|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="home_value_forecasts", |
|
version=VERSION, |
|
description="This part of my dataset covers a first domain", |
|
), |
|
datasets.BuilderConfig( |
|
name="new_constructions", |
|
version=VERSION, |
|
description="This part of my dataset covers a second domain", |
|
), |
|
datasets.BuilderConfig( |
|
name="for_sale_listings", |
|
version=VERSION, |
|
description="This part of my dataset covers a second domain", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "home_value_forecasts" |
|
|
|
def _info(self): |
|
|
|
if ( |
|
self.config.name == "home_value_forecasts" |
|
): |
|
features = datasets.Features( |
|
{ |
|
"RegionID": datasets.Value(dtype="string", id="RegionID"), |
|
"SizeRank": datasets.Value(dtype="int32", id="SizeRank"), |
|
"RegionName": datasets.Value(dtype="string", id="RegionName"), |
|
"RegionType": datasets.Value(dtype="string", id="RegionType"), |
|
"State": datasets.Value(dtype="string", id="State"), |
|
"City": datasets.Value(dtype="string", id="City"), |
|
"Metro": datasets.Value(dtype="string", id="Metro"), |
|
"County": datasets.Value(dtype="string", id="County"), |
|
"BaseDate": datasets.Value(dtype="string", id="BaseDate"), |
|
"Month Over Month % (Smoothed)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
"Quarter Over Quarter % (Smoothed)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
"Year Over Year % (Smoothed)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
"Month Over Month % (Raw)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
"Quarter Over Quarter % (Raw)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
"Year Over Year % (Raw)": datasets.Value( |
|
dtype="float32", id="Month Over Month % (Smoothed)" |
|
), |
|
|
|
} |
|
) |
|
elif self.config.name == "new_constructions": |
|
features = datasets.Features( |
|
{ |
|
"Region ID": datasets.Value(dtype="string", id="Region ID"), |
|
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"), |
|
"Region": datasets.Value(dtype="string", id="Region"), |
|
"Region Type": datasets.Value(dtype="string", id="Region Type"), |
|
"State": datasets.Value(dtype="string", id="State"), |
|
"Home Type": datasets.Value(dtype="string", id="Home Type"), |
|
"Date": datasets.Value(dtype="string", id="Date"), |
|
"Sale Price": datasets.Value(dtype="float32", id="Sale Price"), |
|
"Sale Price per Sqft": datasets.Value( |
|
dtype="float32", id="Sale Price per Sqft" |
|
), |
|
"Count": datasets.Value(dtype="int32", id="Count"), |
|
|
|
} |
|
) |
|
elif self.config.name == "for_sale_listings": |
|
features = datasets.Features( |
|
{ |
|
"Region ID": datasets.Value(dtype="string", id="Region ID"), |
|
"Size Rank": datasets.Value(dtype="int32", id="Size Rank"), |
|
"Region": datasets.Value(dtype="string", id="Region"), |
|
"Region Type": datasets.Value(dtype="string", id="Region Type"), |
|
"State": datasets.Value(dtype="string", id="State"), |
|
"Home Type": datasets.Value(dtype="string", id="Home Type"), |
|
"Date": datasets.Value(dtype="string", id="Date"), |
|
"Median Listing Price": datasets.Value( |
|
dtype="float32", id="Median Listing Price" |
|
), |
|
"Median Listing Price (Smoothed)": datasets.Value( |
|
dtype="float32", id="Median Listing Price (Smoothed)" |
|
), |
|
"New Listings": datasets.Value(dtype="int32", id="New Listings"), |
|
"New Listings (Smoothed)": datasets.Value( |
|
dtype="int32", id="New Listings (Smoothed)" |
|
), |
|
"New Pending (Smoothed)": datasets.Value( |
|
dtype="int32", id="New Pending (Smoothed)" |
|
), |
|
"New Pending": datasets.Value(dtype="int32", id="New Pending"), |
|
|
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file_path = os.path.join("processed", self.config.name, "final.jsonl") |
|
|
|
|
|
|
|
file_train = dl_manager.download(file_path) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": file_train, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": file_train, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": file_train, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
if self.config.name == "home_value_forecasts": |
|
|
|
yield key, { |
|
"RegionID": data["RegionID"], |
|
"SizeRank": data["SizeRank"], |
|
"RegionName": data["RegionName"], |
|
"RegionType": data["RegionType"], |
|
"State": data["State"], |
|
"City": data["City"], |
|
"Metro": data["Metro"], |
|
"County": data["County"], |
|
"BaseDate": data["BaseDate"], |
|
"Month Over Month % (Smoothed)": data[ |
|
"Month Over Month % (Smoothed)" |
|
], |
|
"Quarter Over Quarter % (Smoothed)": data[ |
|
"Quarter Over Quarter % (Smoothed)" |
|
], |
|
"Year Over Year % (Smoothed)": data[ |
|
"Year Over Year % (Smoothed)" |
|
], |
|
"Month Over Month % (Raw)": data["Month Over Month % (Raw)"], |
|
"Quarter Over Quarter % (Raw)": data[ |
|
"Quarter Over Quarter % (Raw)" |
|
], |
|
"Year Over Year % (Raw)": data["Year Over Year % (Raw)"], |
|
|
|
} |
|
elif self.config.name == "new_constructions": |
|
|
|
yield key, { |
|
"Region ID": data["Region ID"], |
|
"Size Rank": data["Size Rank"], |
|
"Region": data["Region"], |
|
"Region Type": data["Region Type"], |
|
"State": data["State"], |
|
"Home Type": data["Home Type"], |
|
"Date": data["Date"], |
|
"Sale Price": data["Sale Price"], |
|
"Sale Price per Sqft": data["Sale Price per Sqft"], |
|
"Count": data["Count"], |
|
|
|
} |
|
elif self.config.name == "for_sale_listings": |
|
|
|
yield key, { |
|
"Region ID": data["Region ID"], |
|
"Size Rank": data["Size Rank"], |
|
"Region": data["Region"], |
|
"Region Type": data["Region Type"], |
|
"State": data["State"], |
|
"Home Type": data["Home Type"], |
|
"Date": data["Date"], |
|
"Median Listing Price": data["Median Listing Price"], |
|
"Median Listing Price (Smoothed)": data[ |
|
"Median Listing Price (Smoothed)" |
|
], |
|
"New Listings": data["New Listings"], |
|
"New Listings (Smoothed)": data["New Listings (Smoothed)"], |
|
"New Pending (Smoothed)": data["New Pending (Smoothed)"], |
|
"New Pending": data["New Pending"], |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|