{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "DATA_DIR = \"../data\"\n", "PROCESSED_DIR = \"../processed/\"\n", "FACET_DIR = \"new_constructions/\"\n", "FULL_DATA_DIR_PATH = os.path.join(DATA_DIR, FACET_DIR)\n", "FULL_PROCESSED_DIR_PATH = os.path.join(PROCESSED_DIR, FACET_DIR)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "processing Metro_new_con_sales_count_raw_uc_condo_month.csv\n", "processing Metro_new_con_median_sale_price_per_sqft_uc_sfr_month.csv\n", "processing Metro_new_con_sales_count_raw_uc_sfr_month.csv\n", "processing Metro_new_con_median_sale_price_uc_sfrcondo_month.csv\n", "processing Metro_new_con_median_sale_price_per_sqft_uc_condo_month.csv\n", "processing Metro_new_con_sales_count_raw_uc_sfrcondo_month.csv\n", "processing Metro_new_con_median_sale_price_uc_condo_month.csv\n", "processing Metro_new_con_median_sale_price_uc_sfr_month.csv\n", "processing Metro_new_con_median_sale_price_per_sqft_uc_sfrcondo_month.csv\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
RegionIDSizeRankRegionNameRegionTypeStateNameHome TypeDateSale PriceSale Price per SqftCount
01020010United StatescountryNaNSFR2018-01-31309000.0137.41231633940.0
11020010United StatescountryNaNall homes2018-01-31314596.0140.50462037135.0
21020010United StatescountryNaNcondo/co-op only2018-01-31388250.0238.3000003195.0
31020010United StatescountryNaNSFR2018-02-28309072.5137.19917033304.0
41020010United StatescountryNaNall homes2018-02-28314608.0140.30496636493.0
.................................
49482845162535Granbury, TXmsaTXall homes2023-09-30NaNNaN26.0
49483845162535Granbury, TXmsaTXSFR2023-10-31NaNNaN24.0
49484845162535Granbury, TXmsaTXall homes2023-10-31NaNNaN24.0
49485845162535Granbury, TXmsaTXSFR2023-11-30NaNNaN16.0
49486845162535Granbury, TXmsaTXall homes2023-11-30NaNNaN16.0
\n", "

49487 rows × 10 columns

\n", "
" ], "text/plain": [ " RegionID SizeRank RegionName RegionType StateName \\\n", "0 102001 0 United States country NaN \n", "1 102001 0 United States country NaN \n", "2 102001 0 United States country NaN \n", "3 102001 0 United States country NaN \n", "4 102001 0 United States country NaN \n", "... ... ... ... ... ... \n", "49482 845162 535 Granbury, TX msa TX \n", "49483 845162 535 Granbury, TX msa TX \n", "49484 845162 535 Granbury, TX msa TX \n", "49485 845162 535 Granbury, TX msa TX \n", "49486 845162 535 Granbury, TX msa TX \n", "\n", " Home Type Date Sale Price Sale Price per Sqft Count \n", "0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n", "1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n", "2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n", "3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n", "4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n", "... ... ... ... ... ... \n", "49482 all homes 2023-09-30 NaN NaN 26.0 \n", "49483 SFR 2023-10-31 NaN NaN 24.0 \n", "49484 all homes 2023-10-31 NaN NaN 24.0 \n", "49485 SFR 2023-11-30 NaN NaN 16.0 \n", "49486 all homes 2023-11-30 NaN NaN 16.0 \n", "\n", "[49487 rows x 10 columns]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_frames = []\n", "\n", "# base cols RegionID,SizeRank,RegionName,RegionType,StateName\n", "\n", "exclude_columns = [\n", " \"RegionID\",\n", " \"SizeRank\",\n", " \"RegionName\",\n", " \"RegionType\",\n", " \"StateName\",\n", " # \"Value Type\",\n", " \"Home Type\",\n", "]\n", "\n", "price_data_frames = []\n", "price_per_sqft_data_frames = []\n", "count_data_frames = []\n", "\n", "for filename in os.listdir(FULL_DATA_DIR_PATH):\n", " if filename.endswith(\".csv\"):\n", " print(\"processing \" + filename)\n", " cur_df = pd.read_csv(os.path.join(FULL_DATA_DIR_PATH, filename))\n", "\n", " if \"sfrcondo\" in filename:\n", " cur_df[\"Home Type\"] = \"all homes\"\n", " elif \"sfr\" in filename:\n", " cur_df[\"Home Type\"] = \"SFR\"\n", " elif \"condo\" in filename:\n", " cur_df[\"Home Type\"] = \"condo/co-op only\"\n", "\n", " # Identify columns to pivot\n", " columns_to_pivot = [col for col in cur_df.columns if col not in exclude_columns]\n", "\n", " if \"sale_price_per_sqft\" in filename:\n", " # cur_df[\"Value Type\"] = \"Sale Price Per Sqft\"\n", " # Perform pivot\n", " cur_df = pd.melt(\n", " cur_df,\n", " id_vars=exclude_columns,\n", " value_vars=columns_to_pivot,\n", " var_name=\"Date\",\n", " value_name=\"Sale Price per Sqft\",\n", " )\n", " price_per_sqft_data_frames.append(cur_df)\n", "\n", " elif \"sale_price_uc\" in filename:\n", " # cur_df[\"Value Type\"] = \"Sale Price\"\n", " cur_df = pd.melt(\n", " cur_df,\n", " id_vars=exclude_columns,\n", " value_vars=columns_to_pivot,\n", " var_name=\"Date\",\n", " value_name=\"Sale Price\",\n", " )\n", " price_data_frames.append(cur_df)\n", "\n", " elif \"count\" in filename:\n", " # cur_df[\"Value Type\"] = \"Count\"\n", " cur_df = pd.melt(\n", " cur_df,\n", " id_vars=exclude_columns,\n", " value_vars=columns_to_pivot,\n", " var_name=\"Date\",\n", " value_name=\"Count\",\n", " )\n", " count_data_frames.append(cur_df)\n", "\n", "\n", "combined_price = pd.concat(price_data_frames)\n", "combined_price_per = pd.concat(price_per_sqft_data_frames)\n", "combined_count = pd.concat(count_data_frames)\n", "\n", "matching_cols = [\n", " \"RegionID\",\n", " \"Date\",\n", " \"SizeRank\",\n", " \"RegionName\",\n", " \"RegionType\",\n", " \"StateName\",\n", " # \"Value Type\",\n", " \"Home Type\",\n", "]\n", "\n", "combined_df = pd.merge(\n", " combined_price,\n", " combined_price_per,\n", " on=matching_cols,\n", " how=\"outer\",\n", ")\n", "combined_df = pd.merge(\n", " combined_df,\n", " combined_count,\n", " on=matching_cols,\n", " how=\"outer\",\n", ")\n", "\n", "combined_df" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Region IDSize RankRegionRegion TypeStateHome TypeDateSale PriceSale Price per SqftCount
01020010United StatescountryNaNSFR2018-01-31309000.0137.41231633940.0
11020010United StatescountryNaNall homes2018-01-31314596.0140.50462037135.0
21020010United StatescountryNaNcondo/co-op only2018-01-31388250.0238.3000003195.0
31020010United StatescountryNaNSFR2018-02-28309072.5137.19917033304.0
41020010United StatescountryNaNall homes2018-02-28314608.0140.30496636493.0
.................................
49482845162535Granbury, TXmsaTXall homes2023-09-30NaNNaN26.0
49483845162535Granbury, TXmsaTXSFR2023-10-31NaNNaN24.0
49484845162535Granbury, TXmsaTXall homes2023-10-31NaNNaN24.0
49485845162535Granbury, TXmsaTXSFR2023-11-30NaNNaN16.0
49486845162535Granbury, TXmsaTXall homes2023-11-30NaNNaN16.0
\n", "

49487 rows × 10 columns

\n", "
" ], "text/plain": [ " Region ID Size Rank Region Region Type State \\\n", "0 102001 0 United States country NaN \n", "1 102001 0 United States country NaN \n", "2 102001 0 United States country NaN \n", "3 102001 0 United States country NaN \n", "4 102001 0 United States country NaN \n", "... ... ... ... ... ... \n", "49482 845162 535 Granbury, TX msa TX \n", "49483 845162 535 Granbury, TX msa TX \n", "49484 845162 535 Granbury, TX msa TX \n", "49485 845162 535 Granbury, TX msa TX \n", "49486 845162 535 Granbury, TX msa TX \n", "\n", " Home Type Date Sale Price Sale Price per Sqft Count \n", "0 SFR 2018-01-31 309000.0 137.412316 33940.0 \n", "1 all homes 2018-01-31 314596.0 140.504620 37135.0 \n", "2 condo/co-op only 2018-01-31 388250.0 238.300000 3195.0 \n", "3 SFR 2018-02-28 309072.5 137.199170 33304.0 \n", "4 all homes 2018-02-28 314608.0 140.304966 36493.0 \n", "... ... ... ... ... ... \n", "49482 all homes 2023-09-30 NaN NaN 26.0 \n", "49483 SFR 2023-10-31 NaN NaN 24.0 \n", "49484 all homes 2023-10-31 NaN NaN 24.0 \n", "49485 SFR 2023-11-30 NaN NaN 16.0 \n", "49486 all homes 2023-11-30 NaN NaN 16.0 \n", "\n", "[49487 rows x 10 columns]" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "final_df = combined_df\n", "final_df = final_df.rename(\n", " columns={\n", " \"RegionID\": \"Region ID\",\n", " \"SizeRank\": \"Size Rank\",\n", " \"RegionName\": \"Region\",\n", " \"RegionType\": \"Region Type\",\n", " \"StateName\": \"State\",\n", " }\n", ")\n", "\n", "final_df" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [], "source": [ "if not os.path.exists(FULL_PROCESSED_DIR_PATH):\n", " os.makedirs(FULL_PROCESSED_DIR_PATH)\n", "\n", "final_df.to_json(FULL_PROCESSED_DIR_PATH + \"final.jsonl\", orient=\"records\", lines=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }