fix: remove old processors
Browse files- processors/days_on_market.py +0 -107
- processors/for_sale_listings.py +0 -106
- processors/home_values.py +0 -181
- processors/home_values_forecasts.py +0 -96
- processors/new_construction.py +0 -101
- processors/rentals.py +0 -160
- processors/sales.py +0 -106
processors/days_on_market.py
DELETED
@@ -1,107 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[2]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "days_on_market/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[3]:
|
28 |
-
|
29 |
-
|
30 |
-
data_frames = []
|
31 |
-
|
32 |
-
exclude_columns = [
|
33 |
-
"RegionID",
|
34 |
-
"SizeRank",
|
35 |
-
"RegionName",
|
36 |
-
"RegionType",
|
37 |
-
"StateName",
|
38 |
-
"Home Type",
|
39 |
-
]
|
40 |
-
|
41 |
-
slug_column_mappings = {
|
42 |
-
"_mean_listings_price_cut_amt_": "Mean Listings Price Cut Amount",
|
43 |
-
"_med_doz_pending_": "Median Days on Pending",
|
44 |
-
"_median_days_to_pending_": "Median Days to Close",
|
45 |
-
"_perc_listings_price_cut_": "Percent Listings Price Cut",
|
46 |
-
}
|
47 |
-
|
48 |
-
|
49 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
50 |
-
if filename.endswith(".csv"):
|
51 |
-
print("processing " + filename)
|
52 |
-
# skip month files for now since they are redundant
|
53 |
-
if "month" in filename:
|
54 |
-
continue
|
55 |
-
|
56 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
57 |
-
|
58 |
-
if "_uc_sfrcondo_" in filename:
|
59 |
-
cur_df["Home Type"] = "all homes (SFR + Condo)"
|
60 |
-
# change column type to string
|
61 |
-
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
62 |
-
elif "_uc_sfr_" in filename:
|
63 |
-
cur_df["Home Type"] = "SFR"
|
64 |
-
|
65 |
-
data_frames = handle_slug_column_mappings(
|
66 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
67 |
-
)
|
68 |
-
|
69 |
-
|
70 |
-
combined_df = get_combined_df(
|
71 |
-
data_frames,
|
72 |
-
[
|
73 |
-
"RegionID",
|
74 |
-
"SizeRank",
|
75 |
-
"RegionName",
|
76 |
-
"RegionType",
|
77 |
-
"StateName",
|
78 |
-
"Home Type",
|
79 |
-
"Date",
|
80 |
-
],
|
81 |
-
)
|
82 |
-
|
83 |
-
combined_df
|
84 |
-
|
85 |
-
|
86 |
-
# In[9]:
|
87 |
-
|
88 |
-
|
89 |
-
# Adjust column names
|
90 |
-
final_df = combined_df.rename(
|
91 |
-
columns={
|
92 |
-
"RegionID": "Region ID",
|
93 |
-
"SizeRank": "Size Rank",
|
94 |
-
"RegionName": "Region",
|
95 |
-
"RegionType": "Region Type",
|
96 |
-
"StateName": "State",
|
97 |
-
}
|
98 |
-
)
|
99 |
-
|
100 |
-
final_df
|
101 |
-
|
102 |
-
|
103 |
-
# In[5]:
|
104 |
-
|
105 |
-
|
106 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/for_sale_listings.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[2]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "for_sale_listings/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[3]:
|
28 |
-
|
29 |
-
|
30 |
-
exclude_columns = [
|
31 |
-
"RegionID",
|
32 |
-
"SizeRank",
|
33 |
-
"RegionName",
|
34 |
-
"RegionType",
|
35 |
-
"StateName",
|
36 |
-
"Home Type",
|
37 |
-
]
|
38 |
-
|
39 |
-
slug_column_mappings = {
|
40 |
-
"_mlp_": "Median Listing Price",
|
41 |
-
"_new_listings_": "New Listings",
|
42 |
-
"new_pending": "New Pending",
|
43 |
-
}
|
44 |
-
|
45 |
-
|
46 |
-
data_frames = []
|
47 |
-
|
48 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
49 |
-
if filename.endswith(".csv"):
|
50 |
-
print("processing " + filename)
|
51 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
52 |
-
|
53 |
-
# ignore monthly data for now since it is redundant
|
54 |
-
if "month" in filename:
|
55 |
-
continue
|
56 |
-
|
57 |
-
if "sfrcondo" in filename:
|
58 |
-
cur_df["Home Type"] = "all homes"
|
59 |
-
elif "sfr" in filename:
|
60 |
-
cur_df["Home Type"] = "SFR"
|
61 |
-
elif "condo" in filename:
|
62 |
-
cur_df["Home Type"] = "condo/co-op only"
|
63 |
-
|
64 |
-
data_frames = handle_slug_column_mappings(
|
65 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
-
combined_df = get_combined_df(
|
70 |
-
data_frames,
|
71 |
-
[
|
72 |
-
"RegionID",
|
73 |
-
"SizeRank",
|
74 |
-
"RegionName",
|
75 |
-
"RegionType",
|
76 |
-
"StateName",
|
77 |
-
"Home Type",
|
78 |
-
"Date",
|
79 |
-
],
|
80 |
-
)
|
81 |
-
|
82 |
-
combined_df
|
83 |
-
|
84 |
-
|
85 |
-
# In[4]:
|
86 |
-
|
87 |
-
|
88 |
-
# Adjust column names
|
89 |
-
final_df = combined_df.rename(
|
90 |
-
columns={
|
91 |
-
"RegionID": "Region ID",
|
92 |
-
"SizeRank": "Size Rank",
|
93 |
-
"RegionName": "Region",
|
94 |
-
"RegionType": "Region Type",
|
95 |
-
"StateName": "State",
|
96 |
-
}
|
97 |
-
)
|
98 |
-
|
99 |
-
final_df
|
100 |
-
|
101 |
-
|
102 |
-
# In[5]:
|
103 |
-
|
104 |
-
|
105 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/home_values.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[2]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "home_values/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[5]:
|
28 |
-
|
29 |
-
|
30 |
-
data_frames = []
|
31 |
-
|
32 |
-
slug_column_mappings = {
|
33 |
-
"_tier_0.0_0.33_": "Bottom Tier ZHVI",
|
34 |
-
"_tier_0.33_0.67_": "Mid Tier ZHVI",
|
35 |
-
"_tier_0.67_1.0_": "Top Tier ZHVI",
|
36 |
-
"": "ZHVI",
|
37 |
-
}
|
38 |
-
|
39 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
40 |
-
if filename.endswith(".csv"):
|
41 |
-
print("processing " + filename)
|
42 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
43 |
-
exclude_columns = [
|
44 |
-
"RegionID",
|
45 |
-
"SizeRank",
|
46 |
-
"RegionName",
|
47 |
-
"RegionType",
|
48 |
-
"StateName",
|
49 |
-
"Bedroom Count",
|
50 |
-
"Home Type",
|
51 |
-
]
|
52 |
-
|
53 |
-
if "Zip" in filename:
|
54 |
-
continue
|
55 |
-
if "Neighborhood" in filename:
|
56 |
-
continue
|
57 |
-
if "City" in filename:
|
58 |
-
continue
|
59 |
-
if "Metro" in filename:
|
60 |
-
continue
|
61 |
-
if "County" in filename:
|
62 |
-
continue
|
63 |
-
|
64 |
-
if "City" in filename:
|
65 |
-
exclude_columns = exclude_columns + ["State", "Metro", "CountyName"]
|
66 |
-
elif "Zip" in filename:
|
67 |
-
exclude_columns = exclude_columns + [
|
68 |
-
"State",
|
69 |
-
"City",
|
70 |
-
"Metro",
|
71 |
-
"CountyName",
|
72 |
-
]
|
73 |
-
elif "County" in filename:
|
74 |
-
exclude_columns = exclude_columns + [
|
75 |
-
"State",
|
76 |
-
"Metro",
|
77 |
-
"StateCodeFIPS",
|
78 |
-
"MunicipalCodeFIPS",
|
79 |
-
]
|
80 |
-
elif "Neighborhood" in filename:
|
81 |
-
exclude_columns = exclude_columns + [
|
82 |
-
"State",
|
83 |
-
"City",
|
84 |
-
"Metro",
|
85 |
-
"CountyName",
|
86 |
-
]
|
87 |
-
|
88 |
-
if "_bdrmcnt_1_" in filename:
|
89 |
-
cur_df["Bedroom Count"] = "1-Bedroom"
|
90 |
-
elif "_bdrmcnt_2_" in filename:
|
91 |
-
cur_df["Bedroom Count"] = "2-Bedrooms"
|
92 |
-
elif "_bdrmcnt_3_" in filename:
|
93 |
-
cur_df["Bedroom Count"] = "3-Bedrooms"
|
94 |
-
elif "_bdrmcnt_4_" in filename:
|
95 |
-
cur_df["Bedroom Count"] = "4-Bedrooms"
|
96 |
-
elif "_bdrmcnt_5_" in filename:
|
97 |
-
cur_df["Bedroom Count"] = "5+-Bedrooms"
|
98 |
-
else:
|
99 |
-
cur_df["Bedroom Count"] = "All Bedrooms"
|
100 |
-
|
101 |
-
if "_uc_sfr_" in filename:
|
102 |
-
cur_df["Home Type"] = "SFR"
|
103 |
-
elif "_uc_sfrcondo_" in filename:
|
104 |
-
cur_df["Home Type"] = "all homes (SFR/condo)"
|
105 |
-
elif "_uc_condo_" in filename:
|
106 |
-
cur_df["Home Type"] = "condo"
|
107 |
-
|
108 |
-
cur_df["StateName"] = cur_df["StateName"].astype(str)
|
109 |
-
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
110 |
-
|
111 |
-
data_frames = handle_slug_column_mappings(
|
112 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
113 |
-
)
|
114 |
-
|
115 |
-
|
116 |
-
combined_df = get_combined_df(
|
117 |
-
data_frames,
|
118 |
-
[
|
119 |
-
"RegionID",
|
120 |
-
"SizeRank",
|
121 |
-
"RegionName",
|
122 |
-
"RegionType",
|
123 |
-
"StateName",
|
124 |
-
"Bedroom Count",
|
125 |
-
"Home Type",
|
126 |
-
"Date",
|
127 |
-
],
|
128 |
-
)
|
129 |
-
|
130 |
-
combined_df
|
131 |
-
|
132 |
-
|
133 |
-
# In[11]:
|
134 |
-
|
135 |
-
|
136 |
-
final_df = combined_df
|
137 |
-
|
138 |
-
for index, row in final_df.iterrows():
|
139 |
-
if row["RegionType"] == "city":
|
140 |
-
final_df.at[index, "City"] = row["RegionName"]
|
141 |
-
elif row["RegionType"] == "county":
|
142 |
-
final_df.at[index, "County"] = row["RegionName"]
|
143 |
-
if row["RegionType"] == "state":
|
144 |
-
final_df.at[index, "StateName"] = row["RegionName"]
|
145 |
-
|
146 |
-
# coalesce State and StateName columns
|
147 |
-
# final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
|
148 |
-
# final_df["County"] = final_df["County"].combine_first(final_df["CountyName"])
|
149 |
-
|
150 |
-
# final_df = final_df.drop(
|
151 |
-
# columns=[
|
152 |
-
# "StateName",
|
153 |
-
# # "CountyName"
|
154 |
-
# ]
|
155 |
-
# )
|
156 |
-
final_df
|
157 |
-
|
158 |
-
|
159 |
-
# In[12]:
|
160 |
-
|
161 |
-
|
162 |
-
final_df = final_df.rename(
|
163 |
-
columns={
|
164 |
-
"RegionID": "Region ID",
|
165 |
-
"SizeRank": "Size Rank",
|
166 |
-
"RegionName": "Region",
|
167 |
-
"RegionType": "Region Type",
|
168 |
-
"StateCodeFIPS": "State Code FIPS",
|
169 |
-
"StateName": "State",
|
170 |
-
"MunicipalCodeFIPS": "Municipal Code FIPS",
|
171 |
-
}
|
172 |
-
)
|
173 |
-
|
174 |
-
final_df
|
175 |
-
|
176 |
-
|
177 |
-
# In[13]:
|
178 |
-
|
179 |
-
|
180 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/home_values_forecasts.py
DELETED
@@ -1,96 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import get_combined_df, save_final_df_as_jsonl
|
11 |
-
|
12 |
-
|
13 |
-
# In[2]:
|
14 |
-
|
15 |
-
|
16 |
-
DATA_DIR = "../data/"
|
17 |
-
PROCESSED_DIR = "../processed/"
|
18 |
-
FACET_DIR = "home_values_forecasts/"
|
19 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
20 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
21 |
-
|
22 |
-
|
23 |
-
# In[3]:
|
24 |
-
|
25 |
-
|
26 |
-
data_frames = []
|
27 |
-
|
28 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
29 |
-
if filename.endswith(".csv"):
|
30 |
-
print("processing " + filename)
|
31 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
32 |
-
|
33 |
-
cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"]
|
34 |
-
if filename.endswith("sm_sa_month.csv"):
|
35 |
-
# print('Smoothed')
|
36 |
-
cur_df.columns = list(cur_df.columns[:-3]) + [
|
37 |
-
x + " (Smoothed) (Seasonally Adjusted)" for x in cols
|
38 |
-
]
|
39 |
-
else:
|
40 |
-
# print('Raw')
|
41 |
-
cur_df.columns = list(cur_df.columns[:-3]) + cols
|
42 |
-
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
43 |
-
|
44 |
-
data_frames.append(cur_df)
|
45 |
-
|
46 |
-
|
47 |
-
combined_df = get_combined_df(
|
48 |
-
data_frames,
|
49 |
-
[
|
50 |
-
"RegionID",
|
51 |
-
"RegionType",
|
52 |
-
"SizeRank",
|
53 |
-
"StateName",
|
54 |
-
"BaseDate",
|
55 |
-
],
|
56 |
-
)
|
57 |
-
|
58 |
-
combined_df
|
59 |
-
|
60 |
-
|
61 |
-
# In[4]:
|
62 |
-
|
63 |
-
|
64 |
-
# Adjust columns
|
65 |
-
final_df = combined_df
|
66 |
-
final_df = combined_df.drop("StateName", axis=1)
|
67 |
-
final_df = final_df.rename(
|
68 |
-
columns={
|
69 |
-
"CountyName": "County",
|
70 |
-
"BaseDate": "Date",
|
71 |
-
"RegionName": "Region",
|
72 |
-
"RegionType": "Region Type",
|
73 |
-
"RegionID": "Region ID",
|
74 |
-
"SizeRank": "Size Rank",
|
75 |
-
}
|
76 |
-
)
|
77 |
-
|
78 |
-
# iterate over rows of final_df and populate State and City columns if the regionType is msa
|
79 |
-
for index, row in final_df.iterrows():
|
80 |
-
if row["Region Type"] == "msa":
|
81 |
-
regionName = row["Region"]
|
82 |
-
# final_df.at[index, 'Metro'] = regionName
|
83 |
-
|
84 |
-
city = regionName.split(", ")[0]
|
85 |
-
final_df.at[index, "City"] = city
|
86 |
-
|
87 |
-
state = regionName.split(", ")[1]
|
88 |
-
final_df.at[index, "State"] = state
|
89 |
-
|
90 |
-
final_df
|
91 |
-
|
92 |
-
|
93 |
-
# In[9]:
|
94 |
-
|
95 |
-
|
96 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/new_construction.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[2]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "new_construction/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[3]:
|
28 |
-
|
29 |
-
|
30 |
-
exclude_columns = [
|
31 |
-
"RegionID",
|
32 |
-
"SizeRank",
|
33 |
-
"RegionName",
|
34 |
-
"RegionType",
|
35 |
-
"StateName",
|
36 |
-
"Home Type",
|
37 |
-
]
|
38 |
-
|
39 |
-
slug_column_mappings = {
|
40 |
-
"_median_sale_price_per_sqft": "Median Sale Price per Sqft",
|
41 |
-
"_median_sale_price": "Median Sale Price",
|
42 |
-
"sales_count": "Sales Count",
|
43 |
-
}
|
44 |
-
|
45 |
-
data_frames = []
|
46 |
-
|
47 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
48 |
-
if filename.endswith(".csv"):
|
49 |
-
print("processing " + filename)
|
50 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
51 |
-
|
52 |
-
if "sfrcondo" in filename:
|
53 |
-
cur_df["Home Type"] = "all homes"
|
54 |
-
elif "sfr" in filename:
|
55 |
-
cur_df["Home Type"] = "SFR"
|
56 |
-
elif "condo" in filename:
|
57 |
-
cur_df["Home Type"] = "condo/co-op only"
|
58 |
-
|
59 |
-
data_frames = handle_slug_column_mappings(
|
60 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
61 |
-
)
|
62 |
-
|
63 |
-
|
64 |
-
combined_df = get_combined_df(
|
65 |
-
data_frames,
|
66 |
-
[
|
67 |
-
"RegionID",
|
68 |
-
"SizeRank",
|
69 |
-
"RegionName",
|
70 |
-
"RegionType",
|
71 |
-
"StateName",
|
72 |
-
"Home Type",
|
73 |
-
"Date",
|
74 |
-
],
|
75 |
-
)
|
76 |
-
|
77 |
-
combined_df
|
78 |
-
|
79 |
-
|
80 |
-
# In[4]:
|
81 |
-
|
82 |
-
|
83 |
-
final_df = combined_df
|
84 |
-
final_df = final_df.rename(
|
85 |
-
columns={
|
86 |
-
"RegionID": "Region ID",
|
87 |
-
"SizeRank": "Size Rank",
|
88 |
-
"RegionName": "Region",
|
89 |
-
"RegionType": "Region Type",
|
90 |
-
"StateName": "State",
|
91 |
-
}
|
92 |
-
)
|
93 |
-
|
94 |
-
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
95 |
-
|
96 |
-
|
97 |
-
# In[5]:
|
98 |
-
|
99 |
-
|
100 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/rentals.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[2]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[3]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "rentals/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[7]:
|
28 |
-
|
29 |
-
|
30 |
-
data_frames = []
|
31 |
-
|
32 |
-
slug_column_mappings = {"": "Rent"}
|
33 |
-
|
34 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
35 |
-
if filename.endswith(".csv"):
|
36 |
-
# print("processing " + filename)
|
37 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
38 |
-
exclude_columns = [
|
39 |
-
"RegionID",
|
40 |
-
"SizeRank",
|
41 |
-
"RegionName",
|
42 |
-
"RegionType",
|
43 |
-
"StateName",
|
44 |
-
"Home Type",
|
45 |
-
]
|
46 |
-
|
47 |
-
if "_sfrcondomfr_" in filename:
|
48 |
-
cur_df["Home Type"] = "all homes plus multifamily"
|
49 |
-
# change column type to string
|
50 |
-
cur_df["RegionName"] = cur_df["RegionName"].astype(str)
|
51 |
-
if "City" in filename:
|
52 |
-
exclude_columns = [
|
53 |
-
"RegionID",
|
54 |
-
"SizeRank",
|
55 |
-
"RegionName",
|
56 |
-
"RegionType",
|
57 |
-
"StateName",
|
58 |
-
"Home Type",
|
59 |
-
# City Specific
|
60 |
-
"State",
|
61 |
-
"Metro",
|
62 |
-
"CountyName",
|
63 |
-
]
|
64 |
-
elif "Zip" in filename:
|
65 |
-
exclude_columns = [
|
66 |
-
"RegionID",
|
67 |
-
"SizeRank",
|
68 |
-
"RegionName",
|
69 |
-
"RegionType",
|
70 |
-
"StateName",
|
71 |
-
"Home Type",
|
72 |
-
# Zip Specific
|
73 |
-
"State",
|
74 |
-
"City",
|
75 |
-
"Metro",
|
76 |
-
"CountyName",
|
77 |
-
]
|
78 |
-
elif "County" in filename:
|
79 |
-
exclude_columns = [
|
80 |
-
"RegionID",
|
81 |
-
"SizeRank",
|
82 |
-
"RegionName",
|
83 |
-
"RegionType",
|
84 |
-
"StateName",
|
85 |
-
"Home Type",
|
86 |
-
# County Specific
|
87 |
-
"State",
|
88 |
-
"Metro",
|
89 |
-
"StateCodeFIPS",
|
90 |
-
"MunicipalCodeFIPS",
|
91 |
-
]
|
92 |
-
|
93 |
-
elif "_sfr_" in filename:
|
94 |
-
cur_df["Home Type"] = "SFR"
|
95 |
-
elif "_mfr_" in filename:
|
96 |
-
cur_df["Home Type"] = "multifamily"
|
97 |
-
|
98 |
-
data_frames = handle_slug_column_mappings(
|
99 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
100 |
-
)
|
101 |
-
|
102 |
-
|
103 |
-
combined_df = get_combined_df(
|
104 |
-
data_frames,
|
105 |
-
[
|
106 |
-
"RegionID",
|
107 |
-
"SizeRank",
|
108 |
-
"RegionName",
|
109 |
-
"RegionType",
|
110 |
-
"StateName",
|
111 |
-
"Home Type",
|
112 |
-
"Date",
|
113 |
-
],
|
114 |
-
)
|
115 |
-
|
116 |
-
combined_df
|
117 |
-
|
118 |
-
|
119 |
-
# In[8]:
|
120 |
-
|
121 |
-
|
122 |
-
final_df = combined_df
|
123 |
-
|
124 |
-
for index, row in final_df.iterrows():
|
125 |
-
if row["RegionType"] == "city":
|
126 |
-
final_df.at[index, "City"] = row["RegionName"]
|
127 |
-
elif row["RegionType"] == "county":
|
128 |
-
final_df.at[index, "County"] = row["RegionName"]
|
129 |
-
|
130 |
-
# coalesce State and StateName columns
|
131 |
-
final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
|
132 |
-
final_df["State"] = final_df["County"].combine_first(final_df["CountyName"])
|
133 |
-
|
134 |
-
final_df = final_df.drop(columns=["StateName", "CountyName"])
|
135 |
-
final_df
|
136 |
-
|
137 |
-
|
138 |
-
# In[6]:
|
139 |
-
|
140 |
-
|
141 |
-
# Adjust column names
|
142 |
-
final_df = final_df.rename(
|
143 |
-
columns={
|
144 |
-
"RegionID": "Region ID",
|
145 |
-
"SizeRank": "Size Rank",
|
146 |
-
"RegionName": "Region",
|
147 |
-
"RegionType": "Region Type",
|
148 |
-
"StateCodeFIPS": "State Code FIPS",
|
149 |
-
"MunicipalCodeFIPS": "Municipal Code FIPS",
|
150 |
-
}
|
151 |
-
)
|
152 |
-
|
153 |
-
final_df
|
154 |
-
|
155 |
-
|
156 |
-
# In[7]:
|
157 |
-
|
158 |
-
|
159 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
processors/sales.py
DELETED
@@ -1,106 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import pandas as pd
|
8 |
-
import os
|
9 |
-
|
10 |
-
from helpers import (
|
11 |
-
get_combined_df,
|
12 |
-
save_final_df_as_jsonl,
|
13 |
-
handle_slug_column_mappings,
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
# In[2]:
|
18 |
-
|
19 |
-
|
20 |
-
DATA_DIR = "../data"
|
21 |
-
PROCESSED_DIR = "../processed/"
|
22 |
-
FACET_DIR = "sales/"
|
23 |
-
FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
|
24 |
-
FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
|
25 |
-
|
26 |
-
|
27 |
-
# In[3]:
|
28 |
-
|
29 |
-
|
30 |
-
exclude_columns = [
|
31 |
-
"RegionID",
|
32 |
-
"SizeRank",
|
33 |
-
"RegionName",
|
34 |
-
"RegionType",
|
35 |
-
"StateName",
|
36 |
-
"Home Type",
|
37 |
-
]
|
38 |
-
|
39 |
-
slug_column_mappings = {
|
40 |
-
"_median_sale_to_list_": "Median Sale to List Ratio",
|
41 |
-
"_mean_sale_to_list_": "Mean Sale to List Ratio",
|
42 |
-
"_median_sale_price_": "Median Sale Price",
|
43 |
-
"_pct_sold_above_list_": "% Sold Above List",
|
44 |
-
"_pct_sold_below_list_": "% Sold Below List",
|
45 |
-
"_sales_count_now_": "Nowcast",
|
46 |
-
}
|
47 |
-
|
48 |
-
data_frames = []
|
49 |
-
|
50 |
-
for filename in os.listdir(FULL_DATA_DIR_PATH):
|
51 |
-
if filename.endswith(".csv"):
|
52 |
-
print("processing " + filename)
|
53 |
-
# ignore monthly data for now since it is redundant
|
54 |
-
if "month" in filename:
|
55 |
-
continue
|
56 |
-
|
57 |
-
cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
|
58 |
-
|
59 |
-
if "_sfrcondo_" in filename:
|
60 |
-
cur_df["Home Type"] = "all homes"
|
61 |
-
elif "_sfr_" in filename:
|
62 |
-
cur_df["Home Type"] = "SFR"
|
63 |
-
|
64 |
-
data_frames = handle_slug_column_mappings(
|
65 |
-
data_frames, slug_column_mappings, exclude_columns, filename, cur_df
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
-
combined_df = get_combined_df(
|
70 |
-
data_frames,
|
71 |
-
[
|
72 |
-
"RegionID",
|
73 |
-
"SizeRank",
|
74 |
-
"RegionName",
|
75 |
-
"RegionType",
|
76 |
-
"StateName",
|
77 |
-
"Home Type",
|
78 |
-
"Date",
|
79 |
-
],
|
80 |
-
)
|
81 |
-
|
82 |
-
combined_df
|
83 |
-
|
84 |
-
|
85 |
-
# In[4]:
|
86 |
-
|
87 |
-
|
88 |
-
# Adjust column names
|
89 |
-
final_df = combined_df.rename(
|
90 |
-
columns={
|
91 |
-
"RegionID": "Region ID",
|
92 |
-
"SizeRank": "Size Rank",
|
93 |
-
"RegionName": "Region",
|
94 |
-
"RegionType": "Region Type",
|
95 |
-
"StateName": "State",
|
96 |
-
}
|
97 |
-
)
|
98 |
-
|
99 |
-
final_df.sort_values(by=["Region ID", "Home Type", "Date"])
|
100 |
-
|
101 |
-
|
102 |
-
# In[5]:
|
103 |
-
|
104 |
-
|
105 |
-
save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|