misikoff commited on
Commit
cbbb458
·
1 Parent(s): 011d48e

fix: remove old processors

Browse files
processors/days_on_market.py DELETED
@@ -1,107 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[2]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "days_on_market/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[3]:
28
-
29
-
30
- data_frames = []
31
-
32
- exclude_columns = [
33
- "RegionID",
34
- "SizeRank",
35
- "RegionName",
36
- "RegionType",
37
- "StateName",
38
- "Home Type",
39
- ]
40
-
41
- slug_column_mappings = {
42
- "_mean_listings_price_cut_amt_": "Mean Listings Price Cut Amount",
43
- "_med_doz_pending_": "Median Days on Pending",
44
- "_median_days_to_pending_": "Median Days to Close",
45
- "_perc_listings_price_cut_": "Percent Listings Price Cut",
46
- }
47
-
48
-
49
- for filename in os.listdir(FULL_DATA_DIR_PATH):
50
- if filename.endswith(".csv"):
51
- print("processing " + filename)
52
- # skip month files for now since they are redundant
53
- if "month" in filename:
54
- continue
55
-
56
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
57
-
58
- if "_uc_sfrcondo_" in filename:
59
- cur_df["Home Type"] = "all homes (SFR + Condo)"
60
- # change column type to string
61
- cur_df["RegionName"] = cur_df["RegionName"].astype(str)
62
- elif "_uc_sfr_" in filename:
63
- cur_df["Home Type"] = "SFR"
64
-
65
- data_frames = handle_slug_column_mappings(
66
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
67
- )
68
-
69
-
70
- combined_df = get_combined_df(
71
- data_frames,
72
- [
73
- "RegionID",
74
- "SizeRank",
75
- "RegionName",
76
- "RegionType",
77
- "StateName",
78
- "Home Type",
79
- "Date",
80
- ],
81
- )
82
-
83
- combined_df
84
-
85
-
86
- # In[9]:
87
-
88
-
89
- # Adjust column names
90
- final_df = combined_df.rename(
91
- columns={
92
- "RegionID": "Region ID",
93
- "SizeRank": "Size Rank",
94
- "RegionName": "Region",
95
- "RegionType": "Region Type",
96
- "StateName": "State",
97
- }
98
- )
99
-
100
- final_df
101
-
102
-
103
- # In[5]:
104
-
105
-
106
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
107
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/for_sale_listings.py DELETED
@@ -1,106 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[2]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "for_sale_listings/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[3]:
28
-
29
-
30
- exclude_columns = [
31
- "RegionID",
32
- "SizeRank",
33
- "RegionName",
34
- "RegionType",
35
- "StateName",
36
- "Home Type",
37
- ]
38
-
39
- slug_column_mappings = {
40
- "_mlp_": "Median Listing Price",
41
- "_new_listings_": "New Listings",
42
- "new_pending": "New Pending",
43
- }
44
-
45
-
46
- data_frames = []
47
-
48
- for filename in os.listdir(FULL_DATA_DIR_PATH):
49
- if filename.endswith(".csv"):
50
- print("processing " + filename)
51
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
52
-
53
- # ignore monthly data for now since it is redundant
54
- if "month" in filename:
55
- continue
56
-
57
- if "sfrcondo" in filename:
58
- cur_df["Home Type"] = "all homes"
59
- elif "sfr" in filename:
60
- cur_df["Home Type"] = "SFR"
61
- elif "condo" in filename:
62
- cur_df["Home Type"] = "condo/co-op only"
63
-
64
- data_frames = handle_slug_column_mappings(
65
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
66
- )
67
-
68
-
69
- combined_df = get_combined_df(
70
- data_frames,
71
- [
72
- "RegionID",
73
- "SizeRank",
74
- "RegionName",
75
- "RegionType",
76
- "StateName",
77
- "Home Type",
78
- "Date",
79
- ],
80
- )
81
-
82
- combined_df
83
-
84
-
85
- # In[4]:
86
-
87
-
88
- # Adjust column names
89
- final_df = combined_df.rename(
90
- columns={
91
- "RegionID": "Region ID",
92
- "SizeRank": "Size Rank",
93
- "RegionName": "Region",
94
- "RegionType": "Region Type",
95
- "StateName": "State",
96
- }
97
- )
98
-
99
- final_df
100
-
101
-
102
- # In[5]:
103
-
104
-
105
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
106
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/home_values.py DELETED
@@ -1,181 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[2]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "home_values/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[5]:
28
-
29
-
30
- data_frames = []
31
-
32
- slug_column_mappings = {
33
- "_tier_0.0_0.33_": "Bottom Tier ZHVI",
34
- "_tier_0.33_0.67_": "Mid Tier ZHVI",
35
- "_tier_0.67_1.0_": "Top Tier ZHVI",
36
- "": "ZHVI",
37
- }
38
-
39
- for filename in os.listdir(FULL_DATA_DIR_PATH):
40
- if filename.endswith(".csv"):
41
- print("processing " + filename)
42
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
43
- exclude_columns = [
44
- "RegionID",
45
- "SizeRank",
46
- "RegionName",
47
- "RegionType",
48
- "StateName",
49
- "Bedroom Count",
50
- "Home Type",
51
- ]
52
-
53
- if "Zip" in filename:
54
- continue
55
- if "Neighborhood" in filename:
56
- continue
57
- if "City" in filename:
58
- continue
59
- if "Metro" in filename:
60
- continue
61
- if "County" in filename:
62
- continue
63
-
64
- if "City" in filename:
65
- exclude_columns = exclude_columns + ["State", "Metro", "CountyName"]
66
- elif "Zip" in filename:
67
- exclude_columns = exclude_columns + [
68
- "State",
69
- "City",
70
- "Metro",
71
- "CountyName",
72
- ]
73
- elif "County" in filename:
74
- exclude_columns = exclude_columns + [
75
- "State",
76
- "Metro",
77
- "StateCodeFIPS",
78
- "MunicipalCodeFIPS",
79
- ]
80
- elif "Neighborhood" in filename:
81
- exclude_columns = exclude_columns + [
82
- "State",
83
- "City",
84
- "Metro",
85
- "CountyName",
86
- ]
87
-
88
- if "_bdrmcnt_1_" in filename:
89
- cur_df["Bedroom Count"] = "1-Bedroom"
90
- elif "_bdrmcnt_2_" in filename:
91
- cur_df["Bedroom Count"] = "2-Bedrooms"
92
- elif "_bdrmcnt_3_" in filename:
93
- cur_df["Bedroom Count"] = "3-Bedrooms"
94
- elif "_bdrmcnt_4_" in filename:
95
- cur_df["Bedroom Count"] = "4-Bedrooms"
96
- elif "_bdrmcnt_5_" in filename:
97
- cur_df["Bedroom Count"] = "5+-Bedrooms"
98
- else:
99
- cur_df["Bedroom Count"] = "All Bedrooms"
100
-
101
- if "_uc_sfr_" in filename:
102
- cur_df["Home Type"] = "SFR"
103
- elif "_uc_sfrcondo_" in filename:
104
- cur_df["Home Type"] = "all homes (SFR/condo)"
105
- elif "_uc_condo_" in filename:
106
- cur_df["Home Type"] = "condo"
107
-
108
- cur_df["StateName"] = cur_df["StateName"].astype(str)
109
- cur_df["RegionName"] = cur_df["RegionName"].astype(str)
110
-
111
- data_frames = handle_slug_column_mappings(
112
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
113
- )
114
-
115
-
116
- combined_df = get_combined_df(
117
- data_frames,
118
- [
119
- "RegionID",
120
- "SizeRank",
121
- "RegionName",
122
- "RegionType",
123
- "StateName",
124
- "Bedroom Count",
125
- "Home Type",
126
- "Date",
127
- ],
128
- )
129
-
130
- combined_df
131
-
132
-
133
- # In[11]:
134
-
135
-
136
- final_df = combined_df
137
-
138
- for index, row in final_df.iterrows():
139
- if row["RegionType"] == "city":
140
- final_df.at[index, "City"] = row["RegionName"]
141
- elif row["RegionType"] == "county":
142
- final_df.at[index, "County"] = row["RegionName"]
