misikoff commited on
Commit
e1cbb8f
·
1 Parent(s): 2150692

feat: simplify new constructions processing

Browse files
processed/new_constructions/final.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4cbd1713a383959a9c43afb152cf8dd169b584b809b1c940c9b48ae8b8d8a8e6
3
- size 9865188
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a487f1b425d392a62c6dd88655fe958c42a937d901efdd5dbc2ebf055826f3
3
+ size 10854928
processors/process_new_constructions.ipynb CHANGED
@@ -25,7 +25,7 @@
25
  },
26
  {
27
  "cell_type": "code",
28
- "execution_count": 47,
29
  "metadata": {},
30
  "outputs": [
31
  {
@@ -71,9 +71,9 @@
71
  " <th>StateName</th>\n",
72
  " <th>Home Type</th>\n",
73
  " <th>Date</th>\n",
74
- " <th>Sale Price</th>\n",
75
- " <th>Sale Price per Sqft</th>\n",
76
- " <th>Count</th>\n",
77
  " </tr>\n",
78
  " </thead>\n",
79
  " <tbody>\n",
@@ -86,8 +86,8 @@
86
  " <td>NaN</td>\n",
87
  " <td>SFR</td>\n",
88
  " <td>2018-01-31</td>\n",
89
- " <td>309000.0</td>\n",
90
  " <td>137.412316</td>\n",
 
91
  " <td>33940.0</td>\n",
92
  " </tr>\n",
93
  " <tr>\n",
@@ -99,8 +99,8 @@
99
  " <td>NaN</td>\n",
100
  " <td>all homes</td>\n",
101
  " <td>2018-01-31</td>\n",
102
- " <td>314596.0</td>\n",
103
  " <td>140.504620</td>\n",
 
104
  " <td>37135.0</td>\n",
105
  " </tr>\n",
106
  " <tr>\n",
@@ -112,8 +112,8 @@
112
  " <td>NaN</td>\n",
113
  " <td>condo/co-op only</td>\n",
114
  " <td>2018-01-31</td>\n",
115
- " <td>388250.0</td>\n",
116
  " <td>238.300000</td>\n",
 
117
  " <td>3195.0</td>\n",
118
  " </tr>\n",
119
  " <tr>\n",
@@ -125,8 +125,8 @@
125
  " <td>NaN</td>\n",
126
  " <td>SFR</td>\n",
127
  " <td>2018-02-28</td>\n",
128
- " <td>309072.5</td>\n",
129
  " <td>137.199170</td>\n",
 
130
  " <td>33304.0</td>\n",
131
  " </tr>\n",
132
  " <tr>\n",
@@ -138,8 +138,8 @@
138
  " <td>NaN</td>\n",
139
  " <td>all homes</td>\n",
140
  " <td>2018-02-28</td>\n",
141
- " <td>314608.0</td>\n",
142
  " <td>140.304966</td>\n",
 
