content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
import argparse import sys from os import path import cv2 as cv from mcrops import veget, utils def full_imshow(name, image): cv.namedWindow(name, cv.WINDOW_NORMAL) cv.resizeWindow(name, 800, 600) cv.imshow(name, image) def main(image_path: str, resolution: float, row_sep: float): print(f'Starting analysis.\n') print(f'Loading image {image_path}') # Load a crop field image image = cv.imread(image_path) if image is None: raise ValueError(f'Unable to load image {image_path}') h, w = image.shape[:2] image_draw = image.copy() print(f'Image loaded. Size is {w}x{h} pixels.') print('Segmenting vegetation') # Segment vegetation veg_mask = veget.segment_vegetation(image) print('Detecting crop area') # Detect the crop field ROI area roi_poly = veget.detect_roi( veg_mask, row_sep=row_sep, resolution=resolution ) # Draw the contours of the ROI area cv.drawContours( image=image_draw, contours=[roi_poly], contourIdx=-1, color=(0, 0, 255), thickness=8, lineType=cv.LINE_AA ) # Build a mask image from the ROI polyline roi_mask = utils.poly_mask(roi_poly, veg_mask.shape[:2]) veg_mask[roi_mask == 0] = 0 print('Computing vegetation density map') # Create a vegetation density map from the vegetation mask density_map = veget.mask_density( veg_mask, roi_mask, resolution=resolution, cell_size=(8, 8) ) d_min = density_map.min() d_max = density_map.max() print(f'Vegetation density is range [{d_min:.3f}, {d_max:.3f}]') # Convert the vegetation density map to a color image image_map = utils.array_image(density_map, colormap=cv.COLORMAP_JET) full_imshow('Crop field image', image_draw) full_imshow('Vegetation mask', veg_mask) full_imshow('Vegetation density map', image_map) print(f'Analysis finished. Press any key to quit.\n') cv.waitKey(0) cv.destroyAllWindows() if __name__ == '__main__': curr_dir = path.dirname(path.abspath(__file__)) parent_dir, _ = path.split(curr_dir) parser = argparse.ArgumentParser() parser.add_argument( '--input', type=str, required=False, default=path.join(curr_dir, 'data/crop_field_sparse_res40.png'), help='Path to crop field image.' ) parser.add_argument( '--res', type=float, required=False, default=40, help='Image resolution in pixels/meter.' ) parser.add_argument( '--row_sep', type=float, required=False, default=0.7, help='Approximated mean crop rows separation in meters.' ) args = parser.parse_args(sys.argv[1:]) main(image_path=args.input, resolution=args.res, row_sep=args.row_sep)
27.247619
74
0.650122
[ "MIT" ]
raikel/mcrops
examples/vegetation.py
2,861
Python
# Copyright (c) 2014, Raphael Kubo da Costa <[email protected]> # Redistribution and use is allowed according to the terms of the BSD license. # For details see the accompanying COPYING-CMAKE-SCRIPTS file. import PyKDE4.kdecore if __name__ == '__main__': try: import PyKDE4.pykdeconfig pykdecfg = PyKDE4.pykdeconfig.Configuration() sip_dir = pykdecfg.pykde_sip_dir sip_flags = pykdecfg.pykde_kde_sip_flags except ImportError: # PyQt4 >= 4.10.0 was built with configure-ng.py instead of # configure.py, so pyqtconfig.py and pykdeconfig.py are not installed. sip_dir = PyKDE4.kdecore.PYKDE_CONFIGURATION['sip_dir'] sip_flags = PyKDE4.kdecore.PYKDE_CONFIGURATION['sip_flags'] print('pykde_version:%06.x' % PyKDE4.kdecore.version()) print('pykde_version_str:%s' % PyKDE4.kdecore.versionString()) print('pykde_sip_dir:%s' % sip_dir) print('pykde_sip_flags:%s' % sip_flags)
41.73913
78
0.713542
[ "BSD-3-Clause" ]
KDE-China/extra-cmake-modules
attic/modules/FindPyKDE4.py
960
Python
# -*- coding: utf-8 -*- from random import randint import json from .base import analyse_process_graph, PROCESS_DICT, PROCESS_DESCRIPTION_DICT from openeo_grass_gis_driver.process_schemas import Parameter, ProcessDescription, ReturnValue from .actinia_interface import ActiniaInterface __license__ = "Apache License, Version 2.0" __author__ = "Sören Gebbert" __copyright__ = "Copyright 2018, Sören Gebbert, mundialis" __maintainer__ = "Soeren Gebbert" __email__ = "[email protected]" PROCESS_NAME = "get_data" def create_process_description(): p_imagery = Parameter(description="Any openEO process object that returns raster datasets " "or space-time raster dataset", schema={"type": "object", "format": "eodata"}, required=False) p_data_id = Parameter(description="The identifier of a single raster-, vector- or space-time raster dataset", schema={"type": "string", "examples": ["nc_spm_08.landsat.raster.lsat5_1987_10", "nc_spm_08.PERMANENT.vector.lakes", "ECAD.PERMANENT.strds.temperature_1950_2017_yearly"]}, required=True) rv = ReturnValue(description="Processed EO data.", schema={"type": "object", "format": "eodata"}) simple_example = { "process_id": PROCESS_NAME, "data_id": "nc_spm_08.PERMANENT.vector.lakes", } raster_vector_example = { "process_id": PROCESS_NAME, "data_id": "nc_spm_08.landsat.raster.lsat5_1987_10", "imagery": { "process_id": "get_data", "data_id": "nc_spm_08.PERMANENT.vector.lakes" } } strds_example = { "process_id": PROCESS_NAME, "data_id": "ECAD.PERMANENT.strds.temperature_1950_2017_yearly", "imagery": { "process_id": "get_data", "data_id": "ECAD.PERMANENT.strds.precipitation_1950_2017_yearly" } } examples = dict(simple_example=simple_example, raster_vector_example=raster_vector_example, strds_example=strds_example) pd = ProcessDescription(name=PROCESS_NAME, description="This process returns a raster-, a vector- or a space-time raster " "datasets that is available in the /collections endpoint.", summary="Returns a single dataset that is available in " "the /collections endpoint for processing", parameters={"imagery": p_imagery, "data_id": p_data_id}, returns=rv, examples=examples) return json.loads(pd.to_json()) PROCESS_DESCRIPTION_DICT[PROCESS_NAME] = create_process_description() def create_process_chain_entry(input_name): """Create a Actinia process description that uses t.rast.series to create the minimum value of the time series. :param input_time_series: The input time series name :param output_map: The name of the output map :return: A Actinia process chain description """ location, mapset, datatype, layer_name = ActiniaInterface.layer_def_to_components(input_name) input_name = layer_name if mapset is not None: input_name = layer_name + "@" + mapset rn = randint(0, 1000000) pc = {} if datatype == "raster": pc = {"id": "r_info_%i" % rn, "module": "r.info", "inputs": [{"param": "map", "value": input_name}, ], "flags": "g"} elif datatype == "vector": pc = {"id": "v_info_%i" % rn, "module": "v.info", "inputs": [{"param": "map", "value": input_name}, ], "flags": "g"} elif datatype == "strds": pc = {"id": "t_info_%i" % rn, "module": "t.info", "inputs": [{"param": "input", "value": input_name}, ], "flags": "g"} else: raise Exception("Unsupported datatype") return pc def get_process_list(process): """Analyse the process description and return the Actinia process chain and the name of the processing result :param process: The process description :return: (output_names, actinia_process_list) """ input_names, process_list = analyse_process_graph(process) output_names = [] # First analyse the data entrie if "data_id" not in process: raise Exception("Process %s requires parameter <data_id>" % PROCESS_NAME) output_names.append(process["data_id"]) pc = create_process_chain_entry(input_name=process["data_id"]) process_list.append(pc) # Then add the input to the output for input_name in input_names: # Create the output name based on the input name and method output_name = input_name output_names.append(output_name) return output_names, process_list PROCESS_DICT[PROCESS_NAME] = get_process_list
36.539007
113
0.607725
[ "Apache-2.0" ]
AnikaBettge/openeo-grassgis-driver
src/openeo_grass_gis_driver/actinia_processing/get_data_process.py
5,154
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2008-2010 Søren Roug, European Environment Agency # # This is free software. You may redistribute it under the terms # of the Apache license and the GNU General Public License Version # 2 or at your option any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Contributor(s): # import unittest, os, os.path from odf.opendocument import OpenDocumentSpreadsheet import odf.table import odf.office import odf.form import odf.draw class TestForm(unittest.TestCase): def test_ooo_ns(self): """ Check that ooo exists in namespace declarations """ calcdoc = OpenDocumentSpreadsheet() table = odf.table.Table(name="Costs") forms = odf.office.Forms() form = odf.form.Form( controlimplementation="ooo:com.sun.star.form.component.Form") lb = odf.form.Listbox( controlimplementation="ooo:com.sun.star.form.component.ListBox", dropdown="true", id="control1") form.addElement(lb) forms.addElement(form) table.addElement(forms) # One empty line tr = odf.table.TableRow() table.addElement(tr) tr = odf.table.TableRow() # One empty cell cell = odf.table.TableCell() tr.addElement(cell) cell = odf.table.TableCell() draw = odf.draw.Control( control="control1", height="0.1126in", width="0.798in", x="0.0303in", y="0.0205in", endcelladdress="Costs.B2", endx="0.8283in", endy="0.1331in") cell.addElement(draw) tr.addElement(cell) table.addElement(tr) calcdoc.spreadsheet.addElement(table) result = calcdoc.contentxml() # contentxml() is supposed to yeld a bytes self.assertNotEqual(-1, result.find(b'''xmlns:ooo="http://openoffice.org/2004/office"''')) def test_form_controls(self): odf.form.Button(id="Button") odf.form.Checkbox(id="Checkbox") odf.form.Combobox(id="Combobox") odf.form.Date(id="Date") odf.form.File(id="File") odf.form.FixedText(id="FixedText") odf.form.FormattedText(id="FormattedText") odf.form.Frame(id="Frame") odf.form.GenericControl(id="GenericControl") odf.form.Grid(id="Grid") odf.form.Hidden(id="Hidden") odf.form.Image(id="Image") odf.form.ImageFrame(id="ImageFrame") odf.form.Listbox(id="Listbox") odf.form.Number(id="Number") odf.form.Password(id="Password") odf.form.Radio(id="Radio") odf.form.Text(id="Text") odf.form.Textarea(id="Textarea") odf.form.Time(id="Time") odf.form.ValueRange(id="ValueRange") if __name__ == '__main__': unittest.main()
34.901099
107
0.652393
[ "Apache-2.0" ]
10088/hue
desktop/core/ext-py/odfpy-1.4.1/tests/testform.py
3,177
Python
import os.path import sys from tf_pwa.config_loader import ConfigLoader from tf_pwa.vis import draw_decay_struct this_dir = os.path.dirname(__file__) sys.path.insert(0, this_dir + "/..") def main(): config = ConfigLoader("config.yml") for i, dec in enumerate(config.get_decay()): draw_decay_struct( dec, filename="figure/fig_{}".format(i), format="png" ) if __name__ == "__main__": main()
21.666667
66
0.641758
[ "MIT" ]
ReynLieu/tf-pwa
tutorials/examples/show_decay_chain.py
455
Python
import os import hashlib from django.db import models from sample.fields import Md5Field, Sha256Field from scanworker.file import PickleableFileSample from scaggr.settings import SAMPLE_UPLOAD_DIR, MAX_SHA256_DIRECTORY_DEPTH def generate_hash_directories(hash_str): return "/".join([d for d in hash_str[:MAX_SHA256_DIRECTORY_DEPTH]]) def get_hashed_filename_path_and_set_filename(instance, filename): new_filename = instance.sha256 # todo confirm that this gets the proper upload dir off the instance dir_path = "{0}{1}".format(instance.UPLOAD_DIR, generate_hash_directories(new_filename)) return os.path.join(dir_path, new_filename) class AbstractFileSample(models.Model): UPLOAD_DIR = SAMPLE_UPLOAD_DIR DUPLICATE_MESSAGE = 'duplicateSHA256' V_NAME_KEY = 'name' V_SIZE_KEY = 'size' V_HASH_KEY = 'hash' V_ERROR_KEY = 'error' V_URL_KEY = 'url' V_MSG_KEY = 'msg' md5 = Md5Field(max_length=Md5Field.length, null=False, unique=True) sha256 = Sha256Field(max_length=Sha256Field.length, null=False, unique=True) submission_time = models.DateTimeField(auto_now_add=True) file = models.FileField(upload_to=get_hashed_filename_path_and_set_filename) @property def file_content(self): # todo think about memory caching this self.file.seek(0) return self.file.read() def file_hash(self): return str(self.sha256) @models.permalink def get_absolute_url(self): return ('sample-detail',(), {'slug' : self.sha256 }) @classmethod def filename_hasher(cls, file_content): return hashlib.sha256(file_content).hexdigest() def get_pickleable_file(self): return PickleableFileSample.file_object_factory(self.file) def save(self, *args, **kwargs): # make sure we do our required hashing before we save this thing for hash_field_obj, model, direct, m2m in [self._meta.get_field_by_name('md5'), self._meta.get_field_by_name('sha256')]: if not getattr(self, hash_field_obj.name): digest = hash_field_obj.hasher(self.file_content).hexdigest() setattr(self, hash_field_obj.name, digest) return super(AbstractFileSample, self).save(*args, **kwargs) class Meta: abstract = True
32.686567
89
0.755251
[ "Apache-2.0" ]
scsich/phagescan
sample/abstract.py
2,190
Python
""" Test the gym's code for configuring the DonkeyCar's camera settings. """ import os import argparse import gym import gym_donkeycar import numpy as np import uuid if __name__ == "__main__": # Initialize the donkey environment # where env_name one of: env_list = [ "donkey-warehouse-v0", "donkey-generated-roads-v0", "donkey-avc-sparkfun-v0", "donkey-generated-track-v0", "donkey-roboracingleague-track-v0", "donkey-waveshare-v0" ] parser = argparse.ArgumentParser(description='gym_test') parser.add_argument('--sim', type=str, default="sim_path", help='path to unity simulator. maybe be left at default if you would like to start the sim on your own.') parser.add_argument('--port', type=int, default=9091, help='port to use for websockets') parser.add_argument('--env_name', type=str, default='donkey-warehouse-v0', help='name of donkey sim environment', choices=env_list) args = parser.parse_args() #%% SET UP ENVIRONMENT cam = (256,256,3) conf = {"exe_path" : args.sim, "host" : "127.0.0.1", "port" : args.port, "body_style" : "donkey", "body_rgb" : (128, 128, 128), "car_name" : "me", "font_size" : 100, "racer_name" : "test", "country" : "USA", "bio" : "I am test client", "guid" : str(uuid.uuid4()), "cam_resolution" : cam, "img_w" : cam[0], "img_h" : cam[1], "img_d" : cam[2], } env = gym.make(args.env_name, conf=conf) print( "Env cam size: {}".format( env.viewer.get_sensor_size() ) ) speed = 0.5 steer = 0.0 max_steer = 1.0 #%% PLAY obv = env.reset() for t in range(100): action = np.array([steer,speed]) # drive straight with small speed try: obv, reward, done, info = env.step(action) except Exception as ex: print( "Exception: {}".format( ex ) ) if obv.shape != cam: print( "Invalid Image size: {}".format( obv.shape ) ) elif t == 10: print( "Actual camera size: {}".format( obv.shape ) ) if done or (info['hit'] is True): obv = env.reset() print( "Exiting d/h: {}/{}".format( done, info['hit'] ) ) break env.close()
27.953488
129
0.553245
[ "MIT" ]
vihank/gym-donkeycar
examples/test_cam_config.py
2,404
Python
from src.pre_processing import Preprocessing def identifyQuery(query): q_l: str = query if q_l.__contains__("AND") or q_l.__contains__("OR") or q_l.__contains__("NOT"): return "B" elif query.__contains__("/"): return "PR" elif len(q_l.split()) == 1: return "S" else: return "PO" def positionalSearch(query, stop_list, dict_book: dict): pipe = Preprocessing() pipe.stop_word = stop_list tokens = pipe.tokenizer(query) stems = pipe.stemmer(tokens) # dict_book structure: {"word": {doc-ID: [], ...}, ...} w1 = stems[0] w2 = stems[1] print(w1, w2) if dict_book.__contains__(w1) and dict_book.__contains__(w2): posting1: dict = dict_book.get(w1) # dict returned, {docID:[], ...} posting2: dict = dict_book.get(w2) # without using get() and type defining to be set not dict else: return [] # len_posting1 = len(posting1) # len_posting2 = len(posting2) doc_list = [] # i was iterating on sets rather than its keys for docI in posting1.keys(): for docJ in posting2.keys(): # iterates on documents if docI == docJ: # print(docI) poslist1: list = posting1.get(docI) # returns a position list poslist2: list = posting2.get(docJ) match: bool = False for pos1 in poslist1: # hilary for pos2 in poslist2: # clinton if pos2 - pos1 == 2: doc_list.append(docI) match = True break if match is True: break return doc_list def positionalSingleSearch(query, stop_list, dict_book: dict): pipe = Preprocessing() pipe.stop_word = stop_list tokens = pipe.tokenizer(query) stems = pipe.stemmer(tokens) # dict_book structure: {"word": {doc-ID: [], ...}, ...} w1 = stems[0] if dict_book.keys().__contains__(w1): posting1: dict = dict_book.get(w1) # dict returned, {docID:[], ...} return list(posting1.keys()) else: return [] def proximitySearch(query, stop_list, dict_book, k): pipe = Preprocessing() pipe.stop_word = stop_list tokens = pipe.tokenizer(query) stems = pipe.stemmer(tokens) w1 = stems[0] w2 = stems[1] if dict_book.__contains__(w1) and dict_book.__contains__(w2): posting1: dict = dict_book.get(w1) # dict returned, {docID:[], ...} posting2: dict = dict_book.get(w2) else: return [] # len_posting1 = len(posting1) # len_posting2 = len(posting2) doc_list = [] for docI in posting1.keys(): for docJ in posting2.keys(): if docI == docJ: poslist1: list = posting1.get(docI) poslist2: list = posting2.get(docJ) match: bool = False for pos1 in poslist1: # hilary for pos2 in poslist2: # clinton if pos2 - pos1 == k+1: doc_list.append(docI) match = True break if match is True: break return doc_list def booleanSearch(query, stop_list, dict_book): pipe = Preprocessing() pipe.stop_word = stop_list # print(query) tokens = pipe.tokenizer(query) stems = pipe.stemmer(tokens) if dict_book.__contains__(stems): posting: set = dict_book[stems] else: return [] doc_list = [] for i in posting: doc_list.append(i) return doc_list
28.106061
102
0.547439
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
thealifaisal/boolean-retrieval-model
src/search.py
3,710
Python
test = { 'name': 'q3_b', 'points': 5, 'suites': [ { 'cases': [ { 'code': '>>> no_match in ' "list(['professor', 'engineer', " "'scientist', 'cat'])\n" 'True', 'hidden': False, 'locked': False}], 'scored': True, 'setup': '', 'teardown': '', 'type': 'doctest'}]}
45.076923
80
0.235495
[ "Apache-2.0" ]
UCBerkeley-SCET/DataX-Berkeley
dataxHWSp2021/HW3-4_NLP/student/tests/q3_b.py
586
Python
#!/usr/bin/env python # # Copyright 2018 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This is a simple example demonstrating how to produce a message to # Confluent Cloud then read it back again. # # https://www.confluent.io/confluent-cloud/ # # Auto-creation of topics is disabled in Confluent Cloud. You will need to # use the ccloud cli to create the python-test-topic topic before running this # example. # # $ ccloud topic create python-test-topic # # The <ccloud bootstrap servers>, <ccloud key> and <ccloud secret> parameters # are available via the Confluent Cloud web interface. For more information, # refer to the quick-start: # # https://docs.confluent.io/current/cloud-quickstart.html # # to execute using Python 2.7: # $ virtualenv ccloud_example # $ source ccloud_example/bin/activate # $ pip install confluent_kafka # $ python confluent_cloud.py # $ deactivate # # to execute using Python 3.x: # $ python -m venv ccloud_example # $ source ccloud_example/bin/activate # $ pip install confluent_kafka # $ python confluent_cloud.py # $ deactivate import uuid from confluent_kafka import Producer, Consumer, KafkaError p = Producer({ 'bootstrap.servers': '<ccloud bootstrap servers>', 'broker.version.fallback': '0.10.0.0', 'api.version.fallback.ms': 0, 'sasl.mechanisms': 'PLAIN', 'security.protocol': 'SASL_SSL', 'sasl.username': '<ccloud key>', 'sasl.password': '<ccloud secret>' }) def acked(err, msg): """Delivery report callback called (from flush()) on successful or failed delivery of the message.""" if err is not None: print("failed to deliver message: {0}".format(err.str())) else: print("produced to: {0} [{1}] @ {2}".format(msg.topic(), msg.partition(), msg.offset())) p.produce('python-test-topic', value='python test value', callback=acked) # flush() is typically called when the producer is done sending messages to wait # for outstanding messages to be transmitted to the broker and delivery report # callbacks to get called. For continous producing you should call p.poll(0) # after each produce() call to trigger delivery report callbacks. p.flush(10) c = Consumer({ 'bootstrap.servers': '<ccloud bootstrap servers>', 'broker.version.fallback': '0.10.0.0', 'api.version.fallback.ms': 0, 'sasl.mechanisms': 'PLAIN', 'security.protocol': 'SASL_SSL', 'sasl.username': '<ccloud key>', 'sasl.password': '<ccloud secret>', 'group.id': str(uuid.uuid1()), # this will create a new consumer group on each invocation. 'auto.offset.reset': 'earliest' }) c.subscribe(['python-test-topic']) try: while True: msg = c.poll(0.1) # Wait for message or event/error if msg is None: # No message available within timeout. # Initial message consumption may take up to `session.timeout.ms` for # the group to rebalance and start consuming continue elif not msg.error(): print('consumed: {0}'.format(msg.value())) elif msg.error().code() == KafkaError._PARTITION_EOF: print('end of partition: {0} [{1}] @ {2}'.format(msg.topic(), msg.partition(), msg.offset())) else: print('error: {0}'.format(msg.error().str())) except KeyboardInterrupt: pass finally: # Leave group and commit final offsets c.close()
33.422414
105
0.689709
[ "Apache-2.0" ]
RasmusWL/confluent-kafka-python
examples/confluent_cloud.py
3,877
Python
'''Paginatiors for Figures ''' from rest_framework.pagination import LimitOffsetPagination class FiguresLimitOffsetPagination(LimitOffsetPagination): '''Custom Figures paginator to make the number of records returned consistent ''' default_limit = None
22.416667
81
0.784387
[ "MIT" ]
TheMOOCAgency/figures
figures/pagination.py
269
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) import sys from spack import * class ScalapackBase(CMakePackage): """Base class for building ScaLAPACK, shared with the AMD optimized version of the library in the 'amdscalapack' package. """ variant( 'build_type', default='Release', description='CMake build type', values=('Debug', 'Release', 'RelWithDebInfo', 'MinSizeRel')) variant( 'shared', default=True, description='Build the shared library version' ) variant( 'pic', default=False, description='Build position independent code' ) provides('scalapack') depends_on('mpi') depends_on('lapack') depends_on('blas') depends_on('cmake', when='@2.0.0:', type='build') # See: https://github.com/Reference-ScaLAPACK/scalapack/issues/9 patch("cmake_fortran_mangle.patch", when='@2.0.2:2.0') # See: https://github.com/Reference-ScaLAPACK/scalapack/pull/10 patch("mpi2-compatibility.patch", when='@2.0.2:2.0') # See: https://github.com/Reference-ScaLAPACK/scalapack/pull/16 patch("int_overflow.patch", when='@2.0.0:2.1.0') # See: https://github.com/Reference-ScaLAPACK/scalapack/pull/23 patch("gcc10-compatibility.patch", when='@2.0.0:2.1.0') @property def libs(self): # Note that the default will be to search # for 'libnetlib-scalapack.<suffix>' shared = True if '+shared' in self.spec else False return find_libraries( 'libscalapack', root=self.prefix, shared=shared, recursive=True ) def cmake_args(self): spec = self.spec options = [ "-DBUILD_SHARED_LIBS:BOOL=%s" % ('ON' if '+shared' in spec else 'OFF'), "-DBUILD_STATIC_LIBS:BOOL=%s" % ('OFF' if '+shared' in spec else 'ON') ] # Make sure we use Spack's Lapack: blas = spec['blas'].libs lapack = spec['lapack'].libs options.extend([ '-DLAPACK_FOUND=true', '-DLAPACK_INCLUDE_DIRS=%s' % spec['lapack'].prefix.include, '-DLAPACK_LIBRARIES=%s' % (lapack.joined(';')), '-DBLAS_LIBRARIES=%s' % (blas.joined(';')) ]) c_flags = [] if '+pic' in spec: c_flags.append(self.compiler.cc_pic_flag) options.append( "-DCMAKE_Fortran_FLAGS=%s" % self.compiler.fc_pic_flag ) # Work around errors of the form: # error: implicit declaration of function 'BI_smvcopy' is # invalid in C99 [-Werror,-Wimplicit-function-declaration] if spec.satisfies('%clang') or spec.satisfies('%apple-clang'): c_flags.append('-Wno-error=implicit-function-declaration') options.append( self.define('CMAKE_C_FLAGS', ' '.join(c_flags)) ) return options @run_after('install') def fix_darwin_install(self): # The shared libraries are not installed correctly on Darwin: if (sys.platform == 'darwin') and ('+shared' in self.spec): fix_darwin_install_name(self.spec.prefix.lib) class NetlibScalapack(ScalapackBase): """ScaLAPACK is a library of high-performance linear algebra routines for parallel distributed memory machines """ homepage = "https://www.netlib.org/scalapack/" url = "https://www.netlib.org/scalapack/scalapack-2.0.2.tgz" tags = ['e4s'] version('2.1.0', sha256='61d9216cf81d246944720cfce96255878a3f85dec13b9351f1fa0fd6768220a6') version('2.0.2', sha256='0c74aeae690fe5ee4db7926f49c5d0bb69ce09eea75beb915e00bba07530395c') version('2.0.1', sha256='a9b34278d4e10b40cbe084c6d87d09af8845e874250719bfbbc497b2a88bfde1') version('2.0.0', sha256='e51fbd9c3ef3a0dbd81385b868e2355900148eea689bf915c5383d72daf73114') # versions before 2.0.0 are not using cmake and requires blacs as # a separated package
35.364407
95
0.627366
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
Bambi/spack
var/spack/repos/builtin/packages/netlib-scalapack/package.py
4,173
Python
""" ParallelCluster ParallelCluster API # noqa: E501 The version of the OpenAPI document: 3.0.0 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from pcluster_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from pcluster_client.model.cluster_info_summary import ClusterInfoSummary globals()['ClusterInfoSummary'] = ClusterInfoSummary class DeleteClusterResponseContent(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'cluster': (ClusterInfoSummary,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'cluster': 'cluster', # noqa: E501 } _composed_schemas = {} required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, cluster, *args, **kwargs): # noqa: E501 """DeleteClusterResponseContent - a model defined in OpenAPI Args: cluster (ClusterInfoSummary): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.cluster = cluster for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value)
38.211429
110
0.589203
[ "Apache-2.0" ]
Chen188/aws-parallelcluster
api/client/src/pcluster_client/model/delete_cluster_response_content.py
6,687
Python
""" ASGI config for achristos project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'achristos.settings') application = get_asgi_application()
23.235294
78
0.787342
[ "MIT" ]
n0tNoah/achristos
achristos/asgi.py
395
Python
# coding=utf-8 # ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from azure.core.pipeline.policies import ContentDecodePolicy from azure.core.pipeline.policies import SansIOHTTPPolicy, HTTPPolicy from ._models import TextDocumentBatchStatistics class CognitiveServicesCredentialPolicy(SansIOHTTPPolicy): def __init__(self, api_key_credential): self.credential = api_key_credential super(CognitiveServicesCredentialPolicy, self).__init__() def on_request(self, request): request.http_request.headers[ "Ocp-Apim-Subscription-Key" ] = self.credential.api_key request.http_request.headers["X-BingApis-SDK-Client"] = "Python-SDK" class TextAnalyticsResponseHook(HTTPPolicy): def __init__(self, **kwargs): self._response_callback = kwargs.get("response_hook") super(TextAnalyticsResponseHook, self).__init__() def send(self, request): response_callback = request.context.options.pop("response_hook", self._response_callback) if response_callback: response = self.next.send(request) data = ContentDecodePolicy.deserialize_from_http_generics(response.http_response) statistics = data.get("statistics", None) model_version = data.get("modelVersion", None) batch_statistics = TextDocumentBatchStatistics._from_generated(statistics) # pylint: disable=protected-access response.statistics = batch_statistics response.model_version = model_version response.raw_response = data response_callback(response) return response return self.next.send(request)
40.386364
122
0.68655
[ "MIT" ]
anuchandy/azure-sdk-for-python
sdk/textanalytics/azure-ai-textanalytics/azure/ai/textanalytics/_policies.py
1,777
Python
# Copyright (c) 2016 Tzutalin # Create by TzuTaLin <[email protected]> try: from PyQt5.QtGui import QImage except ImportError: from PyQt4.QtGui import QImage from base64 import b64encode, b64decode from libs.pascal_voc_io import PascalVocWriter from libs.pascal_voc_io import XML_EXT import os.path import sys class LabelFileError(Exception): pass class LabelFile(object): # It might be changed as window creates. By default, using XML ext # suffix = '.lif' suffix = XML_EXT def __init__(self, filename=None): self.shapes = () self.imagePath = None self.imageData = None self.verified = False def savePascalVocFormat(self, filename, shapes, imagePath, imageData, lineColor=None, fillColor=None, databaseSrc=None): imgFolderPath = os.path.dirname(imagePath) imgFolderName = os.path.split(imgFolderPath)[-1] imgFileName = os.path.basename(imagePath) #imgFileNameWithoutExt = os.path.splitext(imgFileName)[0] # Read from file path because self.imageData might be empty if saving to # Pascal format image = QImage() image.load(imagePath) imageShape = [image.height(), image.width(), 1 if image.isGrayscale() else 3] writer = PascalVocWriter(imgFolderName, imgFileName, imageShape, localImgPath=imagePath) writer.verified = self.verified for shape in shapes: points = shape['points'] label = shape['label'] # Add Chris difficult = int(shape['difficult']) bndbox = LabelFile.convertPoints2BndBox(points) writer.addBndBox(bndbox[0], bndbox[1], bndbox[2], bndbox[3], label, difficult) writer.save(targetFile=filename) return def toggleVerify(self): self.verified = not self.verified ''' ttf is disable def load(self, filename): import json with open(filename, 'rb') as f: data = json.load(f) imagePath = data['imagePath'] imageData = b64decode(data['imageData']) lineColor = data['lineColor'] fillColor = data['fillColor'] shapes = ((s['label'], s['points'], s['line_color'], s['fill_color'])\ for s in data['shapes']) # Only replace data after everything is loaded. self.shapes = shapes self.imagePath = imagePath self.imageData = imageData self.lineColor = lineColor self.fillColor = fillColor def save(self, filename, shapes, imagePath, imageData, lineColor=None, fillColor=None): import json with open(filename, 'wb') as f: json.dump(dict( shapes=shapes, lineColor=lineColor, fillColor=fillColor, imagePath=imagePath, imageData=b64encode(imageData)), f, ensure_ascii=True, indent=2) ''' @staticmethod def isLabelFile(filename): fileSuffix = os.path.splitext(filename)[1].lower() return fileSuffix == LabelFile.suffix @staticmethod def convertPoints2BndBox(points): xmin = float('inf') ymin = float('inf') xmax = float('-inf') ymax = float('-inf') for p in points: x = p[0] y = p[1] xmin = min(x, xmin) ymin = min(y, ymin) xmax = max(x, xmax) ymax = max(y, ymax) # Martin Kersner, 2015/11/12 # 0-valued coordinates of BB caused an error while # training faster-rcnn object detector. if xmin < 1: xmin = 1 if ymin < 1: ymin = 1 return (int(xmin), int(ymin), int(xmax), int(ymax))
33.058824
91
0.571429
[ "MIT" ]
DHZS/labelImg
libs/labelFile.py
3,934
Python
""" :author: Maikel Punie <[email protected]> """ import velbus class VMB1BLModule(velbus.Module): """ Velbus input module with 6 channels """ def __init__(self, module_type, module_name, module_address, controller): velbus.Module.__init__(self, module_type, module_name, module_address, controller) self._is_closed = {} self._callbacks = {} def is_closed(self, channel): if channel in self._is_closed: return self._is_closed[channel] return False def _load(self): message = velbus.ModuleStatusRequestMessage(self._address) message.channels = list(range(1, self.number_of_channels()+1)) self._controller.send(message) def number_of_channels(self): return 1 def _on_message(self, message): if isinstance(message, velbus.PushButtonStatusMessage): for channel in message.closed: self._is_closed[channel] = True for channel in message.opened: self._is_closed[channel] = False for channel in message.get_channels(): if channel in self._callbacks: for callback in self._callbacks[channel]: callback(self._is_closed[channel]) elif isinstance(message, velbus.ModuleStatusMessage): for channel in list(range(1, self.number_of_channels() + 1)): if channel in message.closed: self._is_closed[channel] = True else: self._is_closed[channel] = False def on_status_update(self, channel, callback): """ Callback to execute on status of update of channel """ if not channel in self._callbacks: self._callbacks[channel] = [] self._callbacks[channel].append(callback) def get_categories(self, channel): return ['binary_sensor'] class VMB2BLModule(VMB1BLModule): """ Velbus input module with 7 channels """ def number_of_channels(self): return 2 class VMB1BLEModule(velbus.Module): def number_of_channels(self): return 1 class VMB2BLEModule(velbus.Module): def number_of_channels(self): return 2 velbus.register_module('VMB1BL', VMB1BLModule) velbus.register_module('VMB2BL', VMB2BLModule) velbus.register_module('VMB1BLE', VMB1BLEModule) velbus.register_module('VMB2BLE', VMB2BLEModule)
32.184211
90
0.641864
[ "MIT" ]
ddanssaert/python-velbus
velbus/modules/vmbbl.py
2,446
Python
from django.contrib.auth import authenticate, login, logout, get_user_model from django.shortcuts import render, redirect # Create your views here. from .forms import LoginForm, RegisterForm User = get_user_model() def register_view(request): form = RegisterForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get("username") email = form.cleaned_data.get("email") password = form.cleaned_data.get("password1") password2 = form.cleaned_data.get("password2") try: user = User.objects.create_user(username, email, password) except: user = None if user != None: login(request, user) return redirect("/") else: request.session['register_error'] = 1 # 1 == True return render(request, "forms.html", {"form": form}) def login_view(request): form = LoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get("username") password = form.cleaned_data.get("password") # Authenticate checks if the username and password is correct user = authenticate(request, username=username, password=password) if user != None: # User is valid and active -> is_active # request.user == user login(request, user) # Login succes redirect return redirect("/") else: # Count user login attempt (simple way) # attempt = request.session.get("attempt") or 0 # request.session['attempt'] = attempt + 1 # return redirect("/invalid-password") request.session['invalid_user'] = 1 # 1 == True return render(request, "forms.html", {"form": form}) def logout_view(request): logout(request) # request.user == Anon user return redirect("/login")
34.927273
75
0.609058
[ "MIT" ]
aklauritzen/django-bootcamp
accounts/views.py
1,921
Python
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkdrds.endpoint import endpoint_data class DescribeDrdsInstancesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Drds', '2019-01-23', 'DescribeDrdsInstances','Drds') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_Description(self): return self.get_query_params().get('Description') def set_Description(self,Description): self.add_query_param('Description',Description) def get_Type(self): return self.get_query_params().get('Type') def set_Type(self,Type): self.add_query_param('Type',Type) def get_PageNumber(self): return self.get_query_params().get('PageNumber') def set_PageNumber(self,PageNumber): self.add_query_param('PageNumber',PageNumber) def get_ResourceGroupId(self): return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self,ResourceGroupId): self.add_query_param('ResourceGroupId',ResourceGroupId) def get_Expired(self): return self.get_query_params().get('Expired') def set_Expired(self,Expired): self.add_query_param('Expired',Expired) def get_PageSize(self): return self.get_query_params().get('PageSize') def set_PageSize(self,PageSize): self.add_query_param('PageSize',PageSize) def get_Tags(self): return self.get_query_params().get('Tag') def set_Tags(self, Tags): for depth1 in range(len(Tags)): if Tags[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tags[depth1].get('Value')) if Tags[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tags[depth1].get('Key')) def get_Mix(self): return self.get_query_params().get('Mix') def set_Mix(self,Mix): self.add_query_param('Mix',Mix)
33.511905
89
0.738899
[ "Apache-2.0" ]
ankitdobhal/aliyun-openapi-python-sdk
aliyun-python-sdk-drds/aliyunsdkdrds/request/v20190123/DescribeDrdsInstancesRequest.py
2,815
Python
default_app_config = "%s.apps.AppConfig" % __name__ __version__ = "0.2.1"
18.75
51
0.72
[ "BSD-3-Clause" ]
bashu/django-fineuploader
fineuploader/__init__.py
75
Python
# -*- coding: utf-8 -*- # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from cli_common.log import get_logger logger = get_logger(__name__) WORKER_CHECKOUT = '/builds/worker/checkouts/gecko' class AnalysisTask(object): ''' An analysis CI task running on Taskcluster ''' artifacts = [] valid_states = ('completed', 'failed') def __init__(self, task_id, task_status): self.id = task_id assert 'task' in task_status, 'No task data for {}'.format(self.id) assert 'status' in task_status, 'No status data for {}'.format(self.id) self.task = task_status['task'] self.status = task_status['status'] @property def run_id(self): return self.status['runs'][-1]['runId'] @property def name(self): return self.task['metadata'].get('name', 'unknown') @property def state(self): return self.status['state'] def load_artifacts(self, queue_service): # Process only the supported final states # as some tasks do not always have relevant output if self.state not in self.valid_states: logger.warn('Invalid task state', state=self.state, id=self.id, name=self.name) return # Load relevant artifacts out = {} for artifact_name in self.artifacts: logger.info('Load artifact', task_id=self.id, artifact=artifact_name) try: artifact = queue_service.getArtifact(self.id, self.run_id, artifact_name) out[artifact_name] = 'response' in artifact and artifact['response'].content or artifact except Exception as e: logger.warn('Failed to read artifact', task_id=self.id, run_id=self.run_id, artifact=artifact_name, error=e) continue return out def clean_path(self, path): ''' Helper to clean issues path from remote tasks ''' if path.startswith(WORKER_CHECKOUT): path = path[len(WORKER_CHECKOUT):] if path.startswith('/'): path = path[1:] return path
32.753623
124
0.623894
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
Mozilla-GitHub-Standards/7a0517c85b685752ad36ce0e8246040e3de8d842fb0f2696540dfc0c54da847b
src/staticanalysis/bot/static_analysis_bot/task.py
2,260
Python
import time from array import array from itertools import product from time import clock import sys from java.lang import Math sys.path.append("./ABAGAIL.jar") import java.util.Random as Random from shared import ConvergenceTrainer from opt.example import FourPeaksEvaluationFunction from opt.ga import DiscreteChangeOneMutation, SingleCrossOver import dist.DiscreteDependencyTree as DiscreteDependencyTree import dist.DiscreteUniformDistribution as DiscreteUniformDistribution import opt.DiscreteChangeOneNeighbor as DiscreteChangeOneNeighbor import dist.DiscretePermutationDistribution as DiscretePermutationDistribution import opt.GenericHillClimbingProblem as GenericHillClimbingProblem import opt.RandomizedHillClimbing as RandomizedHillClimbing import opt.SimulatedAnnealing as SimulatedAnnealing import opt.ga.GenericGeneticAlgorithmProblem as GenericGeneticAlgorithmProblem import opt.ga.StandardGeneticAlgorithm as StandardGeneticAlgorithm import opt.prob.GenericProbabilisticOptimizationProblem as GenericProbabilisticOptimizationProblem import opt.prob.MIMIC as MIMIC # Adapted from https://github.com/JonathanTay/CS-7641-assignment-2/blob/master/tsp.py random = Random() maxIters = [2, int(2e4+1)] numTrials = 5 # Problem Sizes N_list = [50, 100, 150, 200] OUTPUT_DIRECTORY = "output" outfile = OUTPUT_DIRECTORY + '/PEAKS4/{}/PEAKS4_{}_{}_LOG.csv' # MIMIC sample_list = [50, 100, 150, 200] keepRate_list = [0.2, 0.3, 0.4, 0.5] for t in range(numTrials): for samples, keepRate, m, N in product([100], [0.2], [0.5], N_list): fname = outfile.format('MIMIC', 'MIMIC_{}_{}'.format("problemSizes", N), str(t + 1)) with open(fname, 'w') as f: f.write('iterations,fitness,time,fevals\n') T = N / 5 fill = [2] * N ranges = array('i', fill) keep = int(samples*keepRate) ef = FourPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) df = DiscreteDependencyTree(m, ranges) pop = GenericProbabilisticOptimizationProblem(ef, odd, df) mimic = MIMIC(samples, keep, pop) fit = ConvergenceTrainer(mimic) times = [0] for i in range(0, maxIters[0]): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) score = ef.value(mimic.getOptimal()) fevals = ef.fEvals ef.fEvals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) print(st) with open(fname, 'a') as f: f.write(st) # RHC restart_list = [20, 40, 60, 80] for t in range(numTrials): for restart, N in product([80], N_list): fname = outfile.format('RHC', 'RHC_{}_{}'.format("problemSize", N), str(t + 1)) with open(fname, 'w') as f: f.write('iterations,fitness,time,fevals\n') T = N / 5 fill = [2] * N ranges = array('i', fill) ef = FourPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) nf = DiscreteChangeOneNeighbor(ranges) hcp = GenericHillClimbingProblem(ef, odd, nf) rhc = RandomizedHillClimbing(hcp, restart) fit = ConvergenceTrainer(rhc) times = [0] for i in range(0, maxIters[0]): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) score = ef.value(rhc.getOptimal()) fevals = ef.fEvals ef.fEvals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) print(st) with open(fname, 'a') as f: f.write(st) # SA temperature_list = [1E1, 1E3, 1E5, 1E7, 1E9, 1E11] CE_list = [0.35, 0.55, 0.75, 0.95] for t in range(numTrials): for temperature, CE, N in product([1E11], [0.35], N_list): fname = outfile.format('SA', 'SA_{}_{}'.format("problemSizes", N), str(t + 1)) with open(fname, 'w') as f: f.write('iterations,fitness,time,fevals\n') T = N / 5 fill = [2] * N ranges = array('i', fill) ef = FourPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) nf = DiscreteChangeOneNeighbor(ranges) hcp = GenericHillClimbingProblem(ef, odd, nf) sa = SimulatedAnnealing(temperature, CE, hcp) fit = ConvergenceTrainer(sa) times = [0] for i in range(0, maxIters[0]): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) score = ef.value(sa.getOptimal()) fevals = ef.fEvals ef.fEvals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) print(st) with open(fname, 'a') as f: f.write(st) # GA mateRate_list = [0.2, 0.4, 0.6, 0.8] mutateRate_list = [0.2, 0.4, 0.6, 0.8] for t in range(numTrials): for pop, mateRate, mutateRate, N in product([700], [0.2], [0.6], N_list): fname = outfile.format('GA', 'GA_{}_{}'.format("problemSizes", N), str(t + 1)) with open(fname, 'w') as f: f.write('iterations,fitness,time,fevals\n') mate = int(pop*mateRate) mutate = int(pop*mutateRate) T = N / 5 fill = [2] * N ranges = array('i', fill) ef = FourPeaksEvaluationFunction(T) odd = DiscreteUniformDistribution(ranges) mf = DiscreteChangeOneMutation(ranges) cf = SingleCrossOver() gap = GenericGeneticAlgorithmProblem(ef, odd, mf, cf) ga = StandardGeneticAlgorithm(pop, mate, mutate, gap) fit = ConvergenceTrainer(ga) times = [0] for i in range(0, maxIters[0]): start = clock() fit.train() elapsed = time.clock() - start times.append(times[-1] + elapsed) score = ef.value(ga.getOptimal()) fevals = ef.fEvals ef.fEvals -= 1 st = '{},{},{},{}\n'.format(i, score, times[-1], fevals) print(st) with open(fname, 'a') as f: f.write(st)
34.214286
98
0.600128
[ "BSD-3-Clause" ]
linqiao710/cs7641_a2_shared
jython/peaks4.py
6,227
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Hooks for use with GTFlow Estimator.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from tensorflow.contrib.learn.python.learn import session_run_hook from tensorflow.contrib.learn.python.learn.session_run_hook import SessionRunArgs from tensorflow.core.framework.summary_pb2 import Summary from tensorflow.python.framework import ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.training import training_util from tensorflow.python.training.summary_io import SummaryWriterCache class FeatureImportanceSummarySaver(session_run_hook.SessionRunHook): """Hook to save feature importance summaries.""" def __init__(self, model_dir, every_n_steps=1): """Create a FeatureImportanceSummarySaver Hook. This hook creates scalar summaries representing feature importance for each feature column during training. Args: model_dir: model base output directory. every_n_steps: frequency, in number of steps, for logging summaries. Raises: ValueError: If one of the arguments is invalid. """ if model_dir is None: raise ValueError("model dir must be specified.") self._model_dir = model_dir self._every_n_steps = every_n_steps self._last_triggered_step = None def begin(self): self._global_step_tensor = training_util.get_global_step() if self._global_step_tensor is None: raise RuntimeError( "Global step should be created to use FeatureImportanceSummarySaver.") graph = ops.get_default_graph() self._feature_names_tensor = graph.get_tensor_by_name( "gbdt/feature_names:0") self._feature_usage_counts_tensor = graph.get_tensor_by_name( "gbdt/feature_usage_counts:0") self._feature_gains_tensor = graph.get_tensor_by_name( "gbdt/feature_gains:0") def before_run(self, run_context): del run_context # Unused by feature importance summary saver hook. requests = { "global_step": self._global_step_tensor, "feature_names": self._feature_names_tensor, "feature_usage_counts": self._feature_usage_counts_tensor, "feature_gains": self._feature_gains_tensor } return SessionRunArgs(requests) def after_run(self, run_context, run_values): del run_context # Unused by feature importance summary saver hook. # Read result tensors. global_step = run_values.results["global_step"] feature_names = run_values.results["feature_names"] feature_usage_counts = run_values.results["feature_usage_counts"] feature_gains = run_values.results["feature_gains"] # Ensure summaries are logged at desired frequency if (self._last_triggered_step is not None and global_step < self._last_triggered_step + self._every_n_steps): return # Validate tensors. if (len(feature_names) != len(feature_usage_counts) or len(feature_names) != len(feature_gains)): raise RuntimeError( "Feature names and importance measures have inconsistent lengths.") # Compute total usage. total_usage_count = 0.0 for usage_count in feature_usage_counts: total_usage_count += usage_count usage_count_norm = 1.0 / total_usage_count if total_usage_count else 1.0 # Compute total gain. total_gain = 0.0 for gain in feature_gains: total_gain += gain gain_norm = 1.0 / total_gain if total_gain else 1.0 # Output summary for each feature. self._last_triggered_step = global_step for (name, usage_count, gain) in zip(feature_names, feature_usage_counts, feature_gains): output_dir = os.path.join(self._model_dir, name.decode("utf-8")) summary_writer = SummaryWriterCache.get(output_dir) usage_count_summary = Summary(value=[ Summary.Value( tag="feature_importance/usage_counts", simple_value=usage_count) ]) usage_fraction_summary = Summary(value=[ Summary.Value( tag="feature_importance/usage_fraction", simple_value=usage_count * usage_count_norm) ]) summary_writer.add_summary(usage_count_summary, global_step) summary_writer.add_summary(usage_fraction_summary, global_step) gains_summary = Summary(value=[ Summary.Value(tag="feature_importance/gains", simple_value=gain) ]) gains_fraction_summary = Summary(value=[ Summary.Value( tag="feature_importance/gains_fraction", simple_value=gain * gain_norm) ]) summary_writer.add_summary(gains_summary, global_step) summary_writer.add_summary(gains_fraction_summary, global_step) class FeedFnHook(session_run_hook.SessionRunHook): """Runs feed_fn and sets the feed_dict accordingly.""" def __init__(self, feed_fn): self.feed_fn = feed_fn def before_run(self, run_context): del run_context # unused by FeedFnHook. return session_run_hook.SessionRunArgs(fetches=None, feed_dict=self.feed_fn) class StopAfterNTrees(session_run_hook.SessionRunHook): """Stop training after building N full trees.""" def __init__(self, n, num_attempted_trees_tensor, num_finalized_trees_tensor): self._num_trees = n # num_attempted_trees_tensor and num_finalized_trees_tensor are both # tensors. self._num_attempted_trees_tensor = num_attempted_trees_tensor self._num_finalized_trees_tensor = num_finalized_trees_tensor def before_run(self, run_context): del run_context # unused by StopTrainingAfterNTrees. return session_run_hook.SessionRunArgs({ "num_attempted_trees": self._num_attempted_trees_tensor, "num_finalized_trees": self._num_finalized_trees_tensor, }) def after_run(self, run_context, run_values): num_attempted_trees = run_values.results["num_attempted_trees"] num_finalized_trees = run_values.results["num_finalized_trees"] assert num_attempted_trees is not None assert num_finalized_trees is not None # Stop when the required number of finalized trees is reached, or when we # try enough times to build a tree but keep failing. if (num_finalized_trees >= self._num_trees or num_attempted_trees > 2 * self._num_trees): logging.info("Requesting stop since we have reached %d trees.", num_finalized_trees) run_context.request_stop()
40.05618
81
0.731136
[ "Apache-2.0" ]
252125889/tensorflow
tensorflow/contrib/boosted_trees/estimator_batch/trainer_hooks.py
7,130
Python
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1.15.9 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes_asyncio.client.configuration import Configuration class V1beta2DeploymentStrategy(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'rolling_update': 'V1beta2RollingUpdateDeployment', 'type': 'str' } attribute_map = { 'rolling_update': 'rollingUpdate', 'type': 'type' } def __init__(self, rolling_update=None, type=None, local_vars_configuration=None): # noqa: E501 """V1beta2DeploymentStrategy - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._rolling_update = None self._type = None self.discriminator = None if rolling_update is not None: self.rolling_update = rolling_update if type is not None: self.type = type @property def rolling_update(self): """Gets the rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :return: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :rtype: V1beta2RollingUpdateDeployment """ return self._rolling_update @rolling_update.setter def rolling_update(self, rolling_update): """Sets the rolling_update of this V1beta2DeploymentStrategy. :param rolling_update: The rolling_update of this V1beta2DeploymentStrategy. # noqa: E501 :type: V1beta2RollingUpdateDeployment """ self._rolling_update = rolling_update @property def type(self): """Gets the type of this V1beta2DeploymentStrategy. # noqa: E501 Type of deployment. Can be \"Recreate\" or \"RollingUpdate\". Default is RollingUpdate. # noqa: E501 :return: The type of this V1beta2DeploymentStrategy. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this V1beta2DeploymentStrategy. Type of deployment. Can be \"Recreate\" or \"RollingUpdate\". Default is RollingUpdate. # noqa: E501 :param type: The type of this V1beta2DeploymentStrategy. # noqa: E501 :type: str """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1beta2DeploymentStrategy): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1beta2DeploymentStrategy): return True return self.to_dict() != other.to_dict()
30.228188
124
0.60857
[ "Apache-2.0" ]
playground-julia/kubernetes_asyncio
kubernetes_asyncio/client/models/v1beta2_deployment_strategy.py
4,504
Python
from requests.exceptions import TooManyRedirects, ConnectionError from raccoon_src.utils.web_server_validator import WebServerValidator from raccoon_src.utils.exceptions import WAFException, WebServerValidatorException from raccoon_src.utils.request_handler import RequestHandler from raccoon_src.utils.coloring import COLOR, COLORED_COMBOS from raccoon_src.utils.help_utils import HelpUtilities from raccoon_src.utils.logger import Logger SERVER = "Server" class WAFApplicationMethods: @classmethod def detect_cloudfront(cls, res): service = "CloudFront" waf_headers = ("Via", "X-cache") if any(h in res.headers.keys() for h in waf_headers) and any(service.lower() in val for val in res.headers.values()): return True if res.headers.get(SERVER) == service: return True return @classmethod def detect_incapsula(cls, res): if "X-Iinfo" in res.headers.keys() or res.headers.get("X-CDN") == "Incapsula": return True return @classmethod def detect_distil(cls, res): if res.headers.get("x-distil-cs"): return True return @classmethod def detect_cloudflare(cls, res): if "CF-RAY" in res.headers.keys() or res.headers.get(SERVER) == "cloudflare": return True return @classmethod def detect_edgecast(cls, res): if SERVER in res.headers.keys() and "ECD" in res.headers[SERVER]: return True return @classmethod def detect_maxcdn(cls, res): if SERVER in res.headers.keys() and "NetDNA-cache" in res.headers[SERVER]: return True return @classmethod def detect_sucuri(cls, res): if any(( res.headers.get(SERVER) == "Sucuri/Cloudproxy", "X-Sucuri-ID" in res.headers.keys(), "X-Sucuri-Cache"in res.headers.keys(), "Access Denied - Sucuri Website Firewall" in res.text)): return True return @classmethod def detect_reblaze(cls, res): if res.headers.get(SERVER) == "Reblaze Secure Web Gateway" or res.cookies.get("rbzid"): return True return class WAF: def __init__(self, host): self.host = host self.cnames = host.dns_results.get('CNAME') self.request_handler = RequestHandler() self.web_server_validator = WebServerValidator() self.waf_present = False self.waf_cname_map = { "incapdns": "Incapsula", "edgekey": "Akamai", "akamai": "Akamai", "edgesuite": "Akamai", "distil": "Distil Networks", "cloudfront": "CloudFront", "netdna-cdn": "MaxCDN" } self.waf_app_method_map = { "CloudFront": WAFApplicationMethods.detect_cloudfront, "Cloudflare": WAFApplicationMethods.detect_cloudflare, "Incapsula": WAFApplicationMethods.detect_incapsula, "MaxCDN": WAFApplicationMethods.detect_maxcdn, "Edgecast": WAFApplicationMethods.detect_edgecast, "Distil Networks": WAFApplicationMethods.detect_distil, "Sucuri": WAFApplicationMethods.detect_sucuri, "Reblaze": WAFApplicationMethods.detect_reblaze } log_file = HelpUtilities.get_output_path("{}/WAF.txt".format(self.host.target)) self.logger = Logger(log_file) def _waf_detected(self, name): self.logger.info( "{} Detected WAF presence in web application: {}{}{}".format( COLORED_COMBOS.BAD, COLOR.RED, name, COLOR.RESET)) self.waf_present = True def _detect_by_cname(self): for waf in self.waf_cname_map: if any(waf in str(cname) for cname in self.cnames): self.logger.info("{} Detected WAF presence in CNAME: {}{}{}".format( COLORED_COMBOS.BAD, COLOR.RED, self.waf_cname_map.get(waf), COLOR.RESET) ) self.waf_present = True async def _detect_by_application(self): try: session = self.request_handler.get_new_session() response = session.get( timeout=20, allow_redirects=True, url="{}://{}:{}".format( self.host.protocol, self.host.target, self.host.port ) ) for waf, method in self.waf_app_method_map.items(): result = method(response) if result: self._waf_detected(waf) except (ConnectionError, TooManyRedirects) as e: raise WAFException("Couldn't get response from server.\n" "Caused due to exception: {}".format(str(e))) async def detect(self): self.logger.info("{} Trying to detect WAF presence in {}".format(COLORED_COMBOS.INFO, self.host)) if self.cnames: self._detect_by_cname() try: self.web_server_validator.validate_target_webserver(self.host) await self._detect_by_application() if not self.waf_present: self.logger.info("{} Did not detect WAF presence in target".format(COLORED_COMBOS.GOOD)) except WebServerValidatorException: self.logger.info( "{} Target does not seem to have an active web server on port {}. " "No WAF could be detected on an application level.".format(COLORED_COMBOS.NOTIFY, self.host.port))
37.34
125
0.605428
[ "MIT" ]
IraqNoPhobia/Raccoon
raccoon_src/lib/waf.py
5,601
Python
"""Tests for http/wsgi.py""" import io import asyncio import socket import unittest from unittest import mock import aiohttp from aiohttp import multidict from aiohttp import wsgi from aiohttp import protocol from aiohttp import helpers class TestHttpWsgiServerProtocol(unittest.TestCase): def setUp(self): self.loop = asyncio.new_event_loop() asyncio.set_event_loop(None) self.wsgi = mock.Mock() self.reader = mock.Mock() self.writer = mock.Mock() self.writer.drain.return_value = () self.transport = mock.Mock() self.transport.get_extra_info.side_effect = [ mock.Mock(family=socket.AF_INET), ('1.2.3.4', 1234), ('2.3.4.5', 80)] self.headers = multidict.MultiDict({"HOST": "python.org"}) self.raw_headers = [(b"HOST", b"python.org")] self.message = protocol.RawRequestMessage( 'GET', '/path', (1, 0), self.headers, self.raw_headers, True, 'deflate') self.payload = aiohttp.FlowControlDataQueue(self.reader) self.payload.feed_data(b'data', 4) self.payload.feed_data(b'data', 4) self.payload.feed_eof() def tearDown(self): self.loop.close() def test_ctor(self): srv = wsgi.WSGIServerHttpProtocol(self.wsgi, loop=self.loop) self.assertIs(srv.wsgi, self.wsgi) self.assertFalse(srv.readpayload) def _make_one(self, **kw): srv = wsgi.WSGIServerHttpProtocol(self.wsgi, loop=self.loop, **kw) srv.reader = self.reader srv.writer = self.writer srv.transport = self.transport return srv.create_wsgi_environ(self.message, self.payload) def _make_srv(self, app=None, **kw): if app is None: app = self.wsgi srv = wsgi.WSGIServerHttpProtocol(app, loop=self.loop, **kw) srv.reader = self.reader srv.writer = self.writer srv.transport = self.transport return srv def test_environ(self): environ = self._make_one() self.assertEqual(environ['RAW_URI'], '/path') self.assertEqual(environ['wsgi.async'], True) def test_environ_headers(self): self.headers.extend( (('SCRIPT_NAME', 'script'), ('CONTENT-TYPE', 'text/plain'), ('CONTENT-LENGTH', '209'), ('X_TEST', '123'), ('X_TEST', '456'))) environ = self._make_one() self.assertEqual(environ['CONTENT_TYPE'], 'text/plain') self.assertEqual(environ['CONTENT_LENGTH'], '209') self.assertEqual(environ['HTTP_X_TEST'], '123,456') self.assertEqual(environ['SCRIPT_NAME'], 'script') self.assertEqual(environ['SERVER_NAME'], 'python.org') self.assertEqual(environ['SERVER_PORT'], '80') get_extra_info_calls = self.transport.get_extra_info.mock_calls expected_calls = [ mock.call('socket'), mock.call('peername'), ] self.assertEqual(expected_calls, get_extra_info_calls) def test_environ_host_header_alternate_port(self): self.headers.update({'HOST': 'example.com:9999'}) environ = self._make_one() self.assertEqual(environ['SERVER_PORT'], '9999') def test_environ_host_header_alternate_port_ssl(self): self.headers.update({'HOST': 'example.com:9999'}) environ = self._make_one(is_ssl=True) self.assertEqual(environ['SERVER_PORT'], '9999') def test_wsgi_response(self): srv = self._make_srv() resp = srv.create_wsgi_response(self.message) self.assertIsInstance(resp, wsgi.WsgiResponse) def test_wsgi_response_start_response(self): srv = self._make_srv() resp = srv.create_wsgi_response(self.message) resp.start_response( '200 OK', [('CONTENT-TYPE', 'text/plain')]) self.assertEqual(resp.status, '200 OK') self.assertIsInstance(resp.response, protocol.Response) def test_wsgi_response_start_response_exc(self): srv = self._make_srv() resp = srv.create_wsgi_response(self.message) resp.start_response( '200 OK', [('CONTENT-TYPE', 'text/plain')], ['', ValueError()]) self.assertEqual(resp.status, '200 OK') self.assertIsInstance(resp.response, protocol.Response) def test_wsgi_response_start_response_exc_status(self): srv = self._make_srv() resp = srv.create_wsgi_response(self.message) resp.start_response('200 OK', [('CONTENT-TYPE', 'text/plain')]) self.assertRaises( ValueError, resp.start_response, '500 Err', [('CONTENT-TYPE', 'text/plain')], ['', ValueError()]) @mock.patch('aiohttp.wsgi.aiohttp') def test_wsgi_response_101_upgrade_to_websocket(self, m_asyncio): srv = self._make_srv() resp = srv.create_wsgi_response(self.message) resp.start_response( '101 Switching Protocols', (('UPGRADE', 'websocket'), ('CONNECTION', 'upgrade'))) self.assertEqual(resp.status, '101 Switching Protocols') self.assertTrue(m_asyncio.Response.return_value.send_headers.called) def test_file_wrapper(self): fobj = io.BytesIO(b'data') wrapper = wsgi.FileWrapper(fobj, 2) self.assertIs(wrapper, iter(wrapper)) self.assertTrue(hasattr(wrapper, 'close')) self.assertEqual(next(wrapper), b'da') self.assertEqual(next(wrapper), b'ta') self.assertRaises(StopIteration, next, wrapper) wrapper = wsgi.FileWrapper(b'data', 2) self.assertFalse(hasattr(wrapper, 'close')) def test_handle_request_futures(self): def wsgi_app(env, start): start('200 OK', [('Content-Type', 'text/plain')]) f1 = helpers.create_future(self.loop) f1.set_result(b'data') fut = helpers.create_future(self.loop) fut.set_result([f1]) return fut srv = self._make_srv(wsgi_app) self.loop.run_until_complete( srv.handle_request(self.message, self.payload)) content = b''.join( [c[1][0] for c in self.writer.write.mock_calls]) self.assertTrue(content.startswith(b'HTTP/1.0 200 OK')) self.assertTrue(content.endswith(b'data')) def test_handle_request_simple(self): def wsgi_app(env, start): start('200 OK', [('Content-Type', 'text/plain')]) return [b'data'] stream = asyncio.StreamReader(loop=self.loop) stream.feed_data(b'data') stream.feed_eof() self.message = protocol.RawRequestMessage( 'GET', '/path', (1, 1), self.headers, self.raw_headers, True, 'deflate') srv = self._make_srv(wsgi_app, readpayload=True) self.loop.run_until_complete( srv.handle_request(self.message, self.payload)) content = b''.join( [c[1][0] for c in self.writer.write.mock_calls]) self.assertTrue(content.startswith(b'HTTP/1.1 200 OK')) self.assertTrue(content.endswith(b'data\r\n0\r\n\r\n')) self.assertFalse(srv._keep_alive) def test_handle_request_io(self): def wsgi_app(env, start): start('200 OK', [('Content-Type', 'text/plain')]) return io.BytesIO(b'data') srv = self._make_srv(wsgi_app) self.loop.run_until_complete( srv.handle_request(self.message, self.payload)) content = b''.join( [c[1][0] for c in self.writer.write.mock_calls]) self.assertTrue(content.startswith(b'HTTP/1.0 200 OK')) self.assertTrue(content.endswith(b'data')) def test_handle_request_keep_alive(self): def wsgi_app(env, start): start('200 OK', [('Content-Type', 'text/plain')]) return [b'data'] stream = asyncio.StreamReader(loop=self.loop) stream.feed_data(b'data') stream.feed_eof() self.message = protocol.RawRequestMessage( 'GET', '/path', (1, 1), self.headers, self.raw_headers, False, 'deflate') srv = self._make_srv(wsgi_app, readpayload=True) self.loop.run_until_complete( srv.handle_request(self.message, self.payload)) content = b''.join( [c[1][0] for c in self.writer.write.mock_calls]) self.assertTrue(content.startswith(b'HTTP/1.1 200 OK')) self.assertTrue(content.endswith(b'data\r\n0\r\n\r\n')) self.assertTrue(srv._keep_alive) def test_handle_request_readpayload(self): def wsgi_app(env, start): start('200 OK', [('Content-Type', 'text/plain')]) return [env['wsgi.input'].read()] srv = self._make_srv(wsgi_app, readpayload=True) self.loop.run_until_complete( srv.handle_request(self.message, self.payload)) content = b''.join( [c[1][0] for c in self.writer.write.mock_calls]) self.assertTrue(content.startswith(b'HTTP/1.0 200 OK')) self.assertTrue(content.endswith(b'data')) def test_dont_unquote_environ_path_info(self): path = '/path/some%20text' self.message = protocol.RawRequestMessage( 'GET', path, (1, 0), self.headers, self.raw_headers, True, 'deflate') environ = self._make_one() self.assertEqual(environ['PATH_INFO'], path) def test_authorization(self): # This header should be removed according to CGI/1.1 and WSGI but # in our case basic auth is not handled by server, so should # not be removed self.headers.extend({'AUTHORIZATION': 'spam'}) self.message = protocol.RawRequestMessage( 'GET', '/', (1, 1), self.headers, self.raw_headers, True, 'deflate') environ = self._make_one() self.assertEqual('spam', environ['HTTP_AUTHORIZATION']) def test_http_1_0_no_host(self): headers = multidict.MultiDict({}) self.message = protocol.RawRequestMessage( 'GET', '/', (1, 0), headers, [], True, 'deflate') environ = self._make_one() self.assertEqual(environ['SERVER_NAME'], '2.3.4.5') self.assertEqual(environ['SERVER_PORT'], '80') def test_family_inet6(self): self.transport.get_extra_info.side_effect = [ mock.Mock(family=socket.AF_INET6), ("::", 1122, 0, 0), ('2.3.4.5', 80)] self.message = protocol.RawRequestMessage( 'GET', '/', (1, 0), self.headers, self.raw_headers, True, 'deflate') environ = self._make_one() self.assertEqual(environ['SERVER_NAME'], 'python.org') self.assertEqual(environ['SERVER_PORT'], '80') self.assertEqual(environ['REMOTE_ADDR'], '::') self.assertEqual(environ['REMOTE_PORT'], '1122') def test_family_unix(self): if not hasattr(socket, "AF_UNIX"): self.skipTest("No UNIX address family. (Windows?)") self.transport.get_extra_info.side_effect = [ mock.Mock(family=socket.AF_UNIX)] headers = multidict.MultiDict({ 'SERVER_NAME': '1.2.3.4', 'SERVER_PORT': '5678', 'REMOTE_ADDR': '4.3.2.1', 'REMOTE_PORT': '8765'}) self.message = protocol.RawRequestMessage( 'GET', '/', (1, 0), headers, self.raw_headers, True, 'deflate') environ = self._make_one() self.assertEqual(environ['SERVER_NAME'], '1.2.3.4') self.assertEqual(environ['SERVER_PORT'], '5678') self.assertEqual(environ['REMOTE_ADDR'], '4.3.2.1') self.assertEqual(environ['REMOTE_PORT'], '8765')
37.512821
76
0.61338
[ "Apache-2.0" ]
tumb1er/aiohttp
tests/test_wsgi.py
11,704
Python
from django.shortcuts import render
13
36
0.794872
[ "MIT" ]
Alshak/rdm
rdm/wrappers/interaction_views.py
39
Python
try: from django.conf.urls import patterns, url, include except ImportError: from django.conf.urls.defaults import patterns, url, include
29.2
64
0.767123
[ "BSD-3-Clause" ]
brack3t/django-heythere
tests/compat.py
146
Python
import os from conans import ConanFile, CMake, tools class XsimdTestConan(ConanFile): settings = "os", "compiler", "build_type", "arch" generators = "cmake" def build(self): cmake = CMake(self) cmake.configure() cmake.build() def test(self): self.run(os.path.join("bin", "test_package"), run_environment=True)
21.352941
75
0.633609
[ "MIT" ]
0x8000-0000/conan-center-index
recipes/xsimd/all/test_package/conanfile.py
363
Python
#!/usr/bin/python import socket import fcntl import struct import os ip=socket.gethostbyname(socket.gethostname()) hostname=socket.gethostname() #def get_ip_address(ifname): # s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # return socket.inet_ntoa(fcntl.ioctl( # s.fileno(), # 0x8915, # SIOCGIFADDR # struct.pack('256s', ifname[:15]) # )[20:24]) #ip=get_ip_address('ens192') file = open("/root/inventory", "w") file.write("[minicloud]\n") file.write( hostname + " ansible_ssh_host=" + ip + " ansible_ssh_user=root ansible_ssh_port=22 ansible_ssh_pass=\"passw0rd\"\n") file.close()
23.222222
128
0.692185
[ "Apache-2.0" ]
jmbarros/minicloud-auto
update_inventory.py
627
Python
from django import forms from vlabs import Config, AppManager class VlabsForm(forms.Form): def __init__(self, *args, **kwargs): self.vlcg = Config() self.market = self.vlcg.getmarket() super(VlabsForm, self).__init__(*args, **kwargs) self.k = None self.nameoftheapp = None def auth(self): self.fields['username'] = forms.CharField(label='username') self.fields['password'] = forms.CharField(widget=forms.PasswordInput, label='password') def selprj(self, list, user): PRJ_SEL = zip(tuple(list), tuple(list)) self.fields['prj'] = forms.ChoiceField(widget=forms.RadioSelect, label='Progetti attivi', choices=PRJ_SEL) # self.fields['user'] = forms.CharField(widget=forms.HiddenInput(), label='user', initial=user) def chprjtempl(self, value): self.fields['prj'] = forms.ChoiceField(widget=forms.HiddenInput(), label='prj', initial=value) def createapp(self): i = [] a = self.vlcg.getmarket() for j in range(0, len(a)): i.append(j) APP_SEL = zip(tuple(i), tuple(a)) self.fields['app'] = forms.ChoiceField(widget=forms.RadioSelect, label='app', choices=APP_SEL) def createenv(self, inputvar): c = inputvar['appindex'] for k in inputvar.keys(): self.fields[k] = forms.CharField(label=inputvar[k]) self.fields['nameoftheapp'] = forms.CharField(label='name of the app') self.fields['appindex'] = forms.CharField(widget=forms.HiddenInput(), label='appindex', initial=c) self.fields['pvc'] = forms.BooleanField(label='PVC', required=False, initial=False) self.fields['space'] = forms.IntegerField(label='PVC Space', initial=1, min_value=1, max_value=10) def deleteapp(self): i = [] a = self.vlam.getrunning() for j in range(0, len(a)): i.append(j) APP_SEL = zip(tuple(i), tuple(a)) self.fields['run'] = forms.ChoiceField(widget=forms.RadioSelect, label='run', choices=APP_SEL) def chooseapp(self, value): self.fields['app'] = forms.ChoiceField(widget=forms.HiddenInput(), label='app', initial=value) def updatevariables(self, oldvars): ###da qui for i in range(0, len(oldvars)): self.fields[oldvars[i].name] = forms.CharField(label=oldvars[i].name, initial=oldvars[i].value) def setquotas(self, spec_hard): for k in spec_hard: self.fields[k] = forms.CharField(label=k, required=False, initial=spec_hard[k]) def setlimits(self, vars): self.fields['namespace'] = forms.CharField(widget=forms.HiddenInput(), label='namespace', initial=vars) self.fields['type'] = forms.CharField(widget=forms.HiddenInput(), label='type', initial='limits') def updatelimits(self, vars): for i in range (0, len(vars)): self.fields[vars[i]['name']] = forms.BooleanField(label=vars[i]['name'], initial=False) def createns(self): #alphalower = RegexValidator(regex=r'^[a-z]*[a-z0-9\-\_]*[a-z]') self.fields['namespacename'] = forms.CharField(label='Name', required=True) ''' a = {'pods', 'requests.cpu', 'requests.memory', 'requests.ephemeral-storage', 'requests.storage', 'limits.cpu', 'limits.memory', 'limits.memory', 'limits.ephemeral-storage', 'configmaps', 'persistentvolumeclaims', 'replicationcontrollers', 'secrets', 'services'} self.fields['pods'] = forms.CharField(label='pods', required=False, initial=actualvalues['pods']) self.fields['requests.cpu'] = forms.CharField(label='requests.cpu', required=False, initial=actualvalues['requests.cpu']) self.fields['requests.memory'] = forms.CharField(label='requests.memory', required=False, initial=actualvalues['requests.memory']) self.fields['requests.ephemeral-storage'] = forms.CharField(label='requests.ephemeral-storage', required=False, initial=actualvalues['requests.ephemeral-storage']) self.fields['requests.storage'] = forms.CharField(label='requests.storage', required=False, initial=actualvalues['requests.storage']) self.fields['limits.cpu'] = forms.CharField(label='limits.cpu', required=False, initial=actualvalues['limits.cpu']) self.fields['limits.memory'] = forms.CharField(label='limits.memory', required=False, initial=actualvalues['limits.memory']) self.fields['limits.ephemeral-storage'] = forms.CharField(label='limits.ephemeral-storage', required=False, initial=actualvalues['limits.ephemeral-storage']) self.fields['configmaps'] = forms.IntegerField(label='configmaps', required=False, initial=actualvalues['configmaps']) self.fields['persistentvolumeclaims'] = forms.IntegerField(label='persistentvolumeclaims', required=False, initial=actualvalues['persistentvolumeclaims']) self.fields['replicationcontrollers'] = forms.IntegerField(label='replicationcontrollers', required=False, initial=actualvalues['replicationcontrollers']) self.fields['secrets'] = forms.IntegerField(label='secrets', required=False, initial=actualvalues['secrets']) self.fields['services'] = forms.IntegerField(label='services', required=False, initial=actualvalues['services']) '''
54
271
0.664048
[ "MIT" ]
virtlabs/vlabs
webui/vlabs/vlabs/forms.py
5,346
Python
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Quantum gradient transforms are strategies for computing the gradient of a quantum circuit that work by **transforming** the quantum circuit into one or more gradient circuits. These gradient circuits, once executed and post-processed, return the gradient of the original circuit. Examples of quantum gradient transforms include finite-differences and parameter-shift rules. This module provides a selection of device-independent, differentiable quantum gradient transforms. As such, these quantum gradient transforms can be used to compute the gradients of quantum circuits on both simulators and hardware. In addition, it also includes an API for writing your own quantum gradient transforms. These quantum gradient transforms can be used in two ways: - Transforming quantum circuits directly - Registering a quantum gradient strategy for use when performing autodifferentiation with a :class:`QNode <pennylane.QNode>`. Overview -------- Gradient transforms ^^^^^^^^^^^^^^^^^^^ .. autosummary:: :toctree: api finite_diff param_shift param_shift_cv Custom gradients ^^^^^^^^^^^^^^^^ .. autosummary:: :toctree: api gradient_transform Utility functions ^^^^^^^^^^^^^^^^^ .. autosummary:: :toctree: api finite_diff_coeffs generate_shifted_tapes generate_shift_rule generate_multi_shift_rule eigvals_to_frequencies compute_vjp batch_vjp vjp Registering autodifferentiation gradients ----------------------------------------- All PennyLane QNodes are automatically differentiable, and can be included seamlessly within an autodiff pipeline. When creating a :class:`QNode <pennylane.QNode>`, the strategy for determining the optimal differentiation strategy is *automated*, and takes into account the circuit, device, autodiff framework, and metadata (such as whether a finite number of shots are used). .. code-block:: python dev = qml.device("default.qubit", wires=2, shots=1000) @qml.qnode(dev, interface="tf") def circuit(weights): ... In particular: - When using a simulator device with exact measurement statistics, backpropagation is preferred due to performance and memory improvements. - When using a hardware device, or a simulator with a finite number of shots, a quantum gradient transform---such as the parameter-shift rule---is preferred. If you would like to specify a particular quantum gradient transform to use when differentiating your quantum circuit, this can be passed when creating the QNode: .. code-block:: python @qml.qnode(dev, gradient_fn=qml.gradients.param_shift) def circuit(weights): ... When using your preferred autodiff framework to compute the gradient of your hybrid quantum-classical cost function, the specified gradient transform for each QNode will be used. .. note:: A single cost function may include multiple QNodes, each with their own quantum gradient transform registered. Transforming QNodes ------------------- Alternatively, quantum gradient transforms can be applied manually to QNodes. .. code-block:: python dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def circuit(weights): qml.RX(weights[0], wires=0) qml.RY(weights[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RX(weights[2], wires=1) return qml.probs(wires=1) >>> weights = np.array([0.1, 0.2, 0.3], requires_grad=True) >>> circuit(weights) tensor([0.9658079, 0.0341921], requires_grad=True) >>> qml.gradients.param_shift(circuit)(weights) tensor([[-0.04673668, -0.09442394, -0.14409127], [ 0.04673668, 0.09442394, 0.14409127]], requires_grad=True) Comparing this to autodifferentiation: >>> qml.grad(circuit)(weights) array([[-0.04673668, -0.09442394, -0.14409127], [ 0.04673668, 0.09442394, 0.14409127]]) Quantum gradient transforms can also be applied as decorators to QNodes, if *only* gradient information is needed. Evaluating the QNode will then automatically return the gradient: .. code-block:: python dev = qml.device("default.qubit", wires=2) @qml.gradients.param_shift @qml.qnode(dev) def decorated_circuit(weights): qml.RX(weights[0], wires=0) qml.RY(weights[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RX(weights[2], wires=1) return qml.probs(wires=1) >>> decorated_circuit(weights) tensor([[-0.04673668, -0.09442394, -0.14409127], [ 0.04673668, 0.09442394, 0.14409127]], requires_grad=True) .. note:: If your circuit contains any operations not supported by the gradient transform, the transform will attempt to automatically decompose the circuit into only operations that support gradients. .. note:: If you wish to only return the purely **quantum** component of the gradient---that is, the gradient of the output with respect to **gate** arguments, not QNode arguments---pass ``hybrid=False`` when applying the transform: >>> qml.gradients.param_shift(circuit, hybrid=False)(weights) Differentiating gradient transforms ----------------------------------- Gradient transforms are themselves differentiable, allowing higher-order gradients to be computed: .. code-block:: python dev = qml.device("default.qubit", wires=2) @qml.qnode(dev) def circuit(weights): qml.RX(weights[0], wires=0) qml.RY(weights[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RX(weights[2], wires=1) return qml.expval(qml.PauliZ(1)) >>> weights = np.array([0.1, 0.2, 0.3], requires_grad=True) >>> circuit(weights) tensor(0.9316158, requires_grad=True) >>> qml.gradients.param_shift(circuit)(weights) # gradient array([[-0.09347337, -0.18884787, -0.28818254]]) >>> qml.jacobian(qml.gradients.param_shift(circuit))(weights) # hessian array([[[-0.9316158 , 0.01894799, 0.0289147 ], [ 0.01894799, -0.9316158 , 0.05841749], [ 0.0289147 , 0.05841749, -0.9316158 ]]]) Transforming tapes ------------------ Gradient transforms can be applied to low-level :class:`~.QuantumTape` objects, a datastructure representing variational quantum algorithms: .. code-block:: python weights = np.array([0.1, 0.2, 0.3], requires_grad=True) with qml.tape.JacobianTape() as tape: qml.RX(weights[0], wires=0) qml.RY(weights[1], wires=1) qml.CNOT(wires=[0, 1]) qml.RX(weights[2], wires=1) qml.expval(qml.PauliZ(1)) Unlike when transforming a QNode, transforming a tape directly will perform no implicit quantum device evaluation. Instead, it returns the processed tapes, and a post-processing function, which together define the gradient: >>> gradient_tapes, fn = qml.gradients.param_shift(tape) >>> gradient_tapes [<JacobianTape: wires=[0, 1], params=3>, <JacobianTape: wires=[0, 1], params=3>, <JacobianTape: wires=[0, 1], params=3>, <JacobianTape: wires=[0, 1], params=3>, <JacobianTape: wires=[0, 1], params=3>, <JacobianTape: wires=[0, 1], params=3>] This can be useful if the underlying circuits representing the gradient computation need to be analyzed. The output tapes can then be evaluated and post-processed to retrieve the gradient: >>> dev = qml.device("default.qubit", wires=2) >>> fn(qml.execute(gradient_tapes, dev, None)) [[-0.09347337 -0.18884787 -0.28818254]] Note that the post-processing function ``fn`` returned by the gradient transform is applied to the flat list of results returned from executing the gradient tapes. Custom gradient transforms -------------------------- Using the :class:`~.gradient_transform` decorator, custom gradient transforms can be created: .. code-block:: python @gradient_transform def my_custom_gradient(tape, **kwargs): ... return gradient_tapes, processing_fn Once created, a custom gradient transform can be applied directly to QNodes, or registered as the quantum gradient transform to use during autodifferentiation. For more details, please see the :class:`~.gradient_transform` documentation. """ import pennylane as qml from . import finite_difference from . import parameter_shift from . import parameter_shift_cv from .gradient_transform import gradient_transform from .finite_difference import finite_diff, finite_diff_coeffs, generate_shifted_tapes from .parameter_shift import param_shift from .parameter_shift_cv import param_shift_cv from .vjp import compute_vjp, batch_vjp, vjp from .hamiltonian_grad import hamiltonian_grad from .general_shift_rules import ( eigvals_to_frequencies, generate_shift_rule, generate_multi_shift_rule, )
31.838926
94
0.697407
[ "Apache-2.0" ]
AkashNarayanan/pennylane
pennylane/gradients/__init__.py
9,488
Python
import pkg_resources from anonlink import bloommatcher from anonlink import entitymatch from anonlink import network_flow __version__ = pkg_resources.get_distribution('anonlink').version __author__ = 'Stephen Hardy, Brian Thorne'
28.875
64
0.848485
[ "Apache-2.0" ]
luyang1210/PPRL
anonlink/__init__.py
231
Python
import streamlit as st import pandas as pd from PIL import Image import subprocess import os import base64 import pickle # Molecular descriptor calculator def desc_calc(): # Performs the descriptor calculation bashCommand = "java -Xms2G -Xmx2G -Djava.awt.headless=true -jar ./PaDEL-Descriptor/PaDEL-Descriptor.jar -removesalt -standardizenitro -fingerprints -descriptortypes ./PaDEL-Descriptor/PubchemFingerprinter.xml -dir ./ -file descriptors_output.csv" process = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) output, error = process.communicate() os.remove('molecule.smi') # File download def filedownload(df): csv = df.to_csv(index=False) b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'<a href="data:file/csv;base64,{b64}" download="prediction.csv">Download Predictions</a>' return href # Model building def build_model(input_data): # Reads in saved regression model load_model = pickle.load(open('acetylcholinesterase_model.pkl', 'rb')) # Apply model to make predictions prediction = load_model.predict(input_data) st.header('**Prediction output**') prediction_output = pd.Series(prediction, name='pIC50') molecule_name = pd.Series(load_data[1], name='molecule_name') df = pd.concat([molecule_name, prediction_output], axis=1) st.write(df) st.markdown(filedownload(df), unsafe_allow_html=True) # Page title st.markdown(""" # Bioactivity Prediction App This app allows you to predict the bioactivity of molecules as SMILES towards inhibting the target enzyme Acetylcholinesterase with a QSAR model. **Credits** - App built in `Python` + `Streamlit` - Descriptor calculated using [PaDEL-Descriptor](http://www.yapcwsoft.com/dd/padeldescriptor/) [[Read the Paper]](https://doi.org/10.1002/jcc.21707). --- """) # Sidebar with st.sidebar.header('1. Upload your CSV data'): uploaded_file = st.sidebar.file_uploader("Upload your input file", type=['txt']) st.sidebar.markdown(""" [Example input file](https://raw.githubusercontent.com/dataprofessor/bioactivity-prediction-app/main/example_acetylcholinesterase.txt) """) if st.sidebar.button('Predict'): load_data = pd.read_table(uploaded_file, sep=' ', header=None) load_data.to_csv('molecule.smi', sep = '\t', header = False, index = False) st.header('**Original input data**') st.write(load_data) with st.spinner("Calculating descriptors..."): desc_calc() # Read in calculated descriptors and display the dataframe st.header('**Calculated molecular descriptors**') desc = pd.read_csv('descriptors_output.csv') st.write(desc) st.write(desc.shape) # Read descriptor list used in previously built model st.header('**Subset of descriptors from previously built models**') Xlist = list(pd.read_csv('descriptor_list.csv').columns) desc_subset = desc[Xlist] st.write(desc_subset) st.write(desc_subset.shape) # Apply trained model to make prediction on query compounds build_model(desc_subset) else: st.info('Upload input data in the sidebar to start!')
37.783133
250
0.728954
[ "MIT" ]
ferdinand-popp/BIDD
app.py
3,136
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test configs for transpose_conv.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from tensorflow.lite.testing.zip_test_utils import create_tensor_data from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests from tensorflow.lite.testing.zip_test_utils import register_make_test_function # Since compute output_shape is fairly complicated for # tf.nn.conv2d_transpose input_sizes argument, so we here first perform a # "conv2d" operation to get the output, then we use the output to feed in # tf.nn.conv2d_backprop_input. # This test will depend on the "conv2d" operation's correctness. @register_make_test_function() def make_transpose_conv_tests(options): """Make a set of tests to do transpose_conv.""" # Tensorflow only supports equal strides test_parameters = [ { "input_shape": [[1, 3, 4, 1], [1, 10, 10, 3], [3, 20, 20, 1]], "filter_size": [[1, 1], [1, 2], [3, 3]], "strides": [[1, 1, 1, 1], [1, 3, 3, 1]], "padding": ["SAME", "VALID"], "data_format": ["NHWC"], "channel_multiplier": [1, 2], "output_shape": [[]], "fully_quantize": [False] }, # TODO(yunluli): Adding simple tests for now to unblock edgetpu debugging. # Need to add more test cases. { "input_shape": [[1, 3, 3, 1]], "filter_size": [[3, 3, 2, 1]], "strides": [[1, 1, 1, 1]], "padding": ["SAME"], "data_format": ["NHWC"], "channel_multiplier": [1], "output_shape": [[1, 3, 3, 2]], "fully_quantize": [True] }, { "input_shape": [[1, 3, 3, 1]], "filter_size": [[3, 3, 2, 1]], "strides": [[1, 2, 2, 1]], "padding": ["SAME"], "data_format": ["NHWC"], "channel_multiplier": [1], "output_shape": [[1, 6, 6, 2]], "fully_quantize": [True] }, { "input_shape": [[1, 4, 3, 1]], "filter_size": [[3, 3, 2, 1]], "strides": [[1, 2, 2, 1]], "padding": ["SAME"], "data_format": ["NHWC"], "channel_multiplier": [1], "output_shape": [[1, 8, 6, 2]], "fully_quantize": [True] } ] def get_tensor_shapes(parameters): input_shape = parameters["input_shape"] filter_size = parameters["filter_size"] if not parameters["fully_quantize"]: filter_shape = filter_size + [ input_shape[3], parameters["channel_multiplier"] ] return [input_shape, filter_shape] return [input_shape, filter_size] def build_graph(parameters): """Build a transpose_conv graph given `parameters`.""" input_shape, filter_shape = get_tensor_shapes(parameters) input_tensor = tf.compat.v1.placeholder( dtype=tf.float32, name="input", shape=input_shape) filter_input = tf.compat.v1.placeholder( dtype=tf.float32, name="filter", shape=filter_shape) if not parameters["fully_quantize"]: input_tensors = [input_tensor, filter_input] conv_outputs = tf.nn.conv2d( input_tensor, filter_input, strides=parameters["strides"], padding=parameters["padding"], data_format=parameters["data_format"]) out = tf.compat.v1.nn.conv2d_backprop_input( input_shape, filter_input, conv_outputs, strides=parameters["strides"], padding=parameters["padding"], data_format=parameters["data_format"]) else: input_tensors = [input_tensor] filter_input = create_tensor_data( np.float32, filter_shape, min_value=-1, max_value=1) out = tf.nn.conv2d_transpose( input_tensor, filter_input, parameters["output_shape"], strides=parameters["strides"], padding=parameters["padding"], data_format=parameters["data_format"]) return input_tensors, [out] def build_inputs(parameters, sess, inputs, outputs): input_shape, filter_shape = get_tensor_shapes(parameters) if not parameters["fully_quantize"]: values = [ create_tensor_data(np.float32, input_shape), create_tensor_data(np.float32, filter_shape) ] else: values = [ create_tensor_data( np.float32, input_shape, min_value=-1, max_value=1), ] return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) make_zip_of_tests(options, test_parameters, build_graph, build_inputs)
36.417808
80
0.61877
[ "Apache-2.0" ]
1250281649/tensorflow
tensorflow/lite/testing/op_tests/transpose_conv.py
5,317
Python
# orm/query.py # Copyright (C) 2005-2014 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """The Query class and support. Defines the :class:`.Query` class, the central construct used by the ORM to construct database queries. The :class:`.Query` class should not be confused with the :class:`.Select` class, which defines database SELECT operations at the SQL (non-ORM) level. ``Query`` differs from ``Select`` in that it returns ORM-mapped objects and interacts with an ORM session, whereas the ``Select`` construct interacts directly with the database to return iterable result sets. """ from itertools import chain from . import ( attributes, interfaces, object_mapper, persistence, exc as orm_exc, loading ) from .base import _entity_descriptor, _is_aliased_class, \ _is_mapped_class, _orm_columns, _generative from .path_registry import PathRegistry from .util import ( AliasedClass, ORMAdapter, join as orm_join, with_parent, aliased ) from .. import sql, util, log, exc as sa_exc, inspect, inspection from ..sql.expression import _interpret_as_from from ..sql import ( util as sql_util, expression, visitors ) from ..sql.base import ColumnCollection from . import properties __all__ = ['Query', 'QueryContext', 'aliased'] _path_registry = PathRegistry.root @inspection._self_inspects @log.class_logger class Query(object): """ORM-level SQL construction object. :class:`.Query` is the source of all SELECT statements generated by the ORM, both those formulated by end-user query operations as well as by high level internal operations such as related collection loading. It features a generative interface whereby successive calls return a new :class:`.Query` object, a copy of the former with additional criteria and options associated with it. :class:`.Query` objects are normally initially generated using the :meth:`~.Session.query` method of :class:`.Session`. For a full walkthrough of :class:`.Query` usage, see the :ref:`ormtutorial_toplevel`. """ _enable_eagerloads = True _enable_assertions = True _with_labels = False _criterion = None _yield_per = None _order_by = False _group_by = False _having = None _distinct = False _prefixes = None _offset = None _limit = None _for_update_arg = None _statement = None _correlate = frozenset() _populate_existing = False _invoke_all_eagers = True _version_check = False _autoflush = True _only_load_props = None _refresh_state = None _from_obj = () _join_entities = () _select_from_entity = None _mapper_adapter_map = {} _filter_aliases = None _from_obj_alias = None _joinpath = _joinpoint = util.immutabledict() _execution_options = util.immutabledict() _params = util.immutabledict() _attributes = util.immutabledict() _with_options = () _with_hints = () _enable_single_crit = True _current_path = _path_registry def __init__(self, entities, session=None): self.session = session self._polymorphic_adapters = {} self._set_entities(entities) def _set_entities(self, entities, entity_wrapper=None): if entity_wrapper is None: entity_wrapper = _QueryEntity self._entities = [] self._primary_entity = None for ent in util.to_list(entities): entity_wrapper(self, ent) self._set_entity_selectables(self._entities) def _set_entity_selectables(self, entities): self._mapper_adapter_map = d = self._mapper_adapter_map.copy() for ent in entities: for entity in ent.entities: if entity not in d: ext_info = inspect(entity) if not ext_info.is_aliased_class and \ ext_info.mapper.with_polymorphic: if ext_info.mapper.mapped_table not in \ self._polymorphic_adapters: self._mapper_loads_polymorphically_with( ext_info.mapper, sql_util.ColumnAdapter( ext_info.selectable, ext_info.mapper._equivalent_columns ) ) aliased_adapter = None elif ext_info.is_aliased_class: aliased_adapter = ext_info._adapter else: aliased_adapter = None d[entity] = ( ext_info, aliased_adapter ) ent.setup_entity(*d[entity]) def _mapper_loads_polymorphically_with(self, mapper, adapter): for m2 in mapper._with_polymorphic_mappers or [mapper]: self._polymorphic_adapters[m2] = adapter for m in m2.iterate_to_root(): self._polymorphic_adapters[m.local_table] = adapter def _set_select_from(self, obj, set_base_alias): fa = [] select_from_alias = None for from_obj in obj: info = inspect(from_obj) if hasattr(info, 'mapper') and \ (info.is_mapper or info.is_aliased_class): self._select_from_entity = from_obj if set_base_alias: raise sa_exc.ArgumentError( "A selectable (FromClause) instance is " "expected when the base alias is being set.") fa.append(info.selectable) elif not info.is_selectable: raise sa_exc.ArgumentError( "argument is not a mapped class, mapper, " "aliased(), or FromClause instance.") else: if isinstance(from_obj, expression.SelectBase): from_obj = from_obj.alias() if set_base_alias: select_from_alias = from_obj fa.append(from_obj) self._from_obj = tuple(fa) if set_base_alias and \ len(self._from_obj) == 1 and \ isinstance(select_from_alias, expression.Alias): equivs = self.__all_equivs() self._from_obj_alias = sql_util.ColumnAdapter( self._from_obj[0], equivs) def _reset_polymorphic_adapter(self, mapper): for m2 in mapper._with_polymorphic_mappers: self._polymorphic_adapters.pop(m2, None) for m in m2.iterate_to_root(): self._polymorphic_adapters.pop(m.local_table, None) def _adapt_polymorphic_element(self, element): if "parententity" in element._annotations: search = element._annotations['parententity'] alias = self._polymorphic_adapters.get(search, None) if alias: return alias.adapt_clause(element) if isinstance(element, expression.FromClause): search = element elif hasattr(element, 'table'): search = element.table else: return None alias = self._polymorphic_adapters.get(search, None) if alias: return alias.adapt_clause(element) def _adapt_col_list(self, cols): return [ self._adapt_clause( expression._literal_as_label_reference(o), True, True) for o in cols ] @_generative() def _adapt_all_clauses(self): self._orm_only_adapt = False def _adapt_clause(self, clause, as_filter, orm_only): """Adapt incoming clauses to transformations which have been applied within this query.""" adapters = [] # do we adapt all expression elements or only those # tagged as 'ORM' constructs ? orm_only = getattr(self, '_orm_only_adapt', orm_only) if as_filter and self._filter_aliases: for fa in self._filter_aliases._visitor_iterator: adapters.append( ( orm_only, fa.replace ) ) if self._from_obj_alias: # for the "from obj" alias, apply extra rule to the # 'ORM only' check, if this query were generated from a # subquery of itself, i.e. _from_selectable(), apply adaption # to all SQL constructs. adapters.append( ( getattr(self, '_orm_only_from_obj_alias', orm_only), self._from_obj_alias.replace ) ) if self._polymorphic_adapters: adapters.append( ( orm_only, self._adapt_polymorphic_element ) ) if not adapters: return clause def replace(elem): for _orm_only, adapter in adapters: # if 'orm only', look for ORM annotations # in the element before adapting. if not _orm_only or \ '_orm_adapt' in elem._annotations or \ "parententity" in elem._annotations: e = adapter(elem) if e is not None: return e return visitors.replacement_traverse( clause, {}, replace ) def _entity_zero(self): return self._entities[0] def _mapper_zero(self): return self._select_from_entity or \ self._entity_zero().entity_zero @property def _mapper_entities(self): for ent in self._entities: if isinstance(ent, _MapperEntity): yield ent def _joinpoint_zero(self): return self._joinpoint.get( '_joinpoint_entity', self._mapper_zero() ) def _mapper_zero_or_none(self): if self._primary_entity: return self._primary_entity.mapper else: return None def _only_mapper_zero(self, rationale=None): if len(self._entities) > 1: raise sa_exc.InvalidRequestError( rationale or "This operation requires a Query " "against a single mapper." ) return self._mapper_zero() def _only_full_mapper_zero(self, methname): if self._entities != [self._primary_entity]: raise sa_exc.InvalidRequestError( "%s() can only be used against " "a single mapped class." % methname) return self._primary_entity.entity_zero def _only_entity_zero(self, rationale=None): if len(self._entities) > 1: raise sa_exc.InvalidRequestError( rationale or "This operation requires a Query " "against a single mapper." ) return self._entity_zero() def __all_equivs(self): equivs = {} for ent in self._mapper_entities: equivs.update(ent.mapper._equivalent_columns) return equivs def _get_condition(self): return self._no_criterion_condition( "get", order_by=False, distinct=False) def _get_existing_condition(self): self._no_criterion_assertion("get", order_by=False, distinct=False) def _no_criterion_assertion(self, meth, order_by=True, distinct=True): if not self._enable_assertions: return if self._criterion is not None or \ self._statement is not None or self._from_obj or \ self._limit is not None or self._offset is not None or \ self._group_by or (order_by and self._order_by) or \ (distinct and self._distinct): raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth) def _no_criterion_condition(self, meth, order_by=True, distinct=True): self._no_criterion_assertion(meth, order_by, distinct) self._from_obj = () self._statement = self._criterion = None self._order_by = self._group_by = self._distinct = False def _no_clauseelement_condition(self, meth): if not self._enable_assertions: return if self._order_by: raise sa_exc.InvalidRequestError( "Query.%s() being called on a " "Query with existing criterion. " % meth) self._no_criterion_condition(meth) def _no_statement_condition(self, meth): if not self._enable_assertions: return if self._statement is not None: raise sa_exc.InvalidRequestError( ("Query.%s() being called on a Query with an existing full " "statement - can't apply criterion.") % meth) def _no_limit_offset(self, meth): if not self._enable_assertions: return if self._limit is not None or self._offset is not None: raise sa_exc.InvalidRequestError( "Query.%s() being called on a Query which already has LIMIT " "or OFFSET applied. To modify the row-limited results of a " " Query, call from_self() first. " "Otherwise, call %s() before limit() or offset() " "are applied." % (meth, meth) ) def _no_select_modifiers(self, meth): if not self._enable_assertions: return for attr, methname, notset in ( ('_limit', 'limit()', None), ('_offset', 'offset()', None), ('_order_by', 'order_by()', False), ('_group_by', 'group_by()', False), ('_distinct', 'distinct()', False), ): if getattr(self, attr) is not notset: raise sa_exc.InvalidRequestError( "Can't call Query.%s() when %s has been called" % (meth, methname) ) def _get_options(self, populate_existing=None, version_check=None, only_load_props=None, refresh_state=None): if populate_existing: self._populate_existing = populate_existing if version_check: self._version_check = version_check if refresh_state: self._refresh_state = refresh_state if only_load_props: self._only_load_props = set(only_load_props) return self def _clone(self): cls = self.__class__ q = cls.__new__(cls) q.__dict__ = self.__dict__.copy() return q @property def statement(self): """The full SELECT statement represented by this Query. The statement by default will not have disambiguating labels applied to the construct unless with_labels(True) is called first. """ stmt = self._compile_context(labels=self._with_labels).\ statement if self._params: stmt = stmt.params(self._params) # TODO: there's no tests covering effects of # the annotation not being there return stmt._annotate({'no_replacement_traverse': True}) def subquery(self, name=None, with_labels=False, reduce_columns=False): """return the full SELECT statement represented by this :class:`.Query`, embedded within an :class:`.Alias`. Eager JOIN generation within the query is disabled. :param name: string name to be assigned as the alias; this is passed through to :meth:`.FromClause.alias`. If ``None``, a name will be deterministically generated at compile time. :param with_labels: if True, :meth:`.with_labels` will be called on the :class:`.Query` first to apply table-qualified labels to all columns. :param reduce_columns: if True, :meth:`.Select.reduce_columns` will be called on the resulting :func:`.select` construct, to remove same-named columns where one also refers to the other via foreign key or WHERE clause equivalence. .. versionchanged:: 0.8 the ``with_labels`` and ``reduce_columns`` keyword arguments were added. """ q = self.enable_eagerloads(False) if with_labels: q = q.with_labels() q = q.statement if reduce_columns: q = q.reduce_columns() return q.alias(name=name) def cte(self, name=None, recursive=False): """Return the full SELECT statement represented by this :class:`.Query` represented as a common table expression (CTE). .. versionadded:: 0.7.6 Parameters and usage are the same as those of the :meth:`.SelectBase.cte` method; see that method for further details. Here is the `Postgresql WITH RECURSIVE example <http://www.postgresql.org/docs/8.4/static/queries-with.html>`_. Note that, in this example, the ``included_parts`` cte and the ``incl_alias`` alias of it are Core selectables, which means the columns are accessed via the ``.c.`` attribute. The ``parts_alias`` object is an :func:`.orm.aliased` instance of the ``Part`` entity, so column-mapped attributes are available directly:: from sqlalchemy.orm import aliased class Part(Base): __tablename__ = 'part' part = Column(String, primary_key=True) sub_part = Column(String, primary_key=True) quantity = Column(Integer) included_parts = session.query( Part.sub_part, Part.part, Part.quantity).\\ filter(Part.part=="our part").\\ cte(name="included_parts", recursive=True) incl_alias = aliased(included_parts, name="pr") parts_alias = aliased(Part, name="p") included_parts = included_parts.union_all( session.query( parts_alias.sub_part, parts_alias.part, parts_alias.quantity).\\ filter(parts_alias.part==incl_alias.c.sub_part) ) q = session.query( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\\ group_by(included_parts.c.sub_part) .. seealso:: :meth:`.SelectBase.cte` """ return self.enable_eagerloads(False).\ statement.cte(name=name, recursive=recursive) def label(self, name): """Return the full SELECT statement represented by this :class:`.Query`, converted to a scalar subquery with a label of the given name. Analogous to :meth:`sqlalchemy.sql.expression.SelectBase.label`. .. versionadded:: 0.6.5 """ return self.enable_eagerloads(False).statement.label(name) def as_scalar(self): """Return the full SELECT statement represented by this :class:`.Query`, converted to a scalar subquery. Analogous to :meth:`sqlalchemy.sql.expression.SelectBase.as_scalar`. .. versionadded:: 0.6.5 """ return self.enable_eagerloads(False).statement.as_scalar() @property def selectable(self): """Return the :class:`.Select` object emitted by this :class:`.Query`. Used for :func:`.inspect` compatibility, this is equivalent to:: query.enable_eagerloads(False).with_labels().statement """ return self.__clause_element__() def __clause_element__(self): return self.enable_eagerloads(False).with_labels().statement @_generative() def enable_eagerloads(self, value): """Control whether or not eager joins and subqueries are rendered. When set to False, the returned Query will not render eager joins regardless of :func:`~sqlalchemy.orm.joinedload`, :func:`~sqlalchemy.orm.subqueryload` options or mapper-level ``lazy='joined'``/``lazy='subquery'`` configurations. This is used primarily when nesting the Query's statement into a subquery or other selectable, or when using :meth:`.Query.yield_per`. """ self._enable_eagerloads = value def _no_yield_per(self, message): raise sa_exc.InvalidRequestError( "The yield_per Query option is currently not " "compatible with %s eager loading. Please " "specify lazyload('*') or query.enable_eagerloads(False) in " "order to " "proceed with query.yield_per()." % message) @_generative() def with_labels(self): """Apply column labels to the return value of Query.statement. Indicates that this Query's `statement` accessor should return a SELECT statement that applies labels to all columns in the form <tablename>_<columnname>; this is commonly used to disambiguate columns from multiple tables which have the same name. When the `Query` actually issues SQL to load rows, it always uses column labeling. """ self._with_labels = True @_generative() def enable_assertions(self, value): """Control whether assertions are generated. When set to False, the returned Query will not assert its state before certain operations, including that LIMIT/OFFSET has not been applied when filter() is called, no criterion exists when get() is called, and no "from_statement()" exists when filter()/order_by()/group_by() etc. is called. This more permissive mode is used by custom Query subclasses to specify criterion or other modifiers outside of the usual usage patterns. Care should be taken to ensure that the usage pattern is even possible. A statement applied by from_statement() will override any criterion set by filter() or order_by(), for example. """ self._enable_assertions = value @property def whereclause(self): """A readonly attribute which returns the current WHERE criterion for this Query. This returned value is a SQL expression construct, or ``None`` if no criterion has been established. """ return self._criterion @_generative() def _with_current_path(self, path): """indicate that this query applies to objects loaded within a certain path. Used by deferred loaders (see strategies.py) which transfer query options from an originating query to a newly generated query intended for the deferred load. """ self._current_path = path @_generative(_no_clauseelement_condition) def with_polymorphic(self, cls_or_mappers, selectable=None, polymorphic_on=None): """Load columns for inheriting classes. :meth:`.Query.with_polymorphic` applies transformations to the "main" mapped class represented by this :class:`.Query`. The "main" mapped class here means the :class:`.Query` object's first argument is a full class, i.e. ``session.query(SomeClass)``. These transformations allow additional tables to be present in the FROM clause so that columns for a joined-inheritance subclass are available in the query, both for the purposes of load-time efficiency as well as the ability to use these columns at query time. See the documentation section :ref:`with_polymorphic` for details on how this method is used. .. versionchanged:: 0.8 A new and more flexible function :func:`.orm.with_polymorphic` supersedes :meth:`.Query.with_polymorphic`, as it can apply the equivalent functionality to any set of columns or classes in the :class:`.Query`, not just the "zero mapper". See that function for a description of arguments. """ if not self._primary_entity: raise sa_exc.InvalidRequestError( "No primary mapper set up for this Query.") entity = self._entities[0]._clone() self._entities = [entity] + self._entities[1:] entity.set_with_polymorphic(self, cls_or_mappers, selectable=selectable, polymorphic_on=polymorphic_on) @_generative() def yield_per(self, count): """Yield only ``count`` rows at a time. The purpose of this method is when fetching very large result sets (> 10K rows), to batch results in sub-collections and yield them out partially, so that the Python interpreter doesn't need to declare very large areas of memory which is both time consuming and leads to excessive memory use. The performance from fetching hundreds of thousands of rows can often double when a suitable yield-per setting (e.g. approximately 1000) is used, even with DBAPIs that buffer rows (which are most). The :meth:`.Query.yield_per` method **is not compatible with most eager loading schemes, including subqueryload and joinedload with collections**. For this reason, it may be helpful to disable eager loads, either unconditionally with :meth:`.Query.enable_eagerloads`:: q = sess.query(Object).yield_per(100).enable_eagerloads(False) Or more selectively using :func:`.lazyload`; such as with an asterisk to specify the default loader scheme:: q = sess.query(Object).yield_per(100).\\ options(lazyload('*'), joinedload(Object.some_related)) .. warning:: Use this method with caution; if the same instance is present in more than one batch of rows, end-user changes to attributes will be overwritten. In particular, it's usually impossible to use this setting with eagerly loaded collections (i.e. any lazy='joined' or 'subquery') since those collections will be cleared for a new load when encountered in a subsequent result batch. In the case of 'subquery' loading, the full result for all rows is fetched which generally defeats the purpose of :meth:`~sqlalchemy.orm.query.Query.yield_per`. Also note that while :meth:`~sqlalchemy.orm.query.Query.yield_per` will set the ``stream_results`` execution option to True, currently this is only understood by :mod:`~sqlalchemy.dialects.postgresql.psycopg2` dialect which will stream results using server side cursors instead of pre-buffer all rows for this query. Other DBAPIs **pre-buffer all rows** before making them available. The memory use of raw database rows is much less than that of an ORM-mapped object, but should still be taken into consideration when benchmarking. .. seealso:: :meth:`.Query.enable_eagerloads` """ self._yield_per = count self._execution_options = self._execution_options.union( {"stream_results": True}) def get(self, ident): """Return an instance based on the given primary key identifier, or ``None`` if not found. E.g.:: my_user = session.query(User).get(5) some_object = session.query(VersionedFoo).get((5, 10)) :meth:`~.Query.get` is special in that it provides direct access to the identity map of the owning :class:`.Session`. If the given primary key identifier is present in the local identity map, the object is returned directly from this collection and no SQL is emitted, unless the object has been marked fully expired. If not present, a SELECT is performed in order to locate the object. :meth:`~.Query.get` also will perform a check if the object is present in the identity map and marked as expired - a SELECT is emitted to refresh the object as well as to ensure that the row is still present. If not, :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. :meth:`~.Query.get` is only used to return a single mapped instance, not multiple instances or individual column constructs, and strictly on a single primary key value. The originating :class:`.Query` must be constructed in this way, i.e. against a single mapped entity, with no additional filtering criterion. Loading options via :meth:`~.Query.options` may be applied however, and will be used if the object is not yet locally present. A lazy-loading, many-to-one attribute configured by :func:`.relationship`, using a simple foreign-key-to-primary-key criterion, will also use an operation equivalent to :meth:`~.Query.get` in order to retrieve the target value from the local identity map before querying the database. See :doc:`/orm/loading` for further details on relationship loading. :param ident: A scalar or tuple value representing the primary key. For a composite primary key, the order of identifiers corresponds in most cases to that of the mapped :class:`.Table` object's primary key columns. For a :func:`.mapper` that was given the ``primary key`` argument during construction, the order of identifiers corresponds to the elements present in this collection. :return: The object instance, or ``None``. """ # convert composite types to individual args if hasattr(ident, '__composite_values__'): ident = ident.__composite_values__() ident = util.to_list(ident) mapper = self._only_full_mapper_zero("get") if len(ident) != len(mapper.primary_key): raise sa_exc.InvalidRequestError( "Incorrect number of values in identifier to formulate " "primary key for query.get(); primary key columns are %s" % ','.join("'%s'" % c for c in mapper.primary_key)) key = mapper.identity_key_from_primary_key(ident) if not self._populate_existing and \ not mapper.always_refresh and \ self._for_update_arg is None: instance = loading.get_from_identity( self.session, key, attributes.PASSIVE_OFF) if instance is not None: self._get_existing_condition() # reject calls for id in identity map but class # mismatch. if not issubclass(instance.__class__, mapper.class_): return None return instance return loading.load_on_ident(self, key) @_generative() def correlate(self, *args): """Return a :class:`.Query` construct which will correlate the given FROM clauses to that of an enclosing :class:`.Query` or :func:`~.expression.select`. The method here accepts mapped classes, :func:`.aliased` constructs, and :func:`.mapper` constructs as arguments, which are resolved into expression constructs, in addition to appropriate expression constructs. The correlation arguments are ultimately passed to :meth:`.Select.correlate` after coercion to expression constructs. The correlation arguments take effect in such cases as when :meth:`.Query.from_self` is used, or when a subquery as returned by :meth:`.Query.subquery` is embedded in another :func:`~.expression.select` construct. """ self._correlate = self._correlate.union( _interpret_as_from(s) if s is not None else None for s in args) @_generative() def autoflush(self, setting): """Return a Query with a specific 'autoflush' setting. Note that a Session with autoflush=False will not autoflush, even if this flag is set to True at the Query level. Therefore this flag is usually used only to disable autoflush for a specific Query. """ self._autoflush = setting @_generative() def populate_existing(self): """Return a :class:`.Query` that will expire and refresh all instances as they are loaded, or reused from the current :class:`.Session`. :meth:`.populate_existing` does not improve behavior when the ORM is used normally - the :class:`.Session` object's usual behavior of maintaining a transaction and expiring all attributes after rollback or commit handles object state automatically. This method is not intended for general use. """ self._populate_existing = True @_generative() def _with_invoke_all_eagers(self, value): """Set the 'invoke all eagers' flag which causes joined- and subquery loaders to traverse into already-loaded related objects and collections. Default is that of :attr:`.Query._invoke_all_eagers`. """ self._invoke_all_eagers = value def with_parent(self, instance, property=None): """Add filtering criterion that relates the given instance to a child object or collection, using its attribute state as well as an established :func:`.relationship()` configuration. The method uses the :func:`.with_parent` function to generate the clause, the result of which is passed to :meth:`.Query.filter`. Parameters are the same as :func:`.with_parent`, with the exception that the given property can be None, in which case a search is performed against this :class:`.Query` object's target mapper. """ if property is None: mapper = object_mapper(instance) for prop in mapper.iterate_properties: if isinstance(prop, properties.RelationshipProperty) and \ prop.mapper is self._mapper_zero(): property = prop break else: raise sa_exc.InvalidRequestError( "Could not locate a property which relates instances " "of class '%s' to instances of class '%s'" % ( self._mapper_zero().class_.__name__, instance.__class__.__name__) ) return self.filter(with_parent(instance, property)) @_generative() def add_entity(self, entity, alias=None): """add a mapped entity to the list of result columns to be returned.""" if alias is not None: entity = aliased(entity, alias) self._entities = list(self._entities) m = _MapperEntity(self, entity) self._set_entity_selectables([m]) @_generative() def with_session(self, session): """Return a :class:`.Query` that will use the given :class:`.Session`. """ self.session = session def from_self(self, *entities): """return a Query that selects from this Query's SELECT statement. \*entities - optional list of entities which will replace those being selected. """ fromclause = self.with_labels().enable_eagerloads(False).\ statement.correlate(None) q = self._from_selectable(fromclause) q._enable_single_crit = False if entities: q._set_entities(entities) return q @_generative() def _set_enable_single_crit(self, val): self._enable_single_crit = val @_generative() def _from_selectable(self, fromclause): for attr in ( '_statement', '_criterion', '_order_by', '_group_by', '_limit', '_offset', '_joinpath', '_joinpoint', '_distinct', '_having', '_prefixes', ): self.__dict__.pop(attr, None) self._set_select_from([fromclause], True) # this enables clause adaptation for non-ORM # expressions. self._orm_only_from_obj_alias = False old_entities = self._entities self._entities = [] for e in old_entities: e.adapt_to_selectable(self, self._from_obj[0]) def values(self, *columns): """Return an iterator yielding result tuples corresponding to the given list of columns""" if not columns: return iter(()) q = self._clone() q._set_entities(columns, entity_wrapper=_ColumnEntity) if not q._yield_per: q._yield_per = 10 return iter(q) _values = values def value(self, column): """Return a scalar result corresponding to the given column expression.""" try: return next(self.values(column))[0] except StopIteration: return None @_generative() def with_entities(self, *entities): """Return a new :class:`.Query` replacing the SELECT list with the given entities. e.g.:: # Users, filtered on some arbitrary criterion # and then ordered by related email address q = session.query(User).\\ join(User.address).\\ filter(User.name.like('%ed%')).\\ order_by(Address.email) # given *only* User.id==5, Address.email, and 'q', what # would the *next* User in the result be ? subq = q.with_entities(Address.email).\\ order_by(None).\\ filter(User.id==5).\\ subquery() q = q.join((subq, subq.c.email < Address.email)).\\ limit(1) .. versionadded:: 0.6.5 """ self._set_entities(entities) @_generative() def add_columns(self, *column): """Add one or more column expressions to the list of result columns to be returned.""" self._entities = list(self._entities) l = len(self._entities) for c in column: _ColumnEntity(self, c) # _ColumnEntity may add many entities if the # given arg is a FROM clause self._set_entity_selectables(self._entities[l:]) @util.pending_deprecation("0.7", ":meth:`.add_column` is superseded " "by :meth:`.add_columns`", False) def add_column(self, column): """Add a column expression to the list of result columns to be returned. Pending deprecation: :meth:`.add_column` will be superseded by :meth:`.add_columns`. """ return self.add_columns(column) def options(self, *args): """Return a new Query object, applying the given list of mapper options. Most supplied options regard changing how column- and relationship-mapped attributes are loaded. See the sections :ref:`deferred` and :doc:`/orm/loading` for reference documentation. """ return self._options(False, *args) def _conditional_options(self, *args): return self._options(True, *args) @_generative() def _options(self, conditional, *args): # most MapperOptions write to the '_attributes' dictionary, # so copy that as well self._attributes = self._attributes.copy() opts = tuple(util.flatten_iterator(args)) self._with_options = self._with_options + opts if conditional: for opt in opts: opt.process_query_conditionally(self) else: for opt in opts: opt.process_query(self) def with_transformation(self, fn): """Return a new :class:`.Query` object transformed by the given function. E.g.:: def filter_something(criterion): def transform(q): return q.filter(criterion) return transform q = q.with_transformation(filter_something(x==5)) This allows ad-hoc recipes to be created for :class:`.Query` objects. See the example at :ref:`hybrid_transformers`. .. versionadded:: 0.7.4 """ return fn(self) @_generative() def with_hint(self, selectable, text, dialect_name='*'): """Add an indexing or other executional context hint for the given entity or selectable to this :class:`.Query`. Functionality is passed straight through to :meth:`~sqlalchemy.sql.expression.Select.with_hint`, with the addition that ``selectable`` can be a :class:`.Table`, :class:`.Alias`, or ORM entity / mapped class /etc. .. seealso:: :meth:`.Query.with_statement_hint` """ if selectable is not None: selectable = inspect(selectable).selectable self._with_hints += ((selectable, text, dialect_name),) def with_statement_hint(self, text, dialect_name='*'): """add a statement hint to this :class:`.Select`. This method is similar to :meth:`.Select.with_hint` except that it does not require an individual table, and instead applies to the statement as a whole. This feature calls down into :meth:`.Select.with_statement_hint`. .. versionadded:: 1.0.0 .. seealso:: :meth:`.Query.with_hint` """ return self.with_hint(None, text, dialect_name) @_generative() def execution_options(self, **kwargs): """ Set non-SQL options which take effect during execution. The options are the same as those accepted by :meth:`.Connection.execution_options`. Note that the ``stream_results`` execution option is enabled automatically if the :meth:`~sqlalchemy.orm.query.Query.yield_per()` method is used. """ self._execution_options = self._execution_options.union(kwargs) @_generative() def with_lockmode(self, mode): """Return a new :class:`.Query` object with the specified "locking mode", which essentially refers to the ``FOR UPDATE`` clause. .. deprecated:: 0.9.0 superseded by :meth:`.Query.with_for_update`. :param mode: a string representing the desired locking mode. Valid values are: * ``None`` - translates to no lockmode * ``'update'`` - translates to ``FOR UPDATE`` (standard SQL, supported by most dialects) * ``'update_nowait'`` - translates to ``FOR UPDATE NOWAIT`` (supported by Oracle, PostgreSQL 8.1 upwards) * ``'read'`` - translates to ``LOCK IN SHARE MODE`` (for MySQL), and ``FOR SHARE`` (for PostgreSQL) .. seealso:: :meth:`.Query.with_for_update` - improved API for specifying the ``FOR UPDATE`` clause. """ self._for_update_arg = LockmodeArg.parse_legacy_query(mode) @_generative() def with_for_update(self, read=False, nowait=False, of=None): """return a new :class:`.Query` with the specified options for the ``FOR UPDATE`` clause. The behavior of this method is identical to that of :meth:`.SelectBase.with_for_update`. When called with no arguments, the resulting ``SELECT`` statement will have a ``FOR UPDATE`` clause appended. When additional arguments are specified, backend-specific options such as ``FOR UPDATE NOWAIT`` or ``LOCK IN SHARE MODE`` can take effect. E.g.:: q = sess.query(User).with_for_update(nowait=True, of=User) The above query on a Postgresql backend will render like:: SELECT users.id AS users_id FROM users FOR UPDATE OF users NOWAIT .. versionadded:: 0.9.0 :meth:`.Query.with_for_update` supersedes the :meth:`.Query.with_lockmode` method. .. seealso:: :meth:`.GenerativeSelect.with_for_update` - Core level method with full argument and behavioral description. """ self._for_update_arg = LockmodeArg(read=read, nowait=nowait, of=of) @_generative() def params(self, *args, **kwargs): """add values for bind parameters which may have been specified in filter(). parameters may be specified using \**kwargs, or optionally a single dictionary as the first positional argument. The reason for both is that \**kwargs is convenient, however some parameter dictionaries contain unicode keys in which case \**kwargs cannot be used. """ if len(args) == 1: kwargs.update(args[0]) elif len(args) > 0: raise sa_exc.ArgumentError( "params() takes zero or one positional argument, " "which is a dictionary.") self._params = self._params.copy() self._params.update(kwargs) @_generative(_no_statement_condition, _no_limit_offset) def filter(self, *criterion): """apply the given filtering criterion to a copy of this :class:`.Query`, using SQL expressions. e.g.:: session.query(MyClass).filter(MyClass.name == 'some name') Multiple criteria are joined together by AND:: session.query(MyClass).\\ filter(MyClass.name == 'some name', MyClass.id > 5) The criterion is any SQL expression object applicable to the WHERE clause of a select. String expressions are coerced into SQL expression constructs via the :func:`.text` construct. .. versionchanged:: 0.7.5 Multiple criteria joined by AND. .. seealso:: :meth:`.Query.filter_by` - filter on keyword expressions. """ for criterion in list(criterion): criterion = expression._expression_literal_as_text(criterion) criterion = self._adapt_clause(criterion, True, True) if self._criterion is not None: self._criterion = self._criterion & criterion else: self._criterion = criterion def filter_by(self, **kwargs): """apply the given filtering criterion to a copy of this :class:`.Query`, using keyword expressions. e.g.:: session.query(MyClass).filter_by(name = 'some name') Multiple criteria are joined together by AND:: session.query(MyClass).\\ filter_by(name = 'some name', id = 5) The keyword expressions are extracted from the primary entity of the query, or the last entity that was the target of a call to :meth:`.Query.join`. .. seealso:: :meth:`.Query.filter` - filter on SQL expressions. """ clauses = [_entity_descriptor(self._joinpoint_zero(), key) == value for key, value in kwargs.items()] return self.filter(sql.and_(*clauses)) @_generative(_no_statement_condition, _no_limit_offset) def order_by(self, *criterion): """apply one or more ORDER BY criterion to the query and return the newly resulting ``Query`` All existing ORDER BY settings can be suppressed by passing ``None`` - this will suppress any ORDER BY configured on mappers as well. Alternatively, an existing ORDER BY setting on the Query object can be entirely cancelled by passing ``False`` as the value - use this before calling methods where an ORDER BY is invalid. """ if len(criterion) == 1: if criterion[0] is False: if '_order_by' in self.__dict__: del self._order_by return if criterion[0] is None: self._order_by = None return criterion = self._adapt_col_list(criterion) if self._order_by is False or self._order_by is None: self._order_by = criterion else: self._order_by = self._order_by + criterion @_generative(_no_statement_condition, _no_limit_offset) def group_by(self, *criterion): """apply one or more GROUP BY criterion to the query and return the newly resulting :class:`.Query`""" criterion = list(chain(*[_orm_columns(c) for c in criterion])) criterion = self._adapt_col_list(criterion) if self._group_by is False: self._group_by = criterion else: self._group_by = self._group_by + criterion @_generative(_no_statement_condition, _no_limit_offset) def having(self, criterion): """apply a HAVING criterion to the query and return the newly resulting :class:`.Query`. :meth:`~.Query.having` is used in conjunction with :meth:`~.Query.group_by`. HAVING criterion makes it possible to use filters on aggregate functions like COUNT, SUM, AVG, MAX, and MIN, eg.:: q = session.query(User.id).\\ join(User.addresses).\\ group_by(User.id).\\ having(func.count(Address.id) > 2) """ criterion = expression._expression_literal_as_text(criterion) if criterion is not None and \ not isinstance(criterion, sql.ClauseElement): raise sa_exc.ArgumentError( "having() argument must be of type " "sqlalchemy.sql.ClauseElement or string") criterion = self._adapt_clause(criterion, True, True) if self._having is not None: self._having = self._having & criterion else: self._having = criterion def union(self, *q): """Produce a UNION of this Query against one or more queries. e.g.:: q1 = sess.query(SomeClass).filter(SomeClass.foo=='bar') q2 = sess.query(SomeClass).filter(SomeClass.bar=='foo') q3 = q1.union(q2) The method accepts multiple Query objects so as to control the level of nesting. A series of ``union()`` calls such as:: x.union(y).union(z).all() will nest on each ``union()``, and produces:: SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y) UNION SELECT * FROM Z) Whereas:: x.union(y, z).all() produces:: SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION SELECT * FROM Z) Note that many database backends do not allow ORDER BY to be rendered on a query called within UNION, EXCEPT, etc. To disable all ORDER BY clauses including those configured on mappers, issue ``query.order_by(None)`` - the resulting :class:`.Query` object will not render ORDER BY within its SELECT statement. """ return self._from_selectable( expression.union(*([self] + list(q)))) def union_all(self, *q): """Produce a UNION ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._from_selectable( expression.union_all(*([self] + list(q))) ) def intersect(self, *q): """Produce an INTERSECT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._from_selectable( expression.intersect(*([self] + list(q))) ) def intersect_all(self, *q): """Produce an INTERSECT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._from_selectable( expression.intersect_all(*([self] + list(q))) ) def except_(self, *q): """Produce an EXCEPT of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._from_selectable( expression.except_(*([self] + list(q))) ) def except_all(self, *q): """Produce an EXCEPT ALL of this Query against one or more queries. Works the same way as :meth:`~sqlalchemy.orm.query.Query.union`. See that method for usage examples. """ return self._from_selectable( expression.except_all(*([self] + list(q))) ) def join(self, *props, **kwargs): """Create a SQL JOIN against this :class:`.Query` object's criterion and apply generatively, returning the newly resulting :class:`.Query`. **Simple Relationship Joins** Consider a mapping between two classes ``User`` and ``Address``, with a relationship ``User.addresses`` representing a collection of ``Address`` objects associated with each ``User``. The most common usage of :meth:`~.Query.join` is to create a JOIN along this relationship, using the ``User.addresses`` attribute as an indicator for how this should occur:: q = session.query(User).join(User.addresses) Where above, the call to :meth:`~.Query.join` along ``User.addresses`` will result in SQL equivalent to:: SELECT user.* FROM user JOIN address ON user.id = address.user_id In the above example we refer to ``User.addresses`` as passed to :meth:`~.Query.join` as the *on clause*, that is, it indicates how the "ON" portion of the JOIN should be constructed. For a single-entity query such as the one above (i.e. we start by selecting only from ``User`` and nothing else), the relationship can also be specified by its string name:: q = session.query(User).join("addresses") :meth:`~.Query.join` can also accommodate multiple "on clause" arguments to produce a chain of joins, such as below where a join across four related entities is constructed:: q = session.query(User).join("orders", "items", "keywords") The above would be shorthand for three separate calls to :meth:`~.Query.join`, each using an explicit attribute to indicate the source entity:: q = session.query(User).\\ join(User.orders).\\ join(Order.items).\\ join(Item.keywords) **Joins to a Target Entity or Selectable** A second form of :meth:`~.Query.join` allows any mapped entity or core selectable construct as a target. In this usage, :meth:`~.Query.join` will attempt to create a JOIN along the natural foreign key relationship between two entities:: q = session.query(User).join(Address) The above calling form of :meth:`~.Query.join` will raise an error if either there are no foreign keys between the two entities, or if there are multiple foreign key linkages between them. In the above calling form, :meth:`~.Query.join` is called upon to create the "on clause" automatically for us. The target can be any mapped entity or selectable, such as a :class:`.Table`:: q = session.query(User).join(addresses_table) **Joins to a Target with an ON Clause** The third calling form allows both the target entity as well as the ON clause to be passed explicitly. Suppose for example we wanted to join to ``Address`` twice, using an alias the second time. We use :func:`~sqlalchemy.orm.aliased` to create a distinct alias of ``Address``, and join to it using the ``target, onclause`` form, so that the alias can be specified explicitly as the target along with the relationship to instruct how the ON clause should proceed:: a_alias = aliased(Address) q = session.query(User).\\ join(User.addresses).\\ join(a_alias, User.addresses).\\ filter(Address.email_address=='[email protected]').\\ filter(a_alias.email_address=='[email protected]') Where above, the generated SQL would be similar to:: SELECT user.* FROM user JOIN address ON user.id = address.user_id JOIN address AS address_1 ON user.id=address_1.user_id WHERE address.email_address = :email_address_1 AND address_1.email_address = :email_address_2 The two-argument calling form of :meth:`~.Query.join` also allows us to construct arbitrary joins with SQL-oriented "on clause" expressions, not relying upon configured relationships at all. Any SQL expression can be passed as the ON clause when using the two-argument form, which should refer to the target entity in some way as well as an applicable source entity:: q = session.query(User).join(Address, User.id==Address.user_id) .. versionchanged:: 0.7 In SQLAlchemy 0.6 and earlier, the two argument form of :meth:`~.Query.join` requires the usage of a tuple: ``query(User).join((Address, User.id==Address.user_id))``\ . This calling form is accepted in 0.7 and further, though is not necessary unless multiple join conditions are passed to a single :meth:`~.Query.join` call, which itself is also not generally necessary as it is now equivalent to multiple calls (this wasn't always the case). **Advanced Join Targeting and Adaption** There is a lot of flexibility in what the "target" can be when using :meth:`~.Query.join`. As noted previously, it also accepts :class:`.Table` constructs and other selectables such as :func:`.alias` and :func:`.select` constructs, with either the one or two-argument forms:: addresses_q = select([Address.user_id]).\\ where(Address.email_address.endswith("@bar.com")).\\ alias() q = session.query(User).\\ join(addresses_q, addresses_q.c.user_id==User.id) :meth:`~.Query.join` also features the ability to *adapt* a :meth:`~sqlalchemy.orm.relationship` -driven ON clause to the target selectable. Below we construct a JOIN from ``User`` to a subquery against ``Address``, allowing the relationship denoted by ``User.addresses`` to *adapt* itself to the altered target:: address_subq = session.query(Address).\\ filter(Address.email_address == '[email protected]').\\ subquery() q = session.query(User).join(address_subq, User.addresses) Producing SQL similar to:: SELECT user.* FROM user JOIN ( SELECT address.id AS id, address.user_id AS user_id, address.email_address AS email_address FROM address WHERE address.email_address = :email_address_1 ) AS anon_1 ON user.id = anon_1.user_id The above form allows one to fall back onto an explicit ON clause at any time:: q = session.query(User).\\ join(address_subq, User.id==address_subq.c.user_id) **Controlling what to Join From** While :meth:`~.Query.join` exclusively deals with the "right" side of the JOIN, we can also control the "left" side, in those cases where it's needed, using :meth:`~.Query.select_from`. Below we construct a query against ``Address`` but can still make usage of ``User.addresses`` as our ON clause by instructing the :class:`.Query` to select first from the ``User`` entity:: q = session.query(Address).select_from(User).\\ join(User.addresses).\\ filter(User.name == 'ed') Which will produce SQL similar to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 **Constructing Aliases Anonymously** :meth:`~.Query.join` can construct anonymous aliases using the ``aliased=True`` flag. This feature is useful when a query is being joined algorithmically, such as when querying self-referentially to an arbitrary depth:: q = session.query(Node).\\ join("children", "children", aliased=True) When ``aliased=True`` is used, the actual "alias" construct is not explicitly available. To work with it, methods such as :meth:`.Query.filter` will adapt the incoming entity to the last join point:: q = session.query(Node).\\ join("children", "children", aliased=True).\\ filter(Node.name == 'grandchild 1') When using automatic aliasing, the ``from_joinpoint=True`` argument can allow a multi-node join to be broken into multiple calls to :meth:`~.Query.join`, so that each path along the way can be further filtered:: q = session.query(Node).\\ join("children", aliased=True).\\ filter(Node.name='child 1').\\ join("children", aliased=True, from_joinpoint=True).\\ filter(Node.name == 'grandchild 1') The filtering aliases above can then be reset back to the original ``Node`` entity using :meth:`~.Query.reset_joinpoint`:: q = session.query(Node).\\ join("children", "children", aliased=True).\\ filter(Node.name == 'grandchild 1').\\ reset_joinpoint().\\ filter(Node.name == 'parent 1) For an example of ``aliased=True``, see the distribution example :ref:`examples_xmlpersistence` which illustrates an XPath-like query system using algorithmic joins. :param \*props: A collection of one or more join conditions, each consisting of a relationship-bound attribute or string relationship name representing an "on clause", or a single target entity, or a tuple in the form of ``(target, onclause)``. A special two-argument calling form of the form ``target, onclause`` is also accepted. :param aliased=False: If True, indicate that the JOIN target should be anonymously aliased. Subsequent calls to :meth:`~.Query.filter` and similar will adapt the incoming criterion to the target alias, until :meth:`~.Query.reset_joinpoint` is called. :param isouter=False: If True, the join used will be a left outer join, just as if the :meth:`.Query.outerjoin` method were called. This flag is here to maintain consistency with the same flag as accepted by :meth:`.FromClause.join` and other Core constructs. .. versionadded:: 1.0.0 :param from_joinpoint=False: When using ``aliased=True``, a setting of True here will cause the join to be from the most recent joined target, rather than starting back from the original FROM clauses of the query. .. seealso:: :ref:`ormtutorial_joins` in the ORM tutorial. :ref:`inheritance_toplevel` for details on how :meth:`~.Query.join` is used for inheritance relationships. :func:`.orm.join` - a standalone ORM-level join function, used internally by :meth:`.Query.join`, which in previous SQLAlchemy versions was the primary ORM-level joining interface. """ aliased, from_joinpoint, isouter = kwargs.pop('aliased', False),\ kwargs.pop('from_joinpoint', False),\ kwargs.pop('isouter', False) if kwargs: raise TypeError("unknown arguments: %s" % ','.join(kwargs.keys)) isouter = isouter return self._join(props, outerjoin=isouter, create_aliases=aliased, from_joinpoint=from_joinpoint) def outerjoin(self, *props, **kwargs): """Create a left outer join against this ``Query`` object's criterion and apply generatively, returning the newly resulting ``Query``. Usage is the same as the ``join()`` method. """ aliased, from_joinpoint = kwargs.pop('aliased', False), \ kwargs.pop('from_joinpoint', False) if kwargs: raise TypeError("unknown arguments: %s" % ','.join(kwargs)) return self._join(props, outerjoin=True, create_aliases=aliased, from_joinpoint=from_joinpoint) def _update_joinpoint(self, jp): self._joinpoint = jp # copy backwards to the root of the _joinpath # dict, so that no existing dict in the path is mutated while 'prev' in jp: f, prev = jp['prev'] prev = prev.copy() prev[f] = jp jp['prev'] = (f, prev) jp = prev self._joinpath = jp @_generative(_no_statement_condition, _no_limit_offset) def _join(self, keys, outerjoin, create_aliases, from_joinpoint): """consumes arguments from join() or outerjoin(), places them into a consistent format with which to form the actual JOIN constructs. """ if not from_joinpoint: self._reset_joinpoint() if len(keys) == 2 and \ isinstance(keys[0], (expression.FromClause, type, AliasedClass)) and \ isinstance(keys[1], (str, expression.ClauseElement, interfaces.PropComparator)): # detect 2-arg form of join and # convert to a tuple. keys = (keys,) for arg1 in util.to_list(keys): if isinstance(arg1, tuple): # "tuple" form of join, multiple # tuples are accepted as well. The simpler # "2-arg" form is preferred. May deprecate # the "tuple" usage. arg1, arg2 = arg1 else: arg2 = None # determine onclause/right_entity. there # is a little bit of legacy behavior still at work here # which means they might be in either order. may possibly # lock this down to (right_entity, onclause) in 0.6. if isinstance( arg1, (interfaces.PropComparator, util.string_types)): right_entity, onclause = arg2, arg1 else: right_entity, onclause = arg1, arg2 left_entity = prop = None if isinstance(onclause, interfaces.PropComparator): of_type = getattr(onclause, '_of_type', None) else: of_type = None if isinstance(onclause, util.string_types): left_entity = self._joinpoint_zero() descriptor = _entity_descriptor(left_entity, onclause) onclause = descriptor # check for q.join(Class.propname, from_joinpoint=True) # and Class is that of the current joinpoint elif from_joinpoint and \ isinstance(onclause, interfaces.PropComparator): left_entity = onclause._parententity info = inspect(self._joinpoint_zero()) left_mapper, left_selectable, left_is_aliased = \ getattr(info, 'mapper', None), \ info.selectable, \ getattr(info, 'is_aliased_class', None) if left_mapper is left_entity: left_entity = self._joinpoint_zero() descriptor = _entity_descriptor(left_entity, onclause.key) onclause = descriptor if isinstance(onclause, interfaces.PropComparator): if right_entity is None: if of_type: right_entity = of_type else: right_entity = onclause.property.mapper left_entity = onclause._parententity prop = onclause.property if not isinstance(onclause, attributes.QueryableAttribute): onclause = prop if not create_aliases: # check for this path already present. # don't render in that case. edge = (left_entity, right_entity, prop.key) if edge in self._joinpoint: # The child's prev reference might be stale -- # it could point to a parent older than the # current joinpoint. If this is the case, # then we need to update it and then fix the # tree's spine with _update_joinpoint. Copy # and then mutate the child, which might be # shared by a different query object. jp = self._joinpoint[edge].copy() jp['prev'] = (edge, self._joinpoint) self._update_joinpoint(jp) continue elif onclause is not None and right_entity is None: # TODO: no coverage here raise NotImplementedError("query.join(a==b) not supported.") self._join_left_to_right( left_entity, right_entity, onclause, outerjoin, create_aliases, prop) def _join_left_to_right(self, left, right, onclause, outerjoin, create_aliases, prop): """append a JOIN to the query's from clause.""" self._polymorphic_adapters = self._polymorphic_adapters.copy() if left is None: if self._from_obj: left = self._from_obj[0] elif self._entities: left = self._entities[0].entity_zero_or_selectable if left is None: raise sa_exc.InvalidRequestError( "Don't know how to join from %s; please use " "select_from() to establish the left " "entity/selectable of this join" % self._entities[0]) if left is right and \ not create_aliases: raise sa_exc.InvalidRequestError( "Can't construct a join from %s to %s, they " "are the same entity" % (left, right)) l_info = inspect(left) r_info = inspect(right) overlap = False if not create_aliases: right_mapper = getattr(r_info, "mapper", None) # if the target is a joined inheritance mapping, # be more liberal about auto-aliasing. if right_mapper and ( right_mapper.with_polymorphic or isinstance(right_mapper.mapped_table, expression.Join) ): for from_obj in self._from_obj or [l_info.selectable]: if sql_util.selectables_overlap( l_info.selectable, from_obj) and \ sql_util.selectables_overlap( from_obj, r_info.selectable): overlap = True break if (overlap or not create_aliases) and \ l_info.selectable is r_info.selectable: raise sa_exc.InvalidRequestError( "Can't join table/selectable '%s' to itself" % l_info.selectable) right, onclause = self._prepare_right_side( r_info, right, onclause, create_aliases, prop, overlap) # if joining on a MapperProperty path, # track the path to prevent redundant joins if not create_aliases and prop: self._update_joinpoint({ '_joinpoint_entity': right, 'prev': ((left, right, prop.key), self._joinpoint) }) else: self._joinpoint = {'_joinpoint_entity': right} self._join_to_left(l_info, left, right, onclause, outerjoin) def _prepare_right_side(self, r_info, right, onclause, create_aliases, prop, overlap): info = r_info right_mapper, right_selectable, right_is_aliased = \ getattr(info, 'mapper', None), \ info.selectable, \ getattr(info, 'is_aliased_class', False) if right_mapper: self._join_entities += (info, ) if right_mapper and prop and \ not right_mapper.common_parent(prop.mapper): raise sa_exc.InvalidRequestError( "Join target %s does not correspond to " "the right side of join condition %s" % (right, onclause) ) if not right_mapper and prop: right_mapper = prop.mapper need_adapter = False if right_mapper and right is right_selectable: if not right_selectable.is_derived_from( right_mapper.mapped_table): raise sa_exc.InvalidRequestError( "Selectable '%s' is not derived from '%s'" % (right_selectable.description, right_mapper.mapped_table.description)) if isinstance(right_selectable, expression.SelectBase): # TODO: this isn't even covered now! right_selectable = right_selectable.alias() need_adapter = True right = aliased(right_mapper, right_selectable) aliased_entity = right_mapper and \ not right_is_aliased and \ ( right_mapper.with_polymorphic and isinstance( right_mapper._with_polymorphic_selectable, expression.Alias) or overlap # test for overlap: # orm/inheritance/relationships.py # SelfReferentialM2MTest ) if not need_adapter and (create_aliases or aliased_entity): right = aliased(right, flat=True) need_adapter = True # if an alias() of the right side was generated here, # apply an adapter to all subsequent filter() calls # until reset_joinpoint() is called. if need_adapter: self._filter_aliases = ORMAdapter( right, equivalents=right_mapper and right_mapper._equivalent_columns or {}, chain_to=self._filter_aliases) # if the onclause is a ClauseElement, adapt it with any # adapters that are in place right now if isinstance(onclause, expression.ClauseElement): onclause = self._adapt_clause(onclause, True, True) # if an alias() on the right side was generated, # which is intended to wrap a the right side in a subquery, # ensure that columns retrieved from this target in the result # set are also adapted. if aliased_entity and not create_aliases: self._mapper_loads_polymorphically_with( right_mapper, ORMAdapter( right, equivalents=right_mapper._equivalent_columns ) ) return right, onclause def _join_to_left(self, l_info, left, right, onclause, outerjoin): info = l_info left_mapper = getattr(info, 'mapper', None) left_selectable = info.selectable if self._from_obj: replace_clause_index, clause = sql_util.find_join_source( self._from_obj, left_selectable) if clause is not None: try: clause = orm_join(clause, right, onclause, isouter=outerjoin) except sa_exc.ArgumentError as ae: raise sa_exc.InvalidRequestError( "Could not find a FROM clause to join from. " "Tried joining to %s, but got: %s" % (right, ae)) self._from_obj = \ self._from_obj[:replace_clause_index] + \ (clause, ) + \ self._from_obj[replace_clause_index + 1:] return if left_mapper: for ent in self._entities: if ent.corresponds_to(left): clause = ent.selectable break else: clause = left else: clause = left_selectable assert clause is not None try: clause = orm_join(clause, right, onclause, isouter=outerjoin) except sa_exc.ArgumentError as ae: raise sa_exc.InvalidRequestError( "Could not find a FROM clause to join from. " "Tried joining to %s, but got: %s" % (right, ae)) self._from_obj = self._from_obj + (clause,) def _reset_joinpoint(self): self._joinpoint = self._joinpath self._filter_aliases = None @_generative(_no_statement_condition) def reset_joinpoint(self): """Return a new :class:`.Query`, where the "join point" has been reset back to the base FROM entities of the query. This method is usually used in conjunction with the ``aliased=True`` feature of the :meth:`~.Query.join` method. See the example in :meth:`~.Query.join` for how this is used. """ self._reset_joinpoint() @_generative(_no_clauseelement_condition) def select_from(self, *from_obj): """Set the FROM clause of this :class:`.Query` explicitly. :meth:`.Query.select_from` is often used in conjunction with :meth:`.Query.join` in order to control which entity is selected from on the "left" side of the join. The entity or selectable object here effectively replaces the "left edge" of any calls to :meth:`~.Query.join`, when no joinpoint is otherwise established - usually, the default "join point" is the leftmost entity in the :class:`~.Query` object's list of entities to be selected. A typical example:: q = session.query(Address).select_from(User).\\ join(User.addresses).\\ filter(User.name == 'ed') Which produces SQL equivalent to:: SELECT address.* FROM user JOIN address ON user.id=address.user_id WHERE user.name = :name_1 :param \*from_obj: collection of one or more entities to apply to the FROM clause. Entities can be mapped classes, :class:`.AliasedClass` objects, :class:`.Mapper` objects as well as core :class:`.FromClause` elements like subqueries. .. versionchanged:: 0.9 This method no longer applies the given FROM object to be the selectable from which matching entities select from; the :meth:`.select_entity_from` method now accomplishes this. See that method for a description of this behavior. .. seealso:: :meth:`~.Query.join` :meth:`.Query.select_entity_from` """ self._set_select_from(from_obj, False) @_generative(_no_clauseelement_condition) def select_entity_from(self, from_obj): """Set the FROM clause of this :class:`.Query` to a core selectable, applying it as a replacement FROM clause for corresponding mapped entities. This method is similar to the :meth:`.Query.select_from` method, in that it sets the FROM clause of the query. However, where :meth:`.Query.select_from` only affects what is placed in the FROM, this method also applies the given selectable to replace the FROM which the selected entities would normally select from. The given ``from_obj`` must be an instance of a :class:`.FromClause`, e.g. a :func:`.select` or :class:`.Alias` construct. An example would be a :class:`.Query` that selects ``User`` entities, but uses :meth:`.Query.select_entity_from` to have the entities selected from a :func:`.select` construct instead of the base ``user`` table:: select_stmt = select([User]).where(User.id == 7) q = session.query(User).\\ select_entity_from(select_stmt).\\ filter(User.name == 'ed') The query generated will select ``User`` entities directly from the given :func:`.select` construct, and will be:: SELECT anon_1.id AS anon_1_id, anon_1.name AS anon_1_name FROM (SELECT "user".id AS id, "user".name AS name FROM "user" WHERE "user".id = :id_1) AS anon_1 WHERE anon_1.name = :name_1 Notice above that even the WHERE criterion was "adapted" such that the ``anon_1`` subquery effectively replaces all references to the ``user`` table, except for the one that it refers to internally. Compare this to :meth:`.Query.select_from`, which as of version 0.9, does not affect existing entities. The statement below:: q = session.query(User).\\ select_from(select_stmt).\\ filter(User.name == 'ed') Produces SQL where both the ``user`` table as well as the ``select_stmt`` construct are present as separate elements in the FROM clause. No "adaptation" of the ``user`` table is applied:: SELECT "user".id AS user_id, "user".name AS user_name FROM "user", (SELECT "user".id AS id, "user".name AS name FROM "user" WHERE "user".id = :id_1) AS anon_1 WHERE "user".name = :name_1 :meth:`.Query.select_entity_from` maintains an older behavior of :meth:`.Query.select_from`. In modern usage, similar results can also be achieved using :func:`.aliased`:: select_stmt = select([User]).where(User.id == 7) user_from_select = aliased(User, select_stmt.alias()) q = session.query(user_from_select) :param from_obj: a :class:`.FromClause` object that will replace the FROM clause of this :class:`.Query`. .. seealso:: :meth:`.Query.select_from` .. versionadded:: 0.8 :meth:`.Query.select_entity_from` was added to specify the specific behavior of entity replacement, however the :meth:`.Query.select_from` maintains this behavior as well until 0.9. """ self._set_select_from([from_obj], True) def __getitem__(self, item): if isinstance(item, slice): start, stop, step = util.decode_slice(item) if isinstance(stop, int) and \ isinstance(start, int) and \ stop - start <= 0: return [] # perhaps we should execute a count() here so that we # can still use LIMIT/OFFSET ? elif (isinstance(start, int) and start < 0) \ or (isinstance(stop, int) and stop < 0): return list(self)[item] res = self.slice(start, stop) if step is not None: return list(res)[None:None:item.step] else: return list(res) else: if item == -1: return list(self)[-1] else: return list(self[item:item + 1])[0] @_generative(_no_statement_condition) def slice(self, start, stop): """apply LIMIT/OFFSET to the ``Query`` based on a " "range and return the newly resulting ``Query``.""" if start is not None and stop is not None: self._offset = (self._offset or 0) + start self._limit = stop - start elif start is None and stop is not None: self._limit = stop elif start is not None and stop is None: self._offset = (self._offset or 0) + start if self._offset == 0: self._offset = None @_generative(_no_statement_condition) def limit(self, limit): """Apply a ``LIMIT`` to the query and return the newly resulting ``Query``. """ self._limit = limit @_generative(_no_statement_condition) def offset(self, offset): """Apply an ``OFFSET`` to the query and return the newly resulting ``Query``. """ self._offset = offset @_generative(_no_statement_condition) def distinct(self, *criterion): """Apply a ``DISTINCT`` to the query and return the newly resulting ``Query``. :param \*expr: optional column expressions. When present, the Postgresql dialect will render a ``DISTINCT ON (<expressions>>)`` construct. """ if not criterion: self._distinct = True else: criterion = self._adapt_col_list(criterion) if isinstance(self._distinct, list): self._distinct += criterion else: self._distinct = criterion @_generative() def prefix_with(self, *prefixes): """Apply the prefixes to the query and return the newly resulting ``Query``. :param \*prefixes: optional prefixes, typically strings, not using any commas. In particular is useful for MySQL keywords. e.g.:: query = sess.query(User.name).\\ prefix_with('HIGH_PRIORITY').\\ prefix_with('SQL_SMALL_RESULT', 'ALL') Would render:: SELECT HIGH_PRIORITY SQL_SMALL_RESULT ALL users.name AS users_name FROM users .. versionadded:: 0.7.7 """ if self._prefixes: self._prefixes += prefixes else: self._prefixes = prefixes def all(self): """Return the results represented by this ``Query`` as a list. This results in an execution of the underlying query. """ return list(self) @_generative(_no_clauseelement_condition) def from_statement(self, statement): """Execute the given SELECT statement and return results. This method bypasses all internal statement compilation, and the statement is executed without modification. The statement is typically either a :func:`~.expression.text` or :func:`~.expression.select` construct, and should return the set of columns appropriate to the entity class represented by this :class:`.Query`. .. seealso:: :ref:`orm_tutorial_literal_sql` - usage examples in the ORM tutorial """ statement = expression._expression_literal_as_text(statement) if not isinstance(statement, (expression.TextClause, expression.SelectBase)): raise sa_exc.ArgumentError( "from_statement accepts text(), select(), " "and union() objects only.") self._statement = statement def first(self): """Return the first result of this ``Query`` or None if the result doesn't contain any row. first() applies a limit of one within the generated SQL, so that only one primary entity row is generated on the server side (note this may consist of multiple result rows if join-loaded collections are present). Calling ``first()`` results in an execution of the underlying query. """ if self._statement is not None: ret = list(self)[0:1] else: ret = list(self[0:1]) if len(ret) > 0: return ret[0] else: return None def one(self): """Return exactly one result or raise an exception. Raises ``sqlalchemy.orm.exc.NoResultFound`` if the query selects no rows. Raises ``sqlalchemy.orm.exc.MultipleResultsFound`` if multiple object identities are returned, or if multiple rows are returned for a query that does not return object identities. Note that an entity query, that is, one which selects one or more mapped classes as opposed to individual column attributes, may ultimately represent many rows but only one row of unique entity or entities - this is a successful result for one(). Calling ``one()`` results in an execution of the underlying query. .. versionchanged:: 0.6 ``one()`` fully fetches all results instead of applying any kind of limit, so that the "unique"-ing of entities does not conceal multiple object identities. """ ret = list(self) l = len(ret) if l == 1: return ret[0] elif l == 0: raise orm_exc.NoResultFound("No row was found for one()") else: raise orm_exc.MultipleResultsFound( "Multiple rows were found for one()") def scalar(self): """Return the first element of the first result or None if no rows present. If multiple rows are returned, raises MultipleResultsFound. >>> session.query(Item).scalar() <Item> >>> session.query(Item.id).scalar() 1 >>> session.query(Item.id).filter(Item.id < 0).scalar() None >>> session.query(Item.id, Item.name).scalar() 1 >>> session.query(func.count(Parent.id)).scalar() 20 This results in an execution of the underlying query. """ try: ret = self.one() if not isinstance(ret, tuple): return ret return ret[0] except orm_exc.NoResultFound: return None def __iter__(self): context = self._compile_context() context.statement.use_labels = True if self._autoflush and not self._populate_existing: self.session._autoflush() return self._execute_and_instances(context) def _connection_from_session(self, **kw): conn = self.session.connection( **kw) if self._execution_options: conn = conn.execution_options(**self._execution_options) return conn def _execute_and_instances(self, querycontext): conn = self._connection_from_session( mapper=self._mapper_zero_or_none(), clause=querycontext.statement, close_with_result=True) result = conn.execute(querycontext.statement, self._params) return loading.instances(self, result, querycontext) @property def column_descriptions(self): """Return metadata about the columns which would be returned by this :class:`.Query`. Format is a list of dictionaries:: user_alias = aliased(User, name='user2') q = sess.query(User, User.id, user_alias) # this expression: q.column_descriptions # would return: [ { 'name':'User', 'type':User, 'aliased':False, 'expr':User, }, { 'name':'id', 'type':Integer(), 'aliased':False, 'expr':User.id, }, { 'name':'user2', 'type':User, 'aliased':True, 'expr':user_alias } ] """ return [ { 'name': ent._label_name, 'type': ent.type, 'aliased': getattr(ent, 'is_aliased_class', False), 'expr': ent.expr } for ent in self._entities ] def instances(self, cursor, __context=None): """Given a ResultProxy cursor as returned by connection.execute(), return an ORM result as an iterator. e.g.:: result = engine.execute("select * from users") for u in session.query(User).instances(result): print u """ context = __context if context is None: context = QueryContext(self) return loading.instances(self, cursor, context) def merge_result(self, iterator, load=True): """Merge a result into this :class:`.Query` object's Session. Given an iterator returned by a :class:`.Query` of the same structure as this one, return an identical iterator of results, with all mapped instances merged into the session using :meth:`.Session.merge`. This is an optimized method which will merge all mapped instances, preserving the structure of the result rows and unmapped columns with less method overhead than that of calling :meth:`.Session.merge` explicitly for each value. The structure of the results is determined based on the column list of this :class:`.Query` - if these do not correspond, unchecked errors will occur. The 'load' argument is the same as that of :meth:`.Session.merge`. For an example of how :meth:`~.Query.merge_result` is used, see the source code for the example :ref:`examples_caching`, where :meth:`~.Query.merge_result` is used to efficiently restore state from a cache back into a target :class:`.Session`. """ return loading.merge_result(self, iterator, load) @property def _select_args(self): return { 'limit': self._limit, 'offset': self._offset, 'distinct': self._distinct, 'prefixes': self._prefixes, 'group_by': self._group_by or None, 'having': self._having } @property def _should_nest_selectable(self): kwargs = self._select_args return (kwargs.get('limit') is not None or kwargs.get('offset') is not None or kwargs.get('distinct', False)) def exists(self): """A convenience method that turns a query into an EXISTS subquery of the form EXISTS (SELECT 1 FROM ... WHERE ...). e.g.:: q = session.query(User).filter(User.name == 'fred') session.query(q.exists()) Producing SQL similar to:: SELECT EXISTS ( SELECT 1 FROM users WHERE users.name = :name_1 ) AS anon_1 The EXISTS construct is usually used in the WHERE clause:: session.query(User.id).filter(q.exists()).scalar() Note that some databases such as SQL Server don't allow an EXISTS expression to be present in the columns clause of a SELECT. To select a simple boolean value based on the exists as a WHERE, use :func:`.literal`:: from sqlalchemy import literal session.query(literal(True)).filter(q.exists()).scalar() .. versionadded:: 0.8.1 """ # .add_columns() for the case that we are a query().select_from(X), # so that ".statement" can be produced (#2995) but also without # omitting the FROM clause from a query(X) (#2818); # .with_only_columns() after we have a core select() so that # we get just "SELECT 1" without any entities. return sql.exists(self.add_columns('1').with_labels(). statement.with_only_columns([1])) def count(self): """Return a count of rows this Query would return. This generates the SQL for this Query as follows:: SELECT count(1) AS count_1 FROM ( SELECT <rest of query follows...> ) AS anon_1 .. versionchanged:: 0.7 The above scheme is newly refined as of 0.7b3. For fine grained control over specific columns to count, to skip the usage of a subquery or otherwise control of the FROM clause, or to use other aggregate functions, use :attr:`~sqlalchemy.sql.expression.func` expressions in conjunction with :meth:`~.Session.query`, i.e.:: from sqlalchemy import func # count User records, without # using a subquery. session.query(func.count(User.id)) # return count of user "id" grouped # by "name" session.query(func.count(User.id)).