homes
- '1': all homes plus multifamily
- '2': SFR
- '3': condo/co-op
- '4': multifamily
- `Date`: dtype="timestamp[ms]", the date of the last day of the month for this data
Value Columns
- `Median Sale Price`: dtype="float32", the median sale price of new construction homes that sold during the month in the specified region
- `Median Sale Price per Sqft`: dtype="float32", the median sale price per square foot of new construction homes that sold during the month in the specified region
- `Sales Count`: dtype="int32", the number of new construction homes that sold during the month in the specified region
## RENTALS
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': county
- '1': city
- '2': zip
- '3': country
- '4': msa
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="string", the type of home
- '0': all homes
- '1': all homes plus multifamily
- '2': SFR
- '3': condo/co-op
- '4': multifamily
- `Date`: dtype="timestamp[ms]", the date of the last day of the month for this data
Value Columns
- `Rent (Smoothed)`: dtype="float32", Zillow Observed Rent Index (ZORI): A smoothed measure of the typical observed market rate rent across a given region. ZORI is a repeat-rent index that is weighted to the rental housing stock to ensure representativeness across the entire market, not just those homes currently listed for-rent. The index is dollar-denominated by computing the mean of listed rents that fall into the 40th to 60th percentile range for all homes and apartments in a given region, which is weighted to reflect the rental housing stock.
- `Rent (Smoothed) (Seasonally Adjusted)`: dtype="float32", Zillow Observed Rent Index (ZORI) :A smoothed measure of the typical observed market rate rent across a given region. ZORI is a repeat-rent index that is weighted to the rental housing stock to ensure representativeness across the entire market, not just those homes currently listed for-rent. The index is dollar-denominated by computing the mean of listed rents that fall into the 40th to 60th percentile range for all homes and apartments in a given region, which is weighted to reflect the rental housing stock.
## SALES
<!-- Sale-to-List Ratio (mean/median): Ratio of sale vs. final list price. -->
<!-- Percent of Sales Below/Above List: Share of sales where sale price below/above the final list price; excludes homes sold for exactly the list price. -->
Base Columns
- `Region ID`: dtype="string", a unique identifier for the region
- `Size Rank`: dtype="int32", a rank of the region's size
- `Region`: dtype="string", the name of the region
- `Region Type`: dtype="class_label", the type of region
- '0': county
- '1': city
- '2': zip
- '3': country
- '4': msa
- `State`: dtype="string", the US state abbreviation for the state containing the region
- `Home Type`: dtype="class_label", the type of home
- '0': all homes
- '1': all homes plus multifamily
- '2': SFR
- '3': condo/co-op
- '4': multifamily
- `Date`: dtype="timestamp[ms]", the date of the last day of the month for this data
Value Columns
- `Median Sale Price`: dtype="float32", The median price at which homes across various geographies were sold.
- `Median Sale Price per Sqft`: dtype="float32" The median price per square foot at which homes across various geographies were sold.
- `Sales Count`: dtype="int32", The "Sales Count Nowcast" is the estimated number of unique properties that sold during the month after accounting for the latency between when sales occur and when they are reported.
## DEFINITIONS OF HOME TYPES
- all Homes: Zillow defines all homes as single-family, condominium and co-operative homes with a county record. Unless specified, all series cover this segment of the housing stock.
- SFR: single family residence
- condo/co-op: Condominium and co-operative homes.
- Multifamily 5+ units: Units in buildings with 5 or more housing units, that are not condominiums or co-ops.
<!-- - Duplex/Triplex/Quadplex: Housing units in buildings with 2, 3, or 4 housing units. -->
# Example Usage
```python
from datasets import load_dataset
dataset = load_dataset("misikoff/zillow", 'home_values', trust_remote_code=True)
```
## Example Notebook
Linked below is an example notebook that demonstrates usage and analysis of one of the configs of this dataset.
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1lEPLbWsOKmNBzkPWT30RCBVxhG1LWkGg?usp=sharing) |