143
- if row["RegionType"] == "state":
144
- final_df.at[index, "StateName"] = row["RegionName"]
145
-
146
- # coalesce State and StateName columns
147
- # final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
148
- # final_df["County"] = final_df["County"].combine_first(final_df["CountyName"])
149
-
150
- # final_df = final_df.drop(
151
- # columns=[
152
- # "StateName",
153
- # # "CountyName"
154
- # ]
155
- # )
156
- final_df
157
-
158
-
159
- # In[12]:
160
-
161
-
162
- final_df = final_df.rename(
163
- columns={
164
- "RegionID": "Region ID",
165
- "SizeRank": "Size Rank",
166
- "RegionName": "Region",
167
- "RegionType": "Region Type",
168
- "StateCodeFIPS": "State Code FIPS",
169
- "StateName": "State",
170
- "MunicipalCodeFIPS": "Municipal Code FIPS",
171
- }
172
- )
173
-
174
- final_df
175
-
176
-
177
- # In[13]:
178
-
179
-
180
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
181
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/home_values_forecasts.py DELETED
@@ -1,96 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import get_combined_df, save_final_df_as_jsonl
11
-
12
-
13
- # In[2]:
14
-
15
-
16
- DATA_DIR = "../data/"
17
- PROCESSED_DIR = "../processed/"
18
- FACET_DIR = "home_values_forecasts/"
19
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
20
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
21
-
22
-
23
- # In[3]:
24
-
25
-
26
- data_frames = []
27
-
28
- for filename in os.listdir(FULL_DATA_DIR_PATH):
29
- if filename.endswith(".csv"):
30
- print("processing " + filename)
31
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
32
-
33
- cols = ["Month Over Month %", "Quarter Over Quarter %", "Year Over Year %"]
34
- if filename.endswith("sm_sa_month.csv"):
35
- # print('Smoothed')
36
- cur_df.columns = list(cur_df.columns[:-3]) + [
37
- x + " (Smoothed) (Seasonally Adjusted)" for x in cols
38
- ]
39
- else:
40
- # print('Raw')
41
- cur_df.columns = list(cur_df.columns[:-3]) + cols
42
- cur_df["RegionName"] = cur_df["RegionName"].astype(str)
43
-
44
- data_frames.append(cur_df)
45
-
46
-
47
- combined_df = get_combined_df(
48
- data_frames,
49
- [
50
- "RegionID",
51
- "RegionType",
52
- "SizeRank",
53
- "StateName",
54
- "BaseDate",
55
- ],
56
- )
57
-
58
- combined_df
59
-
60
-
61
- # In[4]:
62
-
63
-
64
- # Adjust columns
65
- final_df = combined_df
66
- final_df = combined_df.drop("StateName", axis=1)
67
- final_df = final_df.rename(
68
- columns={
69
- "CountyName": "County",
70
- "BaseDate": "Date",
71
- "RegionName": "Region",
72
- "RegionType": "Region Type",
73
- "RegionID": "Region ID",
74
- "SizeRank": "Size Rank",
75
- }
76
- )
77
-
78
- # iterate over rows of final_df and populate State and City columns if the regionType is msa
79
- for index, row in final_df.iterrows():
80
- if row["Region Type"] == "msa":
81
- regionName = row["Region"]
82
- # final_df.at[index, 'Metro'] = regionName
83
-
84
- city = regionName.split(", ")[0]
85
- final_df.at[index, "City"] = city
86
-
87
- state = regionName.split(", ")[1]
88
- final_df.at[index, "State"] = state
89
-
90
- final_df
91
-
92
-
93
- # In[9]:
94
-
95
-
96
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/new_construction.py DELETED
@@ -1,101 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[2]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "new_construction/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[3]:
28
-
29
-
30
- exclude_columns = [
31
- "RegionID",
32
- "SizeRank",
33
- "RegionName",
34
- "RegionType",
35
- "StateName",
