|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import os |
|
|
|
from helpers import get_combined_df, save_final_df_as_jsonl |
|
|
|
|
|
|
|
|
|
|
|
DATA_DIR = "../data/" |
|
PROCESSED_DIR = "../processed/" |
|
FACET_DIR = "home_values_forecasts/" |
|
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR) |
|
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR) |
|
|
|
|
|
|
|
|
|
|
|
data_frames = [] |
|
|
|
for filename in os.listdir(FULL_DATA_DIR_PATH): |
|
if filename.endswith(".csv"): |
|
print("processing " + filename) |
|
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename)) |
|
|
|
cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"] |
|
if filename.endswith("sm_sa_month.csv"): |
|
|
|
cur_df.columns = list(cur_df.columns[:-3]) + [ |
|
x + " (Smoothed) (Seasonally Adjusted)" for x in cols |
|
] |
|
else: |
|
|
|
cur_df.columns = list(cur_df.columns[:-3]) + cols |
|
cur_df["RegionName"] = cur_df["RegionName"].astype(str) |
|
|
|
data_frames.append(cur_df) |
|
|
|
|
|
combined_df = get_combined_df( |
|
data_frames, |
|
[ |
|
"RegionID", |
|
"RegionType", |
|
"SizeRank", |
|
"StateName", |
|
"BaseDate", |
|
], |
|
) |
|
|
|
combined_df |
|
|
|
|
|
|
|
|
|
|
|
|
|
final_df = combined_df |
|
final_df = combined_df.drop("StateName", axis=1) |
|
final_df = final_df.rename( |
|
columns={ |
|
"CountyName": "County", |
|
"BaseDate": "Date", |
|
"RegionName": "Region", |
|
"RegionID": "Region ID", |
|
"SizeRank": "Size Rank", |
|
} |
|
) |
|
|
|
|
|
for index, row in final_df.iterrows(): |
|
if row["RegionType"] == "msa": |
|
regionName = row["Region"] |
|
|
|
|
|
city = regionName.split(", ")[0] |
|
final_df.at[index, "City"] = city |
|
|
|
state = regionName.split(", ")[1] |
|
final_df.at[index, "State"] = state |
|
|
|
final_df |
|
|
|
|
|
|
|
|
|
|
|
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df) |
|
|