143
  " <td>36493.0</td>\n",
144
  " </tr>\n",
145
  " <tr>\n",
@@ -239,30 +239,41 @@
239
  "49485 845162 535 Granbury, TX msa TX \n",
240
  "49486 845162 535 Granbury, TX msa TX \n",
241
  "\n",
242
- " Home Type Date Sale Price Sale Price per Sqft Count \n",
243
- "0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n",
244
- "1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n",
245
- "2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n",
246
- "3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n",
247
- "4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n",
248
- "... ... ... ... ... ... \n",
249
- "49482 all homes 2023-09-30 NaN NaN 26.0 \n",
250
- "49483 SFR 2023-10-31 NaN NaN 24.0 \n",
251
- "49484 all homes 2023-10-31 NaN NaN 24.0 \n",
252
- "49485 SFR 2023-11-30 NaN NaN 16.0 \n",
253
- "49486 all homes 2023-11-30 NaN NaN 16.0 \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
254
  "\n",
255
  "[49487 rows x 10 columns]"
256
  ]
257
  },
258
- "execution_count": 47,
259
  "metadata": {},
260
  "output_type": "execute_result"
261
  }
262
  ],
263
  "source": [
264
- "data_frames = []\n",
265
- "\n",
266
  "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
267
  "\n",
268
  "exclude_columns = [\n",
@@ -271,13 +282,10 @@
271
  " \"RegionName\",\n",
272
  " \"RegionType\",\n",
273
  " \"StateName\",\n",
274
- " # \"Value Type\",\n",
275
  " \"Home Type\",\n",
276
  "]\n",
277
  "\n",
278
- "price_data_frames = []\n",
279
- "price_per_sqft_data_frames = []\n",
280
- "count_data_frames = []\n",
281
  "\n",
282
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
283
  " if filename.endswith(\".csv\"):\n",
@@ -294,45 +302,37 @@
294
  " # Identify columns to pivot\n",
295
  " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
296
  "\n",
297
- " if \"sale_price_per_sqft\" in filename:\n",
298
- " # cur_df[\"Value Type\"] = \"Sale Price Per Sqft\"\n",
299
- " # Perform pivot\n",
300
  " cur_df = pd.melt(\n",
301
  " cur_df,\n",
302
  " id_vars=exclude_columns,\n",
303
  " value_vars=columns_to_pivot,\n",
304
  " var_name=\"Date\",\n",
305
- " value_name=\"Sale Price per Sqft\",\n",
306
  " )\n",
307
- " price_per_sqft_data_frames.append(cur_df)\n",
308
  "\n",
309
- " elif \"sale_price_uc\" in filename:\n",
310
- " # cur_df[\"Value Type\"] = \"Sale Price\"\n",
311
  " cur_df = pd.melt(\n",
312
  " cur_df,\n",
313
  " id_vars=exclude_columns,\n",
314
  " value_vars=columns_to_pivot,\n",
315
  " var_name=\"Date\",\n",
316
- " value_name=\"Sale Price\",\n",
317
  " )\n",
318
- " price_data_frames.append(cur_df)\n",
319
  "\n",
320
- " elif \"count\" in filename:\n",
321
- " # cur_df[\"Value Type\"] = \"Count\"\n",
322
  " cur_df = pd.melt(\n",
323
  " cur_df,\n",
324
  " id_vars=exclude_columns,\n",
325
  " value_vars=columns_to_pivot,\n",
326
  " var_name=\"Date\",\n",
327
- " value_name=\"Count\",\n",
328
  " )\n",
329
- " count_data_frames.append(cur_df)\n",
330
  "\n",
331
  "\n",
332
- "combined_price = pd.concat(price_data_frames)\n",
333
- "combined_price_per = pd.concat(price_per_sqft_data_frames)\n",
334
- "combined_count = pd.concat(count_data_frames)\n",
335
- "\n",
336
  "matching_cols = [\n",
337
  " \"RegionID\",\n",
338
  " \"Date\",\n",
@@ -340,29 +340,27 @@
340
  " \"RegionName\",\n",
341
  " \"RegionType\",\n",
342
  " \"StateName\",\n",
343
- " # \"Value Type\",\n",
344
  " \"Home Type\",\n",
345
  "]\n",
346
  "\n",
347
- "combined_df = pd.merge(\n",
348
- " combined_price,\n",
349
- " combined_price_per,\n",
350
- " on=matching_cols,\n",
351
- " how=\"outer\",\n",
352
- ")\n",
353
- "combined_df = pd.merge(\n",
354
- " combined_df,\n",
355
- " combined_count,\n",
356
- " on=matching_cols,\n",
357
- " how=\"outer\",\n",
358
- ")\n",
359
  "\n",
360
  "combined_df"
361
  ]
362
  },
363
  {
364
  "cell_type": "code",
365
- "execution_count": 48,
366
  "metadata": {},
367
  "outputs": [
368
  {
@@ -393,9 +391,9 @@
393
  " <th>State</th>\n",
394
  " <th>Home Type</th>\n",
395
  " <th>Date</th>\n",
396
- " <th>Sale Price</th>\n",
397
- " <th>Sale Price per Sqft</th>\n",
398
- " <th>Count</th>\n",
399
  " </tr>\n",
400
  " </thead>\n",
401
  " <tbody>\n",
@@ -408,8 +406,8 @@
408
  " <td>NaN</td>\n",
409
  " <td>SFR</td>\n",
410
  " <td>2018-01-31</td>\n",
411
- " <td>309000.0</td>\n",
412
  " <td>137.412316</td>\n",
 
413
  " <td>33940.0</td>\n",
414
  " </tr>\n",
415
  " <tr>\n",
@@ -421,8 +419,8 @@
421
  " <td>NaN</td>\n",
422
  " <td>all homes</td>\n",
423
  " <td>2018-01-31</td>\n",
424
- " <td>314596.0</td>\n",
425
  " <td>140.504620</td>\n",
 
426
  " <td>37135.0</td>\n",
427
  " </tr>\n",
428
  " <tr>\n",
@@ -434,8 +432,8 @@
434
  " <td>NaN</td>\n",
435
  " <td>condo/co-op only</td>\n",
436
  " <td>2018-01-31</td>\n",
437
- " <td>388250.0</td>\n",
438
  " <td>238.300000</td>\n",
 
439
  " <td>3195.0</td>\n",
440
  " </tr>\n",
441
  " <tr>\n",
@@ -447,8 +445,8 @@
447
  " <td>NaN</td>\n",
448
  " <td>SFR</td>\n",
449
  " <td>2018-02-28</td>\n",
450
- " <td>309072.5</td>\n",
451
  " <td>137.199170</td>\n",
 
452
  " <td>33304.0</td>\n",
453
  " </tr>\n",
454
  " <tr>\n",
@@ -460,8 +458,8 @@
460
  " <td>NaN</td>\n",
461
  " <td>all homes</td>\n",
462
  " <td>2018-02-28</td>\n",
463
- " <td>314608.0</td>\n",
464
  " <td>140.304966</td>\n",
 
465
  " <td>36493.0</td>\n",
466
  " </tr>\n",
467
  " <tr>\n",
@@ -561,23 +559,36 @@
561
  "49485 845162 535 Granbury, TX msa TX \n",
562
  "49486 845162 535 Granbury, TX msa TX \n",
563
  "\n",
564
- " Home Type Date Sale Price Sale Price per Sqft Count \n",
565
- "0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n",
566
- "1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n",
567
- "2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n",
568
- "3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n",
569
- "4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n",
570
- "... ... ... ... ... ... \n",
571
- "49482 all homes 2023-09-30 NaN NaN 26.0 \n",
572
- "49483 SFR 2023-10-31 NaN NaN 24.0 \n",
573
- "49484 all homes 2023-10-31 NaN NaN 24.0 \n",
574
- "49485 SFR 2023-11-30 NaN NaN 16.0 \n",
575
- "49486 all homes 2023-11-30 NaN NaN 16.0 \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
576
  "\n",
577
  "[49487 rows x 10 columns]"
578
  ]
579
  },
580
- "execution_count": 48,
581
  "metadata": {},
582
  "output_type": "execute_result"
583
  }
@@ -599,7 +610,7 @@
599
  },
600
  {
601
  "cell_type": "code",
602
- "execution_count": 49,
603
  "metadata": {},
604
  "outputs": [],
605
  "source": [
@@ -608,13 +619,6 @@
608
  "\n",
609
  "final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
610
  ]
611
- },
612
- {
613
- "cell_type": "code",
614
- "execution_count": null,
615
- "metadata": {},
616
- "outputs": [],
617
- "source": []
618
  }
619
  ],
620
  "metadata": {
 
25
  },
26
  {
27
  "cell_type": "code",
28
+ "execution_count": 56,
29
  "metadata": {},
30
  "outputs": [
31
  {
 
71
  " <th>StateName</th>\n",
72
  " <th>Home Type</th>\n",
73
  " <th>Date</th>\n",
74
+ " <th>Median Sale Price per Sqft</th>\n",
75
+ " <th>Median Sale Price</th>\n",
76
+ " <th>Sales Count</th>\n",
77
  " </tr>\n",
78
  " </thead>\n",
79
  " <tbody>\n",
 
86
  " <td>NaN</td>\n",
87
  " <td>SFR</td>\n",
88
  " <td>2018-01-31</td>\n",
 
89
  " <td>137.412316</td>\n",
90
+ " <td>309000.0</td>\n",
91
  " <td>33940.0</td>\n",
92
  " </tr>\n",
93
  " <tr>\n",
 
99
  " <td>NaN</td>\n",
100
  " <td>all homes</td>\n",
101
  " <td>2018-01-31</td>\n",
 
102
  " <td>140.504620</td>\n",
103
+ " <td>314596.0</td>\n",
104
  " <td>37135.0</td>\n",
105
  " </tr>\n",
106
  " <tr>\n",
 
112
  " <td>NaN</td>\n",
113
  " <td>condo/co-op only</td>\n",
114
  " <td>2018-01-31</td>\n",
 
115
  " <td>238.300000</td>\n",
116
+ " <td>388250.0</td>\n",
117
  " <td>3195.0</td>\n",
118
  " </tr>\n",
119
  " <tr>\n",
 
125
  " <td>NaN</td>\n",
126
  " <td>SFR</td>\n",
127
  " <td>2018-02-28</td>\n",
 
128
  " <td>137.199170</td>\n",
129
+ " <td>309072.5</td>\n",
130
  " <td>33304.0</td>\n",
131
  " </tr>\n",
132
  " <tr>\n",
 
138
  " <td>NaN</td>\n",
139
  " <td>all homes</td>\n",
140
  " <td>2018-02-28</td>\n",
 
141
  " <td>140.304966</td>\n",
142
+ " <td>314608.0</td>\n",
143
  " <td>36493.0</td>\n",
144
  " </tr>\n",
145
  " <tr>\n",
 
239
  "49485 845162 535 Granbury, TX msa TX \n",
240
  "49486 845162 535 Granbury, TX msa TX \n",
241
  "\n",
242
+ " Home Type Date Median Sale Price per Sqft \\\n",
243
+ "0 SFR 2018-01-31 137.412316 \n",
244
+ "1 all homes 2018-01-31 140.504620 \n",
245
+ "2 condo/co-op only 2018-01-31 238.300000 \n",
246
+ "3 SFR 2018-02-28 137.199170 \n",
247
+ "4 all homes 2018-02-28 140.304966 \n",
248
+ "... ... ... ... \n",
249
+ "49482 all homes 2023-09-30 NaN \n",
250
+ "49483 SFR 2023-10-31 NaN \n",
251
+ "49484 all homes 2023-10-31 NaN \n",
252
+ "49485 SFR 2023-11-30 NaN \n",
253
+ "49486 all homes 2023-11-30 NaN \n",
254
+ "\n",
255
+ " Median Sale Price Sales Count \n",
256
+ "0 309000.0 33940.0 \n",
257
+ "1 314596.0 37135.0 \n",
258
+ "2 388250.0 3195.0 \n",
259
+ "3 309072.5 33304.0 \n",
260
+ "4 314608.0 36493.0 \n",
261
+ "... ... ... \n",
262
+ "49482 NaN 26.0 \n",
263
+ "49483 NaN 24.0 \n",
264
+ "49484 NaN 24.0 \n",
265
+ "49485 NaN 16.0 \n",
266
+ "49486 NaN 16.0 \n",
267
  "\n",
268
  "[49487 rows x 10 columns]"
269
  ]
270
  },
271
+ "execution_count": 56,
272
  "metadata": {},
273
  "output_type": "execute_result"
274
  }
275
  ],
276
  "source": [
 
 
277
  "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n",
278
  "\n",
279
  "exclude_columns = [\n",
 
282
  " \"RegionName\",\n",
283
  " \"RegionType\",\n",
284
  " \"StateName\",\n",
 
285
  " \"Home Type\",\n",
286
  "]\n",
287
  "\n",
288
+ "batches = {\"median_sale_price_per_sqft\": [], \"median_sale_price\": [], \"sales_count\": []}\n",
 
 
289
  "\n",
290
  "for filename in os.listdir(FULL_DATA_DIR_PATH):\n",
291
  " if filename.endswith(\".csv\"):\n",
 
302
  " # Identify columns to pivot\n",
303
  " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n",
304
  "\n",
305
+ " if \"median_sale_price_per_sqft\" in filename:\n",
 
 
306
  " cur_df = pd.melt(\n",
307
  " cur_df,\n",
308
  " id_vars=exclude_columns,\n",
309
  " value_vars=columns_to_pivot,\n",
310
  " var_name=\"Date\",\n",
311
+ " value_name=\"Median Sale Price per Sqft\",\n",
312
  " )\n",
313
+ " batches[\"median_sale_price_per_sqft\"].append(cur_df)\n",
314
  "\n",
315
+ " elif \"median_sale_price\" in filename:\n",
 
316
  " cur_df = pd.melt(\n",
317
  " cur_df,\n",
318
  " id_vars=exclude_columns,\n",
319
  " value_vars=columns_to_pivot,\n",
320
  " var_name=\"Date\",\n",
321
+ " value_name=\"Median Sale Price\",\n",
322
  " )\n",
323
+ " batches[\"median_sale_price\"].append(cur_df)\n",
324
  "\n",
325
+ " elif \"sales_count\" in filename:\n",
 
326
  " cur_df = pd.melt(\n",
327
  " cur_df,\n",
328
  " id_vars=exclude_columns,\n",
329
  " value_vars=columns_to_pivot,\n",
330
  " var_name=\"Date\",\n",
331
+ " value_name=\"Sales Count\",\n",
332
  " )\n",
333
+ " batches[\"sales_count\"].append(cur_df)\n",
334
  "\n",
335
  "\n",
 
 
 
 
336
  "matching_cols = [\n",
337
  " \"RegionID\",\n",
338
  " \"Date\",\n",
 
340
  " \"RegionName\",\n",
341
  " \"RegionType\",\n",
342
  " \"StateName\",\n",
 
343
  " \"Home Type\",\n",
344
  "]\n",
345
  "\n",
346
+ "combined_batches = [pd.concat(cur_batch) for cur_batch in batches.values()]\n",
347
+ "\n",
348
+ "if len(combined_batches) > 0:\n",
349
+ " combined_df = combined_batches[0]\n",
350
+ " for batch in combined_batches[1:]:\n",
351
+ " combined_df = pd.merge(\n",
352
+ " combined_df,\n",
353
+ " batch,\n",
354
+ " on=matching_cols,\n",
355
+ " how=\"outer\",\n",
356
+ " )\n",
 
357
  "\n",
358
  "combined_df"
359
  ]
360
  },
361
  {
362
  "cell_type": "code",
363
+ "execution_count": 57,
364
  "metadata": {},
365
  "outputs": [
366
  {
 
391
  " <th>State</th>\n",
392
  " <th>Home Type</th>\n",
393
  " <th>Date</th>\n",
394
+ " <th>Median Sale Price per Sqft</th>\n",
395
+ " <th>Median Sale Price</th>\n",
396
+ " <th>Sales Count</th>\n",
397
  " </tr>\n",
398
  " </thead>\n",
399
  " <tbody>\n",
 
406
  " <td>NaN</td>\n",
407
  " <td>SFR</td>\n",
408
  " <td>2018-01-31</td>\n",
 
409
  " <td>137.412316</td>\n",
410
+ " <td>309000.0</td>\n",
411
  " <td>33940.0</td>\n",
412
  " </tr>\n",
413
  " <tr>\n",
 
419
  " <td>NaN</td>\n",
420
  " <td>all homes</td>\n",
421
  " <td>2018-01-31</td>\n",
 
422
  " <td>140.504620</td>\n",
423
+ " <td>314596.0</td>\n",
424
  " <td>37135.0</td>\n",
425
  " </tr>\n",
426
  " <tr>\n",
 
432
  " <td>NaN</td>\n",
433
  " <td>condo/co-op only</td>\n",
434
  " <td>2018-01-31</td>\n",
 
435
  " <td>238.300000</td>\n",
436
+ " <td>388250.0</td>\n",
437
  " <td>3195.0</td>\n",
438
  " </tr>\n",
439
  " <tr>\n",
 
445
  " <td>NaN</td>\n",
446
  " <td>SFR</td>\n",
447
  " <td>2018-02-28</td>\n",
 
448
  " <td>137.199170</td>\n",
449
+ " <td>309072.5</td>\n",
450
  " <td>33304.0</td>\n",
451
  " </tr>\n",
452
  " <tr>\n",
 
458
  " <td>NaN</td>\n",
459
  " <td>all homes</td>\n",
460
  " <td>2018-02-28</td>\n",
 
461
  " <td>140.304966</td>\n",
462
+ " <td>314608.0</td>\n",
463
  " <td>36493.0</td>\n",
464
  " </tr>\n",
465
  " <tr>\n",
 
559
  "49485 845162 535 Granbury, TX msa TX \n",
560
  "49486 845162 535 Granbury, TX msa TX \n",
561
  "\n",
562
+ " Home Type Date Median Sale Price per Sqft \\\n",
563
+ "0 SFR 2018-01-31 137.412316 \n",
564
+ "1 all homes 2018-01-31 140.504620 \n",
565
+ "2 condo/co-op only 2018-01-31 238.300000 \n",
566
+ "3 SFR 2018-02-28 137.199170 \n",
567
+ "4 all homes 2018-02-28 140.304966 \n",
568
+ "... ... ... ... \n",
569
+ "49482 all homes 2023-09-30 NaN \n",
570
+ "49483 SFR 2023-10-31 NaN \n",
571
+ "49484 all homes 2023-10-31 NaN \n",
572
+ "49485 SFR 2023-11-30 NaN \n",
573
+ "49486 all homes 2023-11-30 NaN \n",
574
+ "\n",
575
+ " Median Sale Price Sales Count \n",
576
+ "0 309000.0 33940.0 \n",
577
+ "1 314596.0 37135.0 \n",
578
+ "2 388250.0 3195.0 \n",
579
+ "3 309072.5 33304.0 \n",
580
+ "4 314608.0 36493.0 \n",
581
+ "... ... ... \n",
582
+ "49482 NaN 26.0 \n",
583
+ "49483 NaN 24.0 \n",
584
+ "49484 NaN 24.0 \n",
585
+ "49485 NaN 16.0 \n",
586
+ "49486 NaN 16.0 \n",
587
  "\n",
588
  "[49487 rows x 10 columns]"
589
  ]
590
  },
591
+ "execution_count": 57,
592
  "metadata": {},
593
  "output_type": "execute_result"
594
  }
 
610
  },
611
  {
612
  "cell_type": "code",
613
+ "execution_count": 58,
614
  "metadata": {},
615
  "outputs": [],
616
  "source": [
 
619
  "\n",
620
  "final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)"
621
  ]
 
 
 
 
 
 
 
622
  }
623
  ],
624
  "metadata": {
zillow.py CHANGED
@@ -132,11 +132,13 @@ class NewDataset(datasets.GeneratorBasedBuilder):
132
  "State": datasets.Value(dtype="string", id="State"),
133
  "Home Type": datasets.Value(dtype="string", id="Home Type"),
134
  "Date": datasets.Value(dtype="string", id="Date"),
135
- "Sale Price": datasets.Value(dtype="float32", id="Sale Price"),
136
- "Sale Price per Sqft": datasets.Value(
137
- dtype="float32", id="Sale Price per Sqft"
138
  ),
139
- "Count": datasets.Value(dtype="int32", id="Count"),
 
 
 
140
  # These are the features of your dataset like images, labels ...
141
  }
142
  )
@@ -255,9 +257,11 @@ class NewDataset(datasets.GeneratorBasedBuilder):
255
  "State": data["State"],
256
  "Home Type": data["Home Type"],
257
  "Date": data["Date"],
258
- "Sale Price": data["Sale Price"],
259
- "Sale Price per Sqft": data["Sale Price per Sqft"],
260
- "Count": data["Count"],
 
 
261
  # "answer": "" if split == "test" else data["answer"],
262
  }
263
  # else:
 
132
  "State": datasets.Value(dtype="string", id="State"),
133
  "Home Type": datasets.Value(dtype="string", id="Home Type"),
134
  "Date": datasets.Value(dtype="string", id="Date"),
135
+ "Median Sale Price": datasets.Value(
136
+ dtype="float32", id="Median Sale Price"
 
137
  ),
138
+ "Median Sale Price per Sqft": datasets.Value(
139
+ dtype="float32", id="Median Sale Price per Sqft"
140
+ ),
141
+ "Sales Count": datasets.Value(dtype="int32", id="Sales Count"),
142
  # These are the features of your dataset like images, labels ...
143
  }
144
  )
 
257
  "State": data["State"],
258
  "Home Type": data["Home Type"],
259
  "Date": data["Date"],
260
+ "Median Sale Price": data["Median Sale Price"],
261
+ "Median Sale Price per Sqft": data[
262
+ "Median Sale Price per Sqft"
263
+ ],
264
+ "Sales Count": data["Sales Count"],
265
  # "answer": "" if split == "test" else data["answer"],
266
  }
267
  # else: