fix: simplify processors
Browse files- new_dataset_script.py +0 -183
- processors/days_on_market.ipynb +0 -3
- processors/for_sale_listings.ipynb +0 -3
- processors/helpers.py +17 -15
- processors/home_value_forecasts.ipynb +1 -3
- processors/home_values.ipynb +0 -3
- processors/new_construction.ipynb +0 -3
- processors/rentals.ipynb +0 -3
- processors/sales.ipynb +0 -3
new_dataset_script.py
DELETED
@@ -1,183 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
-
"""TODO: Add a description here."""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
import json
|
20 |
-
import os
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
|
24 |
-
# TODO: Add BibTeX citation
|
25 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
26 |
-
_CITATION = """\
|
27 |
-
@InProceedings{huggingface:dataset,
|
28 |
-
title = {A great new dataset},
|
29 |
-
author={huggingface, Inc.
|
30 |
-
},
|
31 |
-
year={2020}
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
# TODO: Add description of the dataset here
|
36 |
-
# You can copy an official description
|
37 |
-
_DESCRIPTION = """\
|
38 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
39 |
-
"""
|
40 |
-
|
41 |
-
# TODO: Add a link to an official homepage for the dataset here
|
42 |
-
_HOMEPAGE = ""
|
43 |
-
|
44 |
-
# TODO: Add the licence for the dataset here if you can find it
|
45 |
-
_LICENSE = ""
|
46 |
-
|
47 |
-
# TODO: Add link to the official dataset URLs here
|
48 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
-
_URLS = {
|
51 |
-
"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
|
52 |
-
"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
53 |
-
}
|
54 |
-
|
55 |
-
|
56 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
57 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
58 |
-
"""TODO: Short description of my dataset."""
|
59 |
-
|
60 |
-
VERSION = datasets.Version("1.1.0")
|
61 |
-
|
62 |
-
# This is an example of a dataset with multiple configurations.
|
63 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
64 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
65 |
-
|
66 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
67 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
68 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
69 |
-
|
70 |
-
# You will be able to load one or the other configurations in the following list with
|
71 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
72 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
73 |
-
BUILDER_CONFIGS = [
|
74 |
-
datasets.BuilderConfig(
|
75 |
-
name="first_domain",
|
76 |
-
version=VERSION,
|
77 |
-
description="This part of my dataset covers a first domain",
|
78 |
-
),
|
79 |
-
datasets.BuilderConfig(
|
80 |
-
name="second_domain",
|
81 |
-
version=VERSION,
|
82 |
-
description="This part of my dataset covers a second domain",
|
83 |
-
),
|
84 |
-
]
|
85 |
-
|
86 |
-
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
87 |
-
|
88 |
-
def _info(self):
|
89 |
-
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
90 |
-
if (
|
91 |
-
self.config.name == "first_domain"
|
92 |
-
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
93 |
-
features = datasets.Features(
|
94 |
-
{
|
95 |
-
"sentence": datasets.Value("string"),
|
96 |
-
"option1": datasets.Value("string"),
|
97 |
-
"answer": datasets.Value("string"),
|
98 |
-
# These are the features of your dataset like images, labels ...
|
99 |
-
}
|
100 |
-
)
|
101 |
-
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
|
102 |
-
features = datasets.Features(
|
103 |
-
{
|
104 |
-
"sentence": datasets.Value("string"),
|
105 |
-
"option2": datasets.Value("string"),
|
106 |
-
"second_domain_answer": datasets.Value("string"),
|
107 |
-
# These are the features of your dataset like images, labels ...
|
108 |
-
}
|
109 |
-
)
