zillow / processors /rentals.py
misikoff's picture
Revert "feat: try removing all non essential python and notebook files"
c83a125
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import os
from helpers import (
get_data_path_for_config,
get_combined_df,
save_final_df_as_jsonl,
handle_slug_column_mappings,
set_home_type,
)
# In[1]:
CONFIG_NAME = "rentals"
# In[3]:
data_frames = []
slug_column_mappings = {"": "Rent"}
data_dir_path = get_data_path_for_config(CONFIG_NAME)
for filename in os.listdir(data_dir_path):
if filename.endswith(".csv"):
print("processing " + filename)
cur_df = pd.read_csv(os.path.join(data_dir_path, filename))
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
]
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
cur_df = set_home_type(cur_df, filename)
if "City" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# City Specific
"State",
"Metro",
"CountyName",
]
elif "Zip" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# Zip Specific
"State",
"City",
"Metro",
"CountyName",
]
elif "County" in filename:
exclude_columns = [
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
# County Specific
"State",
"Metro",
"StateCodeFIPS",
"MunicipalCodeFIPS",
]
data_frames = handle_slug_column_mappings(
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
)
combined_df = get_combined_df(
data_frames,
[
"RegionID",
"SizeRank",
"RegionName",
"RegionType",
"StateName",
"Home Type",
"Date",
],
)
combined_df
# In[4]:
final_df = combined_df
for index, row in final_df.iterrows():
if row["RegionType"] == "city":
final_df.at[index, "City"] = row["RegionName"]
elif row["RegionType"] == "county":
final_df.at[index, "County"] = row["RegionName"]
# coalesce State and StateName columns
final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
final_df["State"] = final_df["County"].combine_first(final_df["CountyName"])
final_df = final_df.drop(columns=["StateName", "CountyName"])
final_df
# In[5]:
# Adjust column names
final_df = final_df.rename(
columns={
"RegionID": "Region ID",
"SizeRank": "Size Rank",
"RegionName": "Region",
"RegionType": "Region Type",
"StateCodeFIPS": "State Code FIPS",
"MunicipalCodeFIPS": "Municipal Code FIPS",
}
)
final_df["Date"] = pd.to_datetime(final_df["Date"], format="%Y-%m-%d")
final_df
# In[7]:
save_final_df_as_jsonl(CONFIG_NAME, final_df)