fix
Browse files- process_home_value_forecasts.ipynb +16 -15
- processed/final.csv +0 -0
- processed/home_value_forecasts/final.csv +0 -0
- processed/{test.jsonl → home_value_forecasts/final.jsonl} +0 -0
- processed/test.json +0 -0
- zillow.py +38 -11
process_home_value_forecasts.ipynb
CHANGED
@@ -415,7 +415,7 @@
|
|
415 |
},
|
416 |
{
|
417 |
"cell_type": "code",
|
418 |
-
"execution_count":
|
419 |
"metadata": {},
|
420 |
"outputs": [
|
421 |
{
|
@@ -446,7 +446,7 @@
|
|
446 |
" <th>State</th>\n",
|
447 |
" <th>City</th>\n",
|
448 |
" <th>Metro</th>\n",
|
449 |
-
" <th>
|
450 |
" <th>BaseDate</th>\n",
|
451 |
" <th>Month Over Month % (Smoothed)</th>\n",
|
452 |
" <th>Quarter Over Quarter % (Smoothed)</th>\n",
|
@@ -483,7 +483,7 @@
|
|
483 |
" <td>1</td>\n",
|
484 |
" <td>NY</td>\n",
|
485 |
" <td>New York</td>\n",
|
486 |
-
" <td>
|
487 |
" <td>NaN</td>\n",
|
488 |
" <td>2023-12-31</td>\n",
|
489 |
" <td>0.2</td>\n",
|
@@ -501,7 +501,7 @@
|
|
501 |
" <td>2</td>\n",
|
502 |
" <td>CA</td>\n",
|
503 |
" <td>Los Angeles</td>\n",
|
504 |
-
" <td>
|
505 |
" <td>NaN</td>\n",
|
506 |
" <td>2023-12-31</td>\n",
|
507 |
" <td>-0.1</td>\n",
|
@@ -519,7 +519,7 @@
|
|
519 |
" <td>3</td>\n",
|
520 |
" <td>IL</td>\n",
|
521 |
" <td>Chicago</td>\n",
|
522 |
-
" <td>
|
523 |
" <td>NaN</td>\n",
|
524 |
" <td>2023-12-31</td>\n",
|
525 |
" <td>0.1</td>\n",
|
@@ -537,7 +537,7 @@
|
|
537 |
" <td>4</td>\n",
|
538 |
" <td>TX</td>\n",
|
539 |
" <td>Dallas</td>\n",
|
540 |
-
" <td>
|
541 |
" <td>NaN</td>\n",
|
542 |
" <td>2023-12-31</td>\n",
|
543 |
" <td>-0.1</td>\n",
|
@@ -674,12 +674,12 @@
|
|
674 |
"20165 92811 79078 zip 39992 TX NaN \n",
|
675 |
"20166 98183 95419 zip 39992 CA Camp Meeker \n",
|
676 |
"\n",
|
677 |
-
" Metro
|
678 |
"0 NaN NaN 2023-12-31 \n",
|
679 |
-
"1
|
680 |
-
"2
|
681 |
-
"3
|
682 |
-
"4
|
683 |
"... ... ... ... \n",
|
684 |
"20162 Faribault-Northfield, MN Rice County 2023-12-31 \n",
|
685 |
"20163 St. Louis, MO-IL Macoupin County 2023-12-31 \n",
|
@@ -729,7 +729,7 @@
|
|
729 |
"[21062 rows x 15 columns]"
|
730 |
]
|
731 |
},
|
732 |
-
"execution_count":
|
733 |
"metadata": {},
|
734 |
"output_type": "execute_result"
|
735 |
}
|
@@ -743,13 +743,13 @@
|
|
743 |
"\n",
|
744 |
"all_cols = ['RegionID', 'RegionName', 'RegionType', 'SizeRank', 'StateName', 'State', 'City', 'Metro', 'CountyName',\n",
|
745 |
" 'BaseDate'] + result_cols\n",
|
746 |
-
"all_cols\n",
|
747 |
"\n",
|
748 |
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
749 |
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
750 |
"\n",
|
751 |
"final_df = combined_df[all_cols]\n",
|
752 |
"final_df = final_df.drop('StateName', axis=1)\n",
|
|
|
753 |
"\n",
|
754 |
"# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
|
755 |
"for index, row in final_df.iterrows():\n",
|
@@ -768,11 +768,12 @@
|
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
-
"execution_count":
|
772 |
"metadata": {},
|
773 |
"outputs": [],
|
774 |
"source": [
|
775 |
-
"final_df.to_csv(FULL_PROCESSED_DIR_PATH + 'final.csv', index=False)"
|
|
|
776 |
]
|
777 |
}
|
778 |
],
|
|
|
415 |
},
|
416 |
{
|
417 |
"cell_type": "code",
|
418 |
+
"execution_count": 49,
|
419 |
"metadata": {},
|
420 |
"outputs": [
|
421 |
{
|
|
|
446 |
" <th>State</th>\n",
|
447 |
" <th>City</th>\n",
|
448 |
" <th>Metro</th>\n",
|
449 |
+
" <th>County</th>\n",
|
450 |
" <th>BaseDate</th>\n",
|
451 |
" <th>Month Over Month % (Smoothed)</th>\n",
|
452 |
" <th>Quarter Over Quarter % (Smoothed)</th>\n",
|
|
|
483 |
" <td>1</td>\n",
|
484 |
" <td>NY</td>\n",
|
485 |
" <td>New York</td>\n",
|
486 |
+
" <td>NaN</td>\n",
|
487 |
" <td>NaN</td>\n",
|
488 |
" <td>2023-12-31</td>\n",
|
489 |
" <td>0.2</td>\n",
|
|
|
501 |
" <td>2</td>\n",
|
502 |
" <td>CA</td>\n",
|
503 |
" <td>Los Angeles</td>\n",
|
504 |
+
" <td>NaN</td>\n",
|
505 |
" <td>NaN</td>\n",
|
506 |
" <td>2023-12-31</td>\n",
|
507 |
" <td>-0.1</td>\n",
|
|
|
519 |
" <td>3</td>\n",
|
520 |
" <td>IL</td>\n",
|
521 |
" <td>Chicago</td>\n",
|
522 |
+
" <td>NaN</td>\n",
|
523 |
" <td>NaN</td>\n",
|
524 |
" <td>2023-12-31</td>\n",
|
525 |
" <td>0.1</td>\n",
|
|
|
537 |
" <td>4</td>\n",
|
538 |
" <td>TX</td>\n",
|
539 |
" <td>Dallas</td>\n",
|
540 |
+
" <td>NaN</td>\n",
|
541 |
" <td>NaN</td>\n",
|
542 |
" <td>2023-12-31</td>\n",
|
543 |
" <td>-0.1</td>\n",
|
|
|
674 |
"20165 92811 79078 zip 39992 TX NaN \n",
|
675 |
"20166 98183 95419 zip 39992 CA Camp Meeker \n",
|
676 |
"\n",
|
677 |
+
" Metro County BaseDate \\\n",
|
678 |
"0 NaN NaN 2023-12-31 \n",
|
679 |
+
"1 NaN NaN 2023-12-31 \n",
|
680 |
+
"2 NaN NaN 2023-12-31 \n",
|
681 |
+
"3 NaN NaN 2023-12-31 \n",
|
682 |
+
"4 NaN NaN 2023-12-31 \n",
|
683 |
"... ... ... ... \n",
|
684 |
"20162 Faribault-Northfield, MN Rice County 2023-12-31 \n",
|
685 |
"20163 St. Louis, MO-IL Macoupin County 2023-12-31 \n",
|
|
|
729 |
"[21062 rows x 15 columns]"
|
730 |
]
|
731 |
},
|
732 |
+
"execution_count": 49,
|
733 |
"metadata": {},
|
734 |
"output_type": "execute_result"
|
735 |
}
|
|
|
743 |
"\n",
|
744 |
"all_cols = ['RegionID', 'RegionName', 'RegionType', 'SizeRank', 'StateName', 'State', 'City', 'Metro', 'CountyName',\n",
|
745 |
" 'BaseDate'] + result_cols\n",
|
|
|
746 |
"\n",
|
747 |
"if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n",
|
748 |
" os.makedirs(FULL_PROCESSED_DIR_PATH)\n",
|
749 |
"\n",
|
750 |
"final_df = combined_df[all_cols]\n",
|
751 |
"final_df = final_df.drop('StateName', axis=1)\n",
|
752 |
+
"final_df = final_df.rename(columns={\"CountyName\": \"County\"})\n",
|
753 |
"\n",
|
754 |
"# iterate over rows of final_df and populate State and City columns if the regionType is msa\n",
|
755 |
"for index, row in final_df.iterrows():\n",
|
|
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
+
"execution_count": 53,
|
772 |
"metadata": {},
|
773 |
"outputs": [],
|
774 |
"source": [
|
775 |
+
"# final_df.to_csv(FULL_PROCESSED_DIR_PATH + 'final.csv', index=False)\n",
|
776 |
+
"final_df.to_json(FULL_PROCESSED_DIR_PATH + 'final.jsonl', orient='records', lines=True)"
|
777 |
]
|
778 |
}
|
779 |
],
|
processed/final.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
processed/home_value_forecasts/final.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
processed/{test.jsonl → home_value_forecasts/final.jsonl}
RENAMED
The diff for this file is too large to render.
See raw diff
|
|
processed/test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
zillow.py
CHANGED
@@ -47,10 +47,10 @@ _LICENSE = ""
|
|
47 |
# TODO: Add link to the official dataset URLs here
|
48 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
-
_URLS = {
|
51 |
-
|
52 |
-
|
53 |
-
}
|
54 |
|
55 |
|
56 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
@@ -92,9 +92,22 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
92 |
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
93 |
features = datasets.Features(
|
94 |
{
|
95 |
-
|
96 |
"SizeRank": datasets.Value(dtype='int32', id="SizeRank"),
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
# These are the features of your dataset like images, labels ...
|
99 |
}
|
100 |
)
|
@@ -130,12 +143,14 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
130 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
131 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
132 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
|
|
133 |
# urls = _URLS[self.config.name]
|
134 |
# data_dir = dl_manager.download_and_extract(urls)
|
135 |
# file_train = dl_manager.download(os.path.join('./data/home_value_forecasts', "Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv"))
|
136 |
-
file_path = os.path.join('processed', "
|
137 |
-
print('*********************')
|
138 |
-
print(file_path)
|
|
|
139 |
file_train = dl_manager.download(file_path)
|
140 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
141 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|
@@ -176,9 +191,21 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
176 |
if self.config.name == "first_domain":
|
177 |
# Yields examples as (key, example) tuples
|
178 |
yield key, {
|
179 |
-
|
180 |
"SizeRank": data["SizeRank"],
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
# "answer": "" if split == "test" else data["answer"],
|
183 |
}
|
184 |
# else:
|
|
|
47 |
# TODO: Add link to the official dataset URLs here
|
48 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
49 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
50 |
+
# _URLS = {
|
51 |
+
# "first_domain": "https://files.zillowstatic.com/research/public_csvs/zhvf_growth/Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_sm_sa_month.csv",
|
52 |
+
# # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
53 |
+
# }
|
54 |
|
55 |
|
56 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
92 |
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
93 |
features = datasets.Features(
|
94 |
{
|
95 |
+
"RegionID": datasets.Value(dtype='string', id="RegionID"),
|
96 |
"SizeRank": datasets.Value(dtype='int32', id="SizeRank"),
|
97 |
+
"RegionName": datasets.Value(dtype='string', id="RegionName"),
|
98 |
+
"RegionType": datasets.Value(dtype='string', id="RegionType"),
|
99 |
+
'State': datasets.Value(dtype='string', id="State"),
|
100 |
+
'City': datasets.Value(dtype='string', id="City"),
|
101 |
+
'Metro': datasets.Value(dtype='string', id="Metro"),
|
102 |
+
'County': datasets.Value(dtype='string', id="County"),
|
103 |
+
'BaseDate': datasets.Value(dtype='string', id="BaseDate"),
|
104 |
+
'Month Over Month % (Smoothed)': datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
105 |
+
'Quarter Over Quarter % (Smoothed)': datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
106 |
+
'Year Over Year % (Smoothed)' : datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
107 |
+
'Month Over Month % (Raw)': datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
108 |
+
'Quarter Over Quarter % (Raw)': datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
109 |
+
'Year Over Year % (Raw)': datasets.Value(dtype='float32', id="Month Over Month % (Smoothed)"),
|
110 |
+
|
111 |
# These are the features of your dataset like images, labels ...
|
112 |
}
|
113 |
)
|
|
|
143 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
144 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
145 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
146 |
+
|
147 |
# urls = _URLS[self.config.name]
|
148 |
# data_dir = dl_manager.download_and_extract(urls)
|
149 |
# file_train = dl_manager.download(os.path.join('./data/home_value_forecasts', "Metro_zhvf_growth_uc_sfrcondo_tier_0.33_0.67_month.csv"))
|
150 |
+
file_path = os.path.join('processed/home_value_forecasts', "final.jsonl")
|
151 |
+
# print('*********************')
|
152 |
+
# print(file_path)
|
153 |
+
|
154 |
file_train = dl_manager.download(file_path)
|
155 |
# file_test = dl_manager.download(os.path.join(self.config.name, "test.csv"))
|
156 |
# file_eval = dl_manager.download(os.path.join(self.config.name, "valid.csv"))
|
|
|
191 |
if self.config.name == "first_domain":
|
192 |
# Yields examples as (key, example) tuples
|
193 |
yield key, {
|
194 |
+
"RegionID": data["RegionID"],
|
195 |
"SizeRank": data["SizeRank"],
|
196 |
+
"RegionName": data["RegionName"],
|
197 |
+
"RegionType": data["RegionType"],
|
198 |
+
'State': data["State"],
|
199 |
+
'City': data["City"],
|
200 |
+
'Metro': data["Metro"],
|
201 |
+
'County': data["County"],
|
202 |
+
'BaseDate': data["BaseDate"],
|
203 |
+
'Month Over Month % (Smoothed)': data["Month Over Month % (Smoothed)"],
|
204 |
+
'Quarter Over Quarter % (Smoothed)': data["Quarter Over Quarter % (Smoothed)"],
|
205 |
+
'Year Over Year % (Smoothed)' : data["Year Over Year % (Smoothed)"],
|
206 |
+
'Month Over Month % (Raw)': data["Month Over Month % (Raw)"],
|
207 |
+
'Quarter Over Quarter % (Raw)': data["Quarter Over Quarter % (Raw)"],
|
208 |
+
'Year Over Year % (Raw)': data["Year Over Year % (Raw)"],
|
209 |
# "answer": "" if split == "test" else data["answer"],
|
210 |
}
|
211 |
# else:
|