misikoff commited on
Commit
337cc9e
Β·
1 Parent(s): 814864c
Files changed (2) hide show
  1. tester.ipynb +72 -8
  2. zillow.py +2 -2
tester.ipynb CHANGED
@@ -2,7 +2,7 @@
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
- "execution_count": 1,
6
  "metadata": {},
7
  "outputs": [
8
  {
@@ -22,16 +22,13 @@
22
  },
23
  {
24
  "cell_type": "code",
25
- "execution_count": 2,
26
  "metadata": {},
27
  "outputs": [
28
  {
29
  "name": "stderr",
30
  "output_type": "stream",
31
  "text": [
32
- "Downloading builder script: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 13.7k/13.7k [00:00<00:00, 11.1MB/s]\n",
33
- "Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 215/215 [00:00<00:00, 747kB/s]\n",
34
- "Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 9.87M/9.87M [00:00<00:00, 16.5MB/s]\n",
35
  "Generating train split: 0 examples [00:00, ? examples/s]\n"
36
  ]
37
  },
@@ -43,11 +40,11 @@
43
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
44
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
45
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1726\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1725\u001b[0m _time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[0;32m-> 1726\u001b[0m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrecord\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgenerator\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 1727\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_bytes\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m:\u001b[49m\n",
46
- "File \u001b[0;32m~/.cache/huggingface/modules/datasets_modules/datasets/misikoff--zillow/c8c1c5afe126b95501e8be6a19b2de8d85dc9cee2bc9ba878e9bf4c48cfc02a9/zillow.py:257\u001b[0m, in \u001b[0;36mNewDataset._generate_examples\u001b[0;34m(self, filepath, split)\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnew_constructions\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 250\u001b[0m \u001b[38;5;66;03m# Yields examples as (key, example) tuples\u001b[39;00m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m key, {\n\u001b[1;32m 252\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 253\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSize Rank\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSize Rank\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 254\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 255\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion Type\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion Type\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 256\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mState\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mState\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m--> 257\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mValue Type\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[43mdata\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mValue Type\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m,\n\u001b[1;32m 258\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHome Type\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHome Type\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 260\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSale Price\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSale Price\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 261\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSale Price per Sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSale Price per Sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 262\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCount\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCount\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 263\u001b[0m \u001b[38;5;66;03m# \"answer\": \"\" if split == \"test\" else data[\"answer\"],\u001b[39;00m\n\u001b[1;32m 264\u001b[0m }\n",
47
- "\u001b[0;31mKeyError\u001b[0m: 'Value Type'",
48
  "\nThe above exception was the direct cause of the following exception:\n",
49
  "\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)",
50
- "Cell \u001b[0;32mIn[2], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnew_constructions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
51
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2574\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2571\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 2574\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2575\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2576\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2577\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2578\u001b[0m \u001b[43m \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2579\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2580\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2581\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2583\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m 2584\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 2585\u001b[0m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m 2586\u001b[0m )\n",
52
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1005\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1004\u001b[0m prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m-> 1005\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1007\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1010\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
53
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1767\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1766\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1767\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1768\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1769\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1770\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[1;32m 1771\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1772\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1773\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
@@ -61,6 +58,73 @@
61
  "source": [
62
  "dataset = load_dataset(\"misikoff/zillow\", \"new_constructions\", trust_remote_code=True)"
63
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  }
65
  ],
66
  "metadata": {
 
2
  "cells": [
3
  {
4
  "cell_type": "code",
5
+ "execution_count": 2,
6
  "metadata": {},
7
  "outputs": [
8
  {
 
22
  },
23
  {
24
  "cell_type": "code",
25
+ "execution_count": 4,
26
  "metadata": {},
27
  "outputs": [
28
  {
29
  "name": "stderr",
30
  "output_type": "stream",
31
  "text": [
 
 
 