|
110 |
-
return datasets.DatasetInfo(
|
111 |
-
# This is the description that will appear on the datasets page.
|
112 |
-
description=_DESCRIPTION,
|
113 |
-
# This defines the different columns of the dataset and their types
|
114 |
-
features=features, # Here we define them above because they are different between the two configurations
|
115 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
116 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
117 |
-
# supervised_keys=("sentence", "label"),
|
118 |
-
# Homepage of the dataset for documentation
|
119 |
-
homepage=_HOMEPAGE,
|
120 |
-
# License for the dataset if available
|
121 |
-
license=_LICENSE,
|
122 |
-
# Citation for the dataset
|
123 |
-
citation=_CITATION,
|
124 |
-
)
|
125 |
-
|
126 |
-
def _split_generators(self, dl_manager):
|
127 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
128 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
129 |
-
|
130 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
131 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
132 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
133 |
-
urls = _URLS[self.config.name]
|
134 |
-
data_dir = dl_manager.download_and_extract(urls)
|
135 |
-
return [
|
136 |
-
datasets.SplitGenerator(
|
137 |
-
name=datasets.Split.TRAIN,
|
138 |
-
# These kwargs will be passed to _generate_examples
|
139 |
-
gen_kwargs={
|
140 |
-
"filepath": os.path.join(data_dir, "train.jsonl"),
|
141 |
-
"split": "train",
|
142 |
-
},
|
143 |
-
),
|
144 |
-
datasets.SplitGenerator(
|
145 |
-
name=datasets.Split.VALIDATION,
|
146 |
-
# These kwargs will be passed to _generate_examples
|
147 |
-
gen_kwargs={
|
148 |
-
"filepath": os.path.join(data_dir, "dev.jsonl"),
|
149 |
-
"split": "dev",
|
150 |
-
},
|
151 |
-
),
|
152 |
-
datasets.SplitGenerator(
|
153 |
-
name=datasets.Split.TEST,
|
154 |
-
# These kwargs will be passed to _generate_examples
|
155 |
-
gen_kwargs={
|
156 |
-
"filepath": os.path.join(data_dir, "test.jsonl"),
|
157 |
-
"split": "test",
|
158 |
-
},
|
159 |
-
),
|
160 |
-
]
|
161 |
-
|
162 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
163 |
-
def _generate_examples(self, filepath, split):
|
164 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
165 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
166 |
-
with open(filepath, encoding="utf-8") as f:
|
167 |
-
for key, row in enumerate(f):
|
168 |
-
data = json.loads(row)
|
169 |
-
if self.config.name == "first_domain":
|
170 |
-
# Yields examples as (key, example) tuples
|
171 |
-
yield key, {
|
172 |
-
"sentence": data["sentence"],
|
173 |
-
"option1": data["option1"],
|
174 |
-
"answer": "" if split == "test" else data["answer"],
|
175 |
-
}
|
176 |
-
else:
|
177 |
-
yield key, {
|
178 |
-
"sentence": data["sentence"],
|
179 |
-
"option2": data["option2"],
|
180 |
-
"second_domain_answer": (
|
181 |
-
"" if split == "test" else data["second_domain_answer"]
|
182 |
-
),
|
183 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/days_on_market.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -329,8 +328,6 @@
|
|
329 |
" ],\n",
|
330 |
")\n",
|
331 |
"\n",
|
332 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
333 |
-
"\n",
|
334 |
"combined_df"
|
335 |
]
|
336 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
328 |
" ],\n",
|
329 |
")\n",
|
330 |
"\n",
|
|
|
|
|
331 |
"combined_df"
|
332 |
]
|
333 |
},
|
processors/for_sale_listings.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -397,8 +396,6 @@
|
|
397 |
" ],\n",
|
398 |
")\n",
|
399 |
"\n",
|
400 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
401 |
-
"\n",
|
402 |
"combined_df"
|
403 |
]
|
404 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
396 |
" ],\n",
|
397 |
")\n",
|
398 |
"\n",
|
|
|
|
|
399 |
"combined_df"
|
400 |
]
|
401 |
},
|
processors/helpers.py
CHANGED
@@ -2,6 +2,22 @@ import pandas as pd
|
|
2 |
import os
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
def get_combined_df(data_frames, on):
|
6 |
combined_df = None
|
7 |
if len(data_frames) > 1:
|
@@ -19,22 +35,8 @@ def get_combined_df(data_frames, on):
|
|
19 |
elif len(data_frames) == 1:
|
20 |
combined_df = data_frames[0]
|
21 |
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
def coalesce_columns(
|
26 |
-
df,
|
27 |
-
):
|
28 |
-
columns_to_coalesce = [col for col in df.columns if "_" not in col]
|
29 |
-
for index, row in df.iterrows():
|
30 |
-
for col in df.columns:
|
31 |
-
for column_to_coalesce in columns_to_coalesce:
|
32 |
-
if column_to_coalesce in col and "_" in col:
|
33 |
-
if not pd.isna(row[col]):
|
34 |
-
df.at[index, column_to_coalesce] = row[col]
|
35 |
-
|
36 |
-
# remove columns with underscores
|
37 |
-
combined_df = df[columns_to_coalesce]
|
38 |
return combined_df
|
39 |
|
40 |
|
|
|
2 |
import os
|
3 |
|
4 |
|
5 |
+
def coalesce_columns(
|
6 |
+
df,
|
7 |
+
):
|
8 |
+
columns_to_coalesce = [col for col in df.columns if "_" not in col]
|
9 |
+
for index, row in df.iterrows():
|
10 |
+
for col in df.columns:
|
11 |
+
for column_to_coalesce in columns_to_coalesce:
|
12 |
+
if column_to_coalesce in col and "_" in col:
|
13 |
+
if not pd.isna(row[col]):
|
14 |
+
df.at[index, column_to_coalesce] = row[col]
|
15 |
+
|
16 |
+
# remove columns with underscores
|
17 |
+
combined_df = df[columns_to_coalesce]
|
18 |
+
return combined_df
|
19 |
+
|
20 |
+
|
21 |
def get_combined_df(data_frames, on):
|
22 |
combined_df = None
|
23 |
if len(data_frames) > 1:
|
|
|
35 |
elif len(data_frames) == 1:
|
36 |
combined_df = data_frames[0]
|
37 |
|
38 |
+
combined_df = coalesce_columns(combined_df)
|
|
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
return combined_df
|
41 |
|
42 |
|
processors/home_value_forecasts.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
"import pandas as pd\n",
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
-
"from helpers import get_combined_df,
|
13 |
]
|
14 |
},
|
15 |
{
|
@@ -414,8 +414,6 @@
|
|
414 |
" ],\n",
|
415 |
")\n",
|
416 |
"\n",
|
417 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
418 |
-
"\n",
|
419 |
"combined_df"
|
420 |
]
|
421 |
},
|
|
|
9 |
"import pandas as pd\n",
|
10 |
"import os\n",
|
11 |
"\n",
|
12 |
+
"from helpers import get_combined_df, save_final_df_as_jsonl"
|
13 |
]
|
14 |
},
|
15 |
{
|
|
|
414 |
" ],\n",
|
415 |
")\n",
|
416 |
"\n",
|
|
|
|
|
417 |
"combined_df"
|
418 |
]
|
419 |
},
|
processors/home_values.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -466,8 +465,6 @@
|
|
466 |
" ],\n",
|
467 |
")\n",
|
468 |
"\n",
|
469 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
470 |
-
"\n",
|
471 |
"combined_df"
|
472 |
]
|
473 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
465 |
" ],\n",
|
466 |
")\n",
|
467 |
"\n",
|
|
|
|
|
468 |
"combined_df"
|
469 |
]
|
470 |
},
|
processors/new_construction.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -315,8 +314,6 @@
|
|
315 |
" ],\n",
|
316 |
")\n",
|
317 |
"\n",
|
318 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
319 |
-
"\n",
|
320 |
"combined_df"
|
321 |
]
|
322 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
314 |
" ],\n",
|
315 |
")\n",
|
316 |
"\n",
|
|
|
|
|
317 |
"combined_df"
|
318 |
]
|
319 |
},
|
processors/rentals.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -438,8 +437,6 @@
|
|
438 |
" ],\n",
|
439 |
")\n",
|
440 |
"\n",
|
441 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
442 |
-
"\n",
|
443 |
"combined_df"
|
444 |
]
|
445 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
437 |
" ],\n",
|
438 |
")\n",
|
439 |
"\n",
|
|
|
|
|
440 |
"combined_df"
|
441 |
]
|
442 |
},
|
processors/sales.ipynb
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
14 |
-
" coalesce_columns,\n",
|
15 |
" save_final_df_as_jsonl,\n",
|
16 |
" handle_slug_column_mappings,\n",
|
17 |
")"
|
@@ -525,8 +524,6 @@
|
|
525 |
" ],\n",
|
526 |
")\n",
|
527 |
"\n",
|
528 |
-
"combined_df = coalesce_columns(combined_df)\n",
|
529 |
-
"\n",
|
530 |
"combined_df"
|
531 |
]
|
532 |
},
|
|
|
11 |
"\n",
|
12 |
"from helpers import (\n",
|
13 |
" get_combined_df,\n",
|
|
|
14 |
" save_final_df_as_jsonl,\n",
|
15 |
" handle_slug_column_mappings,\n",
|
16 |
")"
|
|
|
524 |
" ],\n",
|
525 |
")\n",
|
526 |
"\n",
|
|
|
|
|
527 |
"combined_df"
|
528 |
]
|
529 |
},
|