|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TurkishMovieSentiment: This dataset contains turkish movie reviews.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This data set is a dataset from kaggle consisting of Turkish movie reviews and scored between 0-5. |
|
""" |
|
|
|
_CITATION = "" |
|
_LICENSE = "CC0: Public Domain" |
|
_HOMEPAGE = "https://www.kaggle.com/mustfkeskin/turkish-movie-sentiment-analysis-dataset" |
|
_FILENAME = "turkish_movie_sentiment_dataset.csv" |
|
|
|
|
|
class TurkishMovieSentimentConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for TurkishMovieSentiment""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for TurkishMovieSentiment. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(TurkishMovieSentimentConfig, self).__init__(**kwargs) |
|
|
|
|
|
class TurkishMovieSentiment(datasets.GeneratorBasedBuilder): |
|
"""TurkishMovieSentiment: This dataset contains turkish movie reviews.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
TurkishMovieSentimentConfig( |
|
name="turkishmoviesentiment", |
|
version=datasets.Version("1.0.0"), |
|
description="This dataset contains turkish movie reviews.", |
|
), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """\ |
|
You need to go to https://www.kaggle.com/mustfkeskin/turkish-movie-sentiment-analysis-dataset, |
|
and manually download the TurkishMovieSentiment. Once it is completed, |
|
a file named archive.zip will be appeared in your Downloads folder |
|
or whichever folder your browser chooses to save files to. You then have |
|
to unzip the file and move turkish_movie_sentiment_dataset.csv under <path/to/folder>. |
|
The <path/to/folder> can e.g. be "~/manual_data". |
|
TurkishMovieSentiment can then be loaded using the following command `datasets.load_dataset("turkishmoviesentiment", data_dir="<path/to/folder>")`. |
|
""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"point": datasets.Value("float32"), |
|
"comment": datasets.Value("string"), |
|
"film_name": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
if not os.path.exists(path_to_manual_file): |
|
raise FileNotFoundError( |
|
f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('turkishmoviesentiment', data_dir=...)` that includes a file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions})" |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(path_to_manual_file, _FILENAME)} |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate TurkishMovieSentiment examples.""" |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
rdr = csv.reader(f, delimiter=",") |
|
next(rdr) |
|
rownum = 0 |
|
for row in rdr: |
|
rownum += 1 |
|
yield rownum, { |
|
"comment": row[0], |
|
"film_name": row[1], |
|
"point": row[2].replace(",", "."), |
|
} |
|
|