36
- "Home Type",
37
- ]
38
-
39
- slug_column_mappings = {
40
- "_median_sale_price_per_sqft": "Median Sale Price per Sqft",
41
- "_median_sale_price": "Median Sale Price",
42
- "sales_count": "Sales Count",
43
- }
44
-
45
- data_frames = []
46
-
47
- for filename in os.listdir(FULL_DATA_DIR_PATH):
48
- if filename.endswith(".csv"):
49
- print("processing " + filename)
50
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
51
-
52
- if "sfrcondo" in filename:
53
- cur_df["Home Type"] = "all homes"
54
- elif "sfr" in filename:
55
- cur_df["Home Type"] = "SFR"
56
- elif "condo" in filename:
57
- cur_df["Home Type"] = "condo/co-op only"
58
-
59
- data_frames = handle_slug_column_mappings(
60
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
61
- )
62
-
63
-
64
- combined_df = get_combined_df(
65
- data_frames,
66
- [
67
- "RegionID",
68
- "SizeRank",
69
- "RegionName",
70
- "RegionType",
71
- "StateName",
72
- "Home Type",
73
- "Date",
74
- ],
75
- )
76
-
77
- combined_df
78
-
79
-
80
- # In[4]:
81
-
82
-
83
- final_df = combined_df
84
- final_df = final_df.rename(
85
- columns={
86
- "RegionID": "Region ID",
87
- "SizeRank": "Size Rank",
88
- "RegionName": "Region",
89
- "RegionType": "Region Type",
90
- "StateName": "State",
91
- }
92
- )
93
-
94
- final_df.sort_values(by=["Region ID", "Home Type", "Date"])
95
-
96
-
97
- # In[5]:
98
-
99
-
100
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
101
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/rentals.py DELETED
@@ -1,160 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[2]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[3]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "rentals/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[7]:
28
-
29
-
30
- data_frames = []
31
-
32
- slug_column_mappings = {"": "Rent"}
33
-
34
- for filename in os.listdir(FULL_DATA_DIR_PATH):
35
- if filename.endswith(".csv"):
36
- # print("processing " + filename)
37
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
38
- exclude_columns = [
39
- "RegionID",
40
- "SizeRank",
41
- "RegionName",
42
- "RegionType",
43
- "StateName",
44
- "Home Type",
45
- ]
46
-
47
- if "_sfrcondomfr_" in filename:
48
- cur_df["Home Type"] = "all homes plus multifamily"
49
- # change column type to string
50
- cur_df["RegionName"] = cur_df["RegionName"].astype(str)
51
- if "City" in filename:
52
- exclude_columns = [
53
- "RegionID",
54
- "SizeRank",
55
- "RegionName",
56
- "RegionType",
57
- "StateName",
58
- "Home Type",
59
- # City Specific
60
- "State",
61
- "Metro",
62
- "CountyName",
63
- ]
64
- elif "Zip" in filename:
65
- exclude_columns = [
66
- "RegionID",
67
- "SizeRank",
68
- "RegionName",
69
- "RegionType",
70
- "StateName",
71
- "Home Type",
72
- # Zip Specific
73
- "State",
74
- "City",
75
- "Metro",
76
- "CountyName",
77
- ]
78
- elif "County" in filename:
79
- exclude_columns = [
80
- "RegionID",
81
- "SizeRank",
82
- "RegionName",
83
- "RegionType",
84
- "StateName",
85
- "Home Type",
86
- # County Specific
87
- "State",
88
- "Metro",
89
- "StateCodeFIPS",
90
- "MunicipalCodeFIPS",
91
- ]
92
-
93
- elif "_sfr_" in filename:
94
- cur_df["Home Type"] = "SFR"
95
- elif "_mfr_" in filename:
96
- cur_df["Home Type"] = "multifamily"
97
-
98
- data_frames = handle_slug_column_mappings(
99
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
100
- )
101
-
102
-
103
- combined_df = get_combined_df(
104
- data_frames,
105
- [
106
- "RegionID",
107
- "SizeRank",
108
- "RegionName",
109
- "RegionType",
110
- "StateName",
111
- "Home Type",
112
- "Date",
113
- ],
114
- )
115
-
116
- combined_df
117
-
118
-
119
- # In[8]:
120
-
121
-
122
- final_df = combined_df
123
-
124
- for index, row in final_df.iterrows():
125
- if row["RegionType"] == "city":
126
- final_df.at[index, "City"] = row["RegionName"]
127
- elif row["RegionType"] == "county":
128
- final_df.at[index, "County"] = row["RegionName"]
129
-
130
- # coalesce State and StateName columns
131
- final_df["State"] = final_df["State"].combine_first(final_df["StateName"])
132
- final_df["State"] = final_df["County"].combine_first(final_df["CountyName"])
133
-
134
- final_df = final_df.drop(columns=["StateName", "CountyName"])
135
- final_df
136
-
137
-
138
- # In[6]:
139
-
140
-
141
- # Adjust column names
142
- final_df = final_df.rename(
143
- columns={
144
- "RegionID": "Region ID",
145
- "SizeRank": "Size Rank",
146
- "RegionName": "Region",
147
- "RegionType": "Region Type",
148
- "StateCodeFIPS": "State Code FIPS",
149
- "MunicipalCodeFIPS": "Municipal Code FIPS",
150
- }
151
- )
152
-
153
- final_df
154
-
155
-
156
- # In[7]:
157
-
158
-
159
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
160
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
processors/sales.py DELETED
@@ -1,106 +0,0 @@
1
- #!/usr/bin/env python
2
- # coding: utf-8
3
-
4
- # In[1]:
5
-
6
-
7
- import pandas as pd
8
- import os
9
-
10
- from helpers import (
11
- get_combined_df,
12
- save_final_df_as_jsonl,
13
- handle_slug_column_mappings,
14
- )
15
-
16
-
17
- # In[2]:
18
-
19
-
20
- DATA_DIR = "../data"
21
- PROCESSED_DIR = "../processed/"
22
- FACET_DIR = "sales/"
23
- FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)
24
- FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)
25
-
26
-
27
- # In[3]:
28
-
29
-
30
- exclude_columns = [
31
- "RegionID",
32
- "SizeRank",
33
- "RegionName",
34
- "RegionType",
35
- "StateName",
36
- "Home Type",
37
- ]
38
-
39
- slug_column_mappings = {
40
- "_median_sale_to_list_": "Median Sale to List Ratio",
41
- "_mean_sale_to_list_": "Mean Sale to List Ratio",
42
- "_median_sale_price_": "Median Sale Price",
43
- "_pct_sold_above_list_": "% Sold Above List",
44
- "_pct_sold_below_list_": "% Sold Below List",
45
- "_sales_count_now_": "Nowcast",
46
- }
47
-
48
- data_frames = []
49
-
50
- for filename in os.listdir(FULL_DATA_DIR_PATH):
51
- if filename.endswith(".csv"):
52
- print("processing " + filename)
53
- # ignore monthly data for now since it is redundant
54
- if "month" in filename:
55
- continue
56
-
57
- cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))
58
-
59
- if "_sfrcondo_" in filename:
60
- cur_df["Home Type"] = "all homes"
61
- elif "_sfr_" in filename:
62
- cur_df["Home Type"] = "SFR"
63
-
64
- data_frames = handle_slug_column_mappings(
65
- data_frames, slug_column_mappings, exclude_columns, filename, cur_df
66
- )
67
-
68
-
69
- combined_df = get_combined_df(
70
- data_frames,
71
- [
72
- "RegionID",
73
- "SizeRank",
74
- "RegionName",
75
- "RegionType",
76
- "StateName",
77
- "Home Type",
78
- "Date",
79
- ],
80
- )
81
-
82
- combined_df
83
-
84
-
85
- # In[4]:
86
-
87
-
88
- # Adjust column names
89
- final_df = combined_df.rename(
90
- columns={
91
- "RegionID": "Region ID",
92
- "SizeRank": "Size Rank",
93
- "RegionName": "Region",
94
- "RegionType": "Region Type",
95
- "StateName": "State",
96
- }
97
- )
98
-
99
- final_df.sort_values(by=["Region ID", "Home Type", "Date"])
100
-
101
-
102
- # In[5]:
103
-
104
-
105
- save_final_df_as_jsonl(FULL_PROCESSED_DIR_PATH, final_df)
106
-