32
  "Generating train split: 0 examples [00:00, ? examples/s]\n"
33
  ]
34
  },
 
40
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
41
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
42
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1726\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._prepare_split_single\u001b[0;34m(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)\u001b[0m\n\u001b[1;32m 1725\u001b[0m _time \u001b[38;5;241m=\u001b[39m time\u001b[38;5;241m.\u001b[39mtime()\n\u001b[0;32m-> 1726\u001b[0m \u001b[43m\u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrecord\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgenerator\u001b[49m\u001b[43m:\u001b[49m\n\u001b[1;32m 1727\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_num_bytes\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mmax_shard_size\u001b[49m\u001b[43m:\u001b[49m\n",
43
+ "File \u001b[0;32m~/.cache/huggingface/modules/datasets_modules/datasets/misikoff--zillow/2cb3d5d954e44d4753cda7ca8de32141b9ae6f4454c1a69b4534a4fe08d54c79/zillow.py:260\u001b[0m, in \u001b[0;36mNewDataset._generate_examples\u001b[0;34m(self, filepath, split)\u001b[0m\n\u001b[1;32m 250\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mname \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnew_constructions\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[1;32m 251\u001b[0m \u001b[38;5;66;03m# Yields examples as (key, example) tuples\u001b[39;00m\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01myield\u001b[39;00m key, {\n\u001b[1;32m 253\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion ID\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 254\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSize Rank\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSize Rank\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 255\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 256\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion Type\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRegion Type\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 257\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mState\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mState\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 258\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHome Type\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHome Type\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 259\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDate\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[0;32m--> 260\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMedian Sale Price\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[43mdata\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mMedian Sale Price\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m]\u001b[49m,\n\u001b[1;32m 261\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMedian Sale Price per Sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\n\u001b[1;32m 262\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMedian Sale Price per Sqft\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 263\u001b[0m ],\n\u001b[1;32m 264\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSales Count\u001b[39m\u001b[38;5;124m\"\u001b[39m: data[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSales Count\u001b[39m\u001b[38;5;124m\"\u001b[39m],\n\u001b[1;32m 265\u001b[0m \u001b[38;5;66;03m# \"answer\": \"\" if split == \"test\" else data[\"answer\"],\u001b[39;00m\n\u001b[1;32m 266\u001b[0m }\n",
44
+ "\u001b[0;31mKeyError\u001b[0m: 'Median Sale Price'",
45
  "\nThe above exception was the direct cause of the following exception:\n",
46
  "\u001b[0;31mDatasetGenerationError\u001b[0m Traceback (most recent call last)",
47
+ "Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dataset \u001b[38;5;241m=\u001b[39m \u001b[43mload_dataset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmisikoff/zillow\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mnew_constructions\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n",
48
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/load.py:2574\u001b[0m, in \u001b[0;36mload_dataset\u001b[0;34m(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\u001b[0m\n\u001b[1;32m 2571\u001b[0m try_from_hf_gcs \u001b[38;5;241m=\u001b[39m path \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m _PACKAGED_DATASETS_MODULES\n\u001b[1;32m 2573\u001b[0m \u001b[38;5;66;03m# Download and prepare data\u001b[39;00m\n\u001b[0;32m-> 2574\u001b[0m \u001b[43mbuilder_instance\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdownload_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2575\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_config\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_config\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2576\u001b[0m \u001b[43m \u001b[49m\u001b[43mdownload_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdownload_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2577\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2578\u001b[0m \u001b[43m \u001b[49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_from_hf_gcs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2579\u001b[0m \u001b[43m \u001b[49m\u001b[43mnum_proc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnum_proc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2580\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstorage_options\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2581\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2583\u001b[0m \u001b[38;5;66;03m# Build dataset for splits\u001b[39;00m\n\u001b[1;32m 2584\u001b[0m keep_in_memory \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 2585\u001b[0m keep_in_memory \u001b[38;5;28;01mif\u001b[39;00m keep_in_memory \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m is_small_dataset(builder_instance\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size)\n\u001b[1;32m 2586\u001b[0m )\n",
49
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1005\u001b[0m, in \u001b[0;36mDatasetBuilder.download_and_prepare\u001b[0;34m(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs)\u001b[0m\n\u001b[1;32m 1003\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m num_proc \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 1004\u001b[0m prepare_split_kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnum_proc\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m num_proc\n\u001b[0;32m-> 1005\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1006\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1007\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1008\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_split_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1009\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mdownload_and_prepare_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1010\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1011\u001b[0m \u001b[38;5;66;03m# Sync info\u001b[39;00m\n\u001b[1;32m 1012\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39mdataset_size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28msum\u001b[39m(split\u001b[38;5;241m.\u001b[39mnum_bytes \u001b[38;5;28;01mfor\u001b[39;00m split \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39minfo\u001b[38;5;241m.\u001b[39msplits\u001b[38;5;241m.\u001b[39mvalues())\n",
50
  "File \u001b[0;32m~/opt/anaconda3/envs/sta663/lib/python3.12/site-packages/datasets/builder.py:1767\u001b[0m, in \u001b[0;36mGeneratorBasedBuilder._download_and_prepare\u001b[0;34m(self, dl_manager, verification_mode, **prepare_splits_kwargs)\u001b[0m\n\u001b[1;32m 1766\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_download_and_prepare\u001b[39m(\u001b[38;5;28mself\u001b[39m, dl_manager, verification_mode, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mprepare_splits_kwargs):\n\u001b[0;32m-> 1767\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_download_and_prepare\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1768\u001b[0m \u001b[43m \u001b[49m\u001b[43mdl_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1769\u001b[0m \u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1770\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_duplicate_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBASIC_CHECKS\u001b[49m\n\u001b[1;32m 1771\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mverification_mode\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mVerificationMode\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mALL_CHECKS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1772\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mprepare_splits_kwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1773\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n",
 
58
  "source": [
59
  "dataset = load_dataset(\"misikoff/zillow\", \"new_constructions\", trust_remote_code=True)"
60
  ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": 5,
65
+ "metadata": {},
66
+ "outputs": [
67
+ {
68
+ "data": {
69
+ "text/plain": [
70
+ "{'Region ID': '102001',\n",
71
+ " 'Size Rank': 0,\n",
72
+ " 'Region': 'United States',\n",
73
+ " 'Region Type': 'country',\n",
74
+ " 'State': None,\n",
75
+ " 'Home Type': 'SFR',\n",
76
+ " 'Date': '2018-01-31',\n",
77
+ " 'Sale Price': 309000.0,\n",
78
+ " 'Sale Price per Sqft': 137.41232299804688,\n",
79
+ " 'Count': 33940}"
80
+ ]
81
+ },
82
+ "execution_count": 5,
83
+ "metadata": {},
84
+ "output_type": "execute_result"
85
+ }
86
+ ],
87
+ "source": [
88
+ "next(iter((dataset[\"train\"])))"
89
+ ]
90
+ },
91
+ {
92
+ "cell_type": "code",
93
+ "execution_count": 6,
94
+ "metadata": {},
95
+ "outputs": [],
96
+ "source": [
97
+ "gen = iter((dataset[\"train\"]))"
98
+ ]
99
+ },
100
+ {
101
+ "cell_type": "code",
102
+ "execution_count": 24,
103
+ "metadata": {},
104
+ "outputs": [
105
+ {
106
+ "data": {
107
+ "text/plain": [
108
+ "{'Region ID': '102001',\n",
109
+ " 'Size Rank': 0,\n",
110
+ " 'Region': 'United States',\n",
111
+ " 'Region Type': 'country',\n",
112
+ " 'State': None,\n",
113
+ " 'Home Type': 'condo/co-op only',\n",
114
+ " 'Date': '2018-06-30',\n",
115
+ " 'Sale Price': 389394.5,\n",
116
+ " 'Sale Price per Sqft': 229.8614501953125,\n",
117
+ " 'Count': 4330}"
118
+ ]
119
+ },
120
+ "execution_count": 24,
121
+ "metadata": {},
122
+ "output_type": "execute_result"
123
+ }
124
+ ],
125
+ "source": [
126
+ "next(gen)"
127
+ ]
128
  }
129
  ],
130
  "metadata": {
zillow.py CHANGED
@@ -133,7 +133,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
133
  "Home Type": datasets.Value(dtype="string", id="Home Type"),
134
  "Date": datasets.Value(dtype="string", id="Date"),
135
  "Median Sale Price": datasets.Value(
136
- dtype="float32", id="Size Rank"
137
  ),
138
  "Median Sale Price per Sqft": datasets.Value(
139
  dtype="float32", id="Size Rank"
@@ -257,7 +257,7 @@ class NewDataset(datasets.GeneratorBasedBuilder):
257
  "State": data["State"],
258
  "Home Type": data["Home Type"],
259
  "Date": data["Date"],
260
- "Median Sale Price": data["Size Rank"],
261
  "Median Sale Price per Sqft": data["Size Rank"],
262
  "Sales Count": data["Size Rank"],
263
  # "answer": "" if split == "test" else data["answer"],
 
133
  "Home Type": datasets.Value(dtype="string", id="Home Type"),
134
  "Date": datasets.Value(dtype="string", id="Date"),
135
  "Median Sale Price": datasets.Value(
136
+ dtype="float32", id="Median Sale Price"
137
  ),
138
  "Median Sale Price per Sqft": datasets.Value(
139
  dtype="float32", id="Size Rank"
 
257
  "State": data["State"],
258
  "Home Type": data["Home Type"],
259
  "Date": data["Date"],
260
+ "Median Sale Price": data["Median Sale Price"],
261
  "Median Sale Price per Sqft": data["Size Rank"],
262
  "Sales Count": data["Size Rank"],
263
  # "answer": "" if split == "test" else data["answer"],