\\ group_by(User.name) from sqlalchemy import distinct # count distinct "name" values session.query(func.count(distinct(User.name))) """ col = sql.func.count(sql.literal_column('*')) return self.from_self(col).scalar() def delete(self, synchronize_session='evaluate'): """Perform a bulk delete query. Deletes rows matched by this query from the database. :param synchronize_session: chooses the strategy for the removal of matched objects from the session. Valid values are: ``False`` - don't synchronize the session. This option is the most efficient and is reliable once the session is expired, which typically occurs after a commit(), or explicitly using expire_all(). Before the expiration, objects may still remain in the session which were in fact deleted which can lead to confusing results if they are accessed via get() or already loaded collections. ``'fetch'`` - performs a select query before the delete to find objects that are matched by the delete query and need to be removed from the session. Matched objects are removed from the session. ``'evaluate'`` - Evaluate the query's criteria in Python straight on the objects in the session. If evaluation of the criteria isn't implemented, an error is raised. In that case you probably want to use the 'fetch' strategy as a fallback. The expression evaluator currently doesn't account for differing string collations between the database and Python. :return: the count of rows matched as returned by the database's "row count" feature. This method has several key caveats: * The method does **not** offer in-Python cascading of relationships - it is assumed that ON DELETE CASCADE/SET NULL/etc. is configured for any foreign key references which require it, otherwise the database may emit an integrity violation if foreign key references are being enforced. After the DELETE, dependent objects in the :class:`.Session` which were impacted by an ON DELETE may not contain the current state, or may have been deleted. This issue is resolved once the :class:`.Session` is expired, which normally occurs upon :meth:`.Session.commit` or can be forced by using :meth:`.Session.expire_all`. Accessing an expired object whose row has been deleted will invoke a SELECT to locate the row; when the row is not found, an :class:`~sqlalchemy.orm.exc.ObjectDeletedError` is raised. * The :meth:`.MapperEvents.before_delete` and :meth:`.MapperEvents.after_delete` events are **not** invoked from this method. Instead, the :meth:`.SessionEvents.after_bulk_delete` method is provided to act upon a mass DELETE of entity rows. .. seealso:: :meth:`.Query.update` :ref:`inserts_and_updates` - Core SQL tutorial """ # TODO: cascades need handling. delete_op = persistence.BulkDelete.factory( self, synchronize_session) delete_op.exec_() return delete_op.rowcount def update(self, values, synchronize_session='evaluate'): """Perform a bulk update query. Updates rows matched by this query in the database. E.g.:: sess.query(User).filter(User.age == 25).\ update({User.age: User.age - 10}, synchronize_session='fetch') sess.query(User).filter(User.age == 25).\ update({"age": User.age - 10}, synchronize_session='evaluate') :param values: a dictionary with attributes names, or alternatively mapped attributes or SQL expressions, as keys, and literal values or sql expressions as values. .. versionchanged:: 1.0.0 - string names in the values dictionary are now resolved against the mapped entity; previously, these strings were passed as literal column names with no mapper-level translation. :param synchronize_session: chooses the strategy to update the attributes on objects in the session. Valid values are: ``False`` - don't synchronize the session. This option is the most efficient and is reliable once the session is expired, which typically occurs after a commit(), or explicitly using expire_all(). Before the expiration, updated objects may still remain in the session with stale values on their attributes, which can lead to confusing results. ``'fetch'`` - performs a select query before the update to find objects that are matched by the update query. The updated attributes are expired on matched objects. ``'evaluate'`` - Evaluate the Query's criteria in Python straight on the objects in the session. If evaluation of the criteria isn't implemented, an exception is raised. The expression evaluator currently doesn't account for differing string collations between the database and Python. :return: the count of rows matched as returned by the database's "row count" feature. This method has several key caveats: * The method does **not** offer in-Python cascading of relationships - it is assumed that ON UPDATE CASCADE is configured for any foreign key references which require it, otherwise the database may emit an integrity violation if foreign key references are being enforced. After the UPDATE, dependent objects in the :class:`.Session` which were impacted by an ON UPDATE CASCADE may not contain the current state; this issue is resolved once the :class:`.Session` is expired, which normally occurs upon :meth:`.Session.commit` or can be forced by using :meth:`.Session.expire_all`. * The method supports multiple table updates, as detailed in :ref:`multi_table_updates`, and this behavior does extend to support updates of joined-inheritance and other multiple table mappings. However, the **join condition of an inheritance mapper is currently not automatically rendered**. Care must be taken in any multiple-table update to explicitly include the joining condition between those tables, even in mappings where this is normally automatic. E.g. if a class ``Engineer`` subclasses ``Employee``, an UPDATE of the ``Engineer`` local table using criteria against the ``Employee`` local table might look like:: session.query(Engineer).\\ filter(Engineer.id == Employee.id).\\ filter(Employee.name == 'dilbert').\\ update({"engineer_type": "programmer"}) * The :meth:`.MapperEvents.before_update` and :meth:`.MapperEvents.after_update` events are **not** invoked from this method. Instead, the :meth:`.SessionEvents.after_bulk_update` method is provided to act upon a mass UPDATE of entity rows. .. seealso:: :meth:`.Query.delete` :ref:`inserts_and_updates` - Core SQL tutorial """ update_op = persistence.BulkUpdate.factory( self, synchronize_session, values) update_op.exec_() return update_op.rowcount def _compile_context(self, labels=True): context = QueryContext(self) if context.statement is not None: return context context.labels = labels context._for_update_arg = self._for_update_arg for entity in self._entities: entity.setup_context(self, context) for rec in context.create_eager_joins: strategy = rec[0] strategy(*rec[1:]) if context.from_clause: # "load from explicit FROMs" mode, # i.e. when select_from() or join() is used context.froms = list(context.from_clause) else: # "load from discrete FROMs" mode, # i.e. when each _MappedEntity has its own FROM context.froms = context.froms if self._enable_single_crit: self._adjust_for_single_inheritance(context) if not context.primary_columns: if self._only_load_props: raise sa_exc.InvalidRequestError( "No column-based properties specified for " "refresh operation. Use session.expire() " "to reload collections and related items.") else: raise sa_exc.InvalidRequestError( "Query contains no columns with which to " "SELECT from.") if context.multi_row_eager_loaders and self._should_nest_selectable: context.statement = self._compound_eager_statement(context) else: context.statement = self._simple_statement(context) return context def _compound_eager_statement(self, context): # for eager joins present and LIMIT/OFFSET/DISTINCT, # wrap the query inside a select, # then append eager joins onto that if context.order_by: order_by_col_expr = list( chain(*[ sql_util.unwrap_order_by(o) for o in context.order_by ]) ) else: context.order_by = None order_by_col_expr = [] inner = sql.select( context.primary_columns + order_by_col_expr, context.whereclause, from_obj=context.froms, use_labels=context.labels, # TODO: this order_by is only needed if # LIMIT/OFFSET is present in self._select_args, # else the application on the outside is enough order_by=context.order_by, **self._select_args ) for hint in self._with_hints: inner = inner.with_hint(*hint) if self._correlate: inner = inner.correlate(*self._correlate) inner = inner.alias() equivs = self.__all_equivs() context.adapter = sql_util.ColumnAdapter(inner, equivs) statement = sql.select( [inner] + context.secondary_columns, use_labels=context.labels) statement._for_update_arg = context._for_update_arg from_clause = inner for eager_join in context.eager_joins.values(): # EagerLoader places a 'stop_on' attribute on the join, # giving us a marker as to where the "splice point" of # the join should be from_clause = sql_util.splice_joins( from_clause, eager_join, eager_join.stop_on) statement.append_from(from_clause) if context.order_by: statement.append_order_by( *context.adapter.copy_and_process( context.order_by ) ) statement.append_order_by(*context.eager_order_by) return statement def _simple_statement(self, context): if not context.order_by: context.order_by = None if self._distinct and context.order_by: order_by_col_expr = list( chain(*[ sql_util.unwrap_order_by(o) for o in context.order_by ]) ) context.primary_columns += order_by_col_expr context.froms += tuple(context.eager_joins.values()) statement = sql.select( context.primary_columns + context.secondary_columns, context.whereclause, from_obj=context.froms, use_labels=context.labels, order_by=context.order_by, **self._select_args ) statement._for_update_arg = context._for_update_arg for hint in self._with_hints: statement = statement.with_hint(*hint) if self._correlate: statement = statement.correlate(*self._correlate) if context.eager_order_by: statement.append_order_by(*context.eager_order_by) return statement def _adjust_for_single_inheritance(self, context): """Apply single-table-inheritance filtering. For all distinct single-table-inheritance mappers represented in the columns clause of this query, add criterion to the WHERE clause of the given QueryContext such that only the appropriate subtypes are selected from the total results. """ for (ext_info, adapter) in set(self._mapper_adapter_map.values()): if ext_info in self._join_entities: continue single_crit = ext_info.mapper._single_table_criterion if single_crit is not None: if adapter: single_crit = adapter.traverse(single_crit) single_crit = self._adapt_clause(single_crit, False, False) context.whereclause = sql.and_( sql.True_._ifnone(context.whereclause), single_crit) def __str__(self): return str(self._compile_context().statement) from ..sql.selectable import ForUpdateArg class LockmodeArg(ForUpdateArg): @classmethod def parse_legacy_query(self, mode): if mode in (None, False): return None if mode == "read": read = True nowait = False elif mode == "update": read = nowait = False elif mode == "update_nowait": nowait = True read = False else: raise sa_exc.ArgumentError( "Unknown with_lockmode argument: %r" % mode) return LockmodeArg(read=read, nowait=nowait) class _QueryEntity(object): """represent an entity column returned within a Query result.""" def __new__(cls, *args, **kwargs): if cls is _QueryEntity: entity = args[1] if not isinstance(entity, util.string_types) and \ _is_mapped_class(entity): cls = _MapperEntity elif isinstance(entity, Bundle): cls = _BundleEntity else: cls = _ColumnEntity return object.__new__(cls) def _clone(self): q = self.__class__.__new__(self.__class__) q.__dict__ = self.__dict__.copy() return q class _MapperEntity(_QueryEntity): """mapper/class/AliasedClass entity""" def __init__(self, query, entity): if not query._primary_entity: query._primary_entity = self query._entities.append(self) self.entities = [entity] self.expr = entity supports_single_entity = True def setup_entity(self, ext_info, aliased_adapter): self.mapper = ext_info.mapper self.aliased_adapter = aliased_adapter self.selectable = ext_info.selectable self.is_aliased_class = ext_info.is_aliased_class self._with_polymorphic = ext_info.with_polymorphic_mappers self._polymorphic_discriminator = \ ext_info.polymorphic_on self.entity_zero = ext_info if ext_info.is_aliased_class: self._label_name = self.entity_zero.name else: self._label_name = self.mapper.class_.__name__ self.path = self.entity_zero._path_registry def set_with_polymorphic(self, query, cls_or_mappers, selectable, polymorphic_on): """Receive an update from a call to query.with_polymorphic(). Note the newer style of using a free standing with_polymporphic() construct doesn't make use of this method. """ if self.is_aliased_class: # TODO: invalidrequest ? raise NotImplementedError( "Can't use with_polymorphic() against " "an Aliased object" ) if cls_or_mappers is None: query._reset_polymorphic_adapter(self.mapper) return mappers, from_obj = self.mapper._with_polymorphic_args( cls_or_mappers, selectable) self._with_polymorphic = mappers self._polymorphic_discriminator = polymorphic_on self.selectable = from_obj query._mapper_loads_polymorphically_with( self.mapper, sql_util.ColumnAdapter( from_obj, self.mapper._equivalent_columns)) filter_fn = id @property def type(self): return self.mapper.class_ @property def entity_zero_or_selectable(self): return self.entity_zero def corresponds_to(self, entity): if entity.is_aliased_class: if self.is_aliased_class: if entity._base_alias is self.entity_zero._base_alias: return True return False elif self.is_aliased_class: if self.entity_zero._use_mapper_path: return entity in self._with_polymorphic else: return entity is self.entity_zero return entity.common_parent(self.entity_zero) def adapt_to_selectable(self, query, sel): query._entities.append(self) def _get_entity_clauses(self, query, context): adapter = None if not self.is_aliased_class: if query._polymorphic_adapters: adapter = query._polymorphic_adapters.get(self.mapper, None) else: adapter = self.aliased_adapter if adapter: if query._from_obj_alias: ret = adapter.wrap(query._from_obj_alias) else: ret = adapter else: ret = query._from_obj_alias return ret def row_processor(self, query, context, result): adapter = self._get_entity_clauses(query, context) if context.adapter and adapter: adapter = adapter.wrap(context.adapter) elif not adapter: adapter = context.adapter # polymorphic mappers which have concrete tables in # their hierarchy usually # require row aliasing unconditionally. if not adapter and self.mapper._requires_row_aliasing: adapter = sql_util.ColumnAdapter( self.selectable, self.mapper._equivalent_columns) if query._primary_entity is self: _instance = loading.instance_processor( self.mapper, context, result, self.path, adapter, only_load_props=query._only_load_props, refresh_state=context.refresh_state, polymorphic_discriminator=self._polymorphic_discriminator ) else: _instance = loading.instance_processor( self.mapper, context, result, self.path, adapter, polymorphic_discriminator=self._polymorphic_discriminator ) return _instance, self._label_name def setup_context(self, query, context): adapter = self._get_entity_clauses(query, context) # if self._adapted_selectable is None: context.froms += (self.selectable,) if context.order_by is False and self.mapper.order_by: context.order_by = self.mapper.order_by # apply adaptation to the mapper's order_by if needed. if adapter: context.order_by = adapter.adapt_list( util.to_list( context.order_by ) ) if self._with_polymorphic: poly_properties = self.mapper._iterate_polymorphic_properties( self._with_polymorphic) else: poly_properties = self.mapper._polymorphic_properties for value in poly_properties: if query._only_load_props and \ value.key not in query._only_load_props: continue value.setup( context, self, self.path, adapter, only_load_props=query._only_load_props, column_collection=context.primary_columns ) if self._polymorphic_discriminator is not None and \ self._polymorphic_discriminator \ is not self.mapper.polymorphic_on: if adapter: pd = adapter.columns[self._polymorphic_discriminator] else: pd = self._polymorphic_discriminator context.primary_columns.append(pd) def __str__(self): return str(self.mapper) @inspection._self_inspects class Bundle(object): """A grouping of SQL expressions that are returned by a :class:`.Query` under one namespace. The :class:`.Bundle` essentially allows nesting of the tuple-based results returned by a column-oriented :class:`.Query` object. It also is extensible via simple subclassing, where the primary capability to override is that of how the set of expressions should be returned, allowing post-processing as well as custom return types, without involving ORM identity-mapped classes. .. versionadded:: 0.9.0 .. seealso:: :ref:`bundles` """ single_entity = False """If True, queries for a single Bundle will be returned as a single entity, rather than an element within a keyed tuple.""" def __init__(self, name, *exprs, **kw): """Construct a new :class:`.Bundle`. e.g.:: bn = Bundle("mybundle", MyClass.x, MyClass.y) for row in session.query(bn).filter( bn.c.x == 5).filter(bn.c.y == 4): print(row.mybundle.x, row.mybundle.y) :param name: name of the bundle. :param \*exprs: columns or SQL expressions comprising the bundle. :param single_entity=False: if True, rows for this :class:`.Bundle` can be returned as a "single entity" outside of any enclosing tuple in the same manner as a mapped entity. """ self.name = self._label = name self.exprs = exprs self.c = self.columns = ColumnCollection() self.columns.update((getattr(col, "key", col._label), col) for col in exprs) self.single_entity = kw.pop('single_entity', self.single_entity) columns = None """A namespace of SQL expressions referred to by this :class:`.Bundle`. e.g.:: bn = Bundle("mybundle", MyClass.x, MyClass.y) q = sess.query(bn).filter(bn.c.x == 5) Nesting of bundles is also supported:: b1 = Bundle("b1", Bundle('b2', MyClass.a, MyClass.b), Bundle('b3', MyClass.x, MyClass.y) ) q = sess.query(b1).filter( b1.c.b2.c.a == 5).filter(b1.c.b3.c.y == 9) .. seealso:: :attr:`.Bundle.c` """ c = None """An alias for :attr:`.Bundle.columns`.""" def _clone(self): cloned = self.__class__.__new__(self.__class__) cloned.__dict__.update(self.__dict__) return cloned def __clause_element__(self): return expression.ClauseList(group=False, *self.c) @property def clauses(self): return self.__clause_element__().clauses def label(self, name): """Provide a copy of this :class:`.Bundle` passing a new label.""" cloned = self._clone() cloned.name = name return cloned def create_row_processor(self, query, procs, labels): """Produce the "row processing" function for this :class:`.Bundle`. May be overridden by subclasses. .. seealso:: :ref:`bundles` - includes an example of subclassing. """ keyed_tuple = util.lightweight_named_tuple('result', labels) def proc(row): return keyed_tuple([proc(row) for proc in procs]) return proc class _BundleEntity(_QueryEntity): def __init__(self, query, bundle, setup_entities=True): query._entities.append(self) self.bundle = self.expr = bundle self.type = type(bundle) self._label_name = bundle.name self._entities = [] if setup_entities: for expr in bundle.exprs: if isinstance(expr, Bundle): _BundleEntity(self, expr) else: _ColumnEntity(self, expr, namespace=self) self.entities = () self.filter_fn = lambda item: item self.supports_single_entity = self.bundle.single_entity @property def entity_zero(self): for ent in self._entities: ezero = ent.entity_zero if ezero is not None: return ezero else: return None def corresponds_to(self, entity): # TODO: this seems to have no effect for # _ColumnEntity either return False @property def entity_zero_or_selectable(self): for ent in self._entities: ezero = ent.entity_zero_or_selectable if ezero is not None: return ezero else: return None def adapt_to_selectable(self, query, sel): c = _BundleEntity(query, self.bundle, setup_entities=False) # c._label_name = self._label_name # c.entity_zero = self.entity_zero # c.entities = self.entities for ent in self._entities: ent.adapt_to_selectable(c, sel) def setup_entity(self, ext_info, aliased_adapter): for ent in self._entities: ent.setup_entity(ext_info, aliased_adapter) def setup_context(self, query, context): for ent in self._entities: ent.setup_context(query, context) def row_processor(self, query, context, result): procs, labels = zip( *[ent.row_processor(query, context, result) for ent in self._entities] ) proc = self.bundle.create_row_processor(query, procs, labels) return proc, self._label_name class _ColumnEntity(_QueryEntity): """Column/expression based entity.""" def __init__(self, query, column, namespace=None): self.expr = column self.namespace = namespace if isinstance(column, util.string_types): column = sql.literal_column(column) self._label_name = column.name elif isinstance(column, ( attributes.QueryableAttribute, interfaces.PropComparator )): self._label_name = column.key column = column._query_clause_element() else: self._label_name = getattr(column, 'key', None) if not isinstance(column, expression.ColumnElement) and \ hasattr(column, '_select_iterable'): for c in column._select_iterable: if c is column: break _ColumnEntity(query, c, namespace=column) else: return elif isinstance(column, Bundle): _BundleEntity(query, column) return if not isinstance(column, sql.ColumnElement): raise sa_exc.InvalidRequestError( "SQL expression, column, or mapped entity " "expected - got '%r'" % (column, ) ) self.type = type_ = column.type if type_.hashable: self.filter_fn = lambda item: item else: counter = util.counter() self.filter_fn = lambda item: counter() # If the Column is unnamed, give it a # label() so that mutable column expressions # can be located in the result even # if the expression's identity has been changed # due to adaption. if not column._label and not getattr(column, 'is_literal', False): column = column.label(self._label_name) query._entities.append(self) self.column = column self.froms = set() # look for ORM entities represented within the # given expression. Try to count only entities # for columns whose FROM object is in the actual list # of FROMs for the overall expression - this helps # subqueries which were built from ORM constructs from # leaking out their entities into the main select construct self.actual_froms = actual_froms = set(column._from_objects) self.entities = util.OrderedSet( elem._annotations['parententity'] for elem in visitors.iterate(column, {}) if 'parententity' in elem._annotations and actual_froms.intersection(elem._from_objects) ) if self.entities: self.entity_zero = list(self.entities)[0] elif self.namespace is not None: self.entity_zero = self.namespace else: self.entity_zero = None supports_single_entity = False @property def entity_zero_or_selectable(self): if self.entity_zero is not None: return self.entity_zero elif self.actual_froms: return list(self.actual_froms)[0] else: return None def adapt_to_selectable(self, query, sel): c = _ColumnEntity(query, sel.corresponding_column(self.column)) c._label_name = self._label_name c.entity_zero = self.entity_zero c.entities = self.entities def setup_entity(self, ext_info, aliased_adapter): if 'selectable' not in self.__dict__: self.selectable = ext_info.selectable self.froms.add(ext_info.selectable) def corresponds_to(self, entity): # TODO: just returning False here, # no tests fail if self.entity_zero is None: return False elif _is_aliased_class(entity): # TODO: polymorphic subclasses ? return entity is self.entity_zero else: return not _is_aliased_class(self.entity_zero) and \ entity.common_parent(self.entity_zero) def _resolve_expr_against_query_aliases(self, query, expr, context): return query._adapt_clause(expr, False, True) def row_processor(self, query, context, result): column = self._resolve_expr_against_query_aliases( query, self.column, context) if context.adapter: column = context.adapter.columns[column] getter = result._getter(column) return getter, self._label_name def setup_context(self, query, context): column = self._resolve_expr_against_query_aliases( query, self.column, context) context.froms += tuple(self.froms) context.primary_columns.append(column) def __str__(self): return str(self.column) class QueryContext(object): multi_row_eager_loaders = False adapter = None froms = () for_update = None def __init__(self, query): if query._statement is not None: if isinstance(query._statement, expression.SelectBase) and \ not query._statement._textual and \ not query._statement.use_labels: self.statement = query._statement.apply_labels() else: self.statement = query._statement else: self.statement = None self.from_clause = query._from_obj self.whereclause = query._criterion self.order_by = query._order_by self.query = query self.session = query.session self.populate_existing = query._populate_existing self.invoke_all_eagers = query._invoke_all_eagers self.version_check = query._version_check self.refresh_state = query._refresh_state self.primary_columns = [] self.secondary_columns = [] self.eager_order_by = [] self.eager_joins = {} self.create_eager_joins = [] self.propagate_options = set(o for o in query._with_options if o.propagate_to_loaders) self.attributes = query._attributes.copy() class AliasOption(interfaces.MapperOption): def __init__(self, alias): """Return a :class:`.MapperOption` that will indicate to the :class:`.Query` that the main table has been aliased. This is a seldom-used option to suit the very rare case that :func:`.contains_eager` is being used in conjunction with a user-defined SELECT statement that aliases the parent table. E.g.:: # define an aliased UNION called 'ulist' ulist = users.select(users.c.user_id==7).\\ union(users.select(users.c.user_id>7)).\\ alias('ulist') # add on an eager load of "addresses" statement = ulist.outerjoin(addresses).\\ select().apply_labels() # create query, indicating "ulist" will be an # alias for the main table, "addresses" # property should be eager loaded query = session.query(User).options( contains_alias(ulist), contains_eager(User.addresses)) # then get results via the statement results = query.from_statement(statement).all() :param alias: is the string name of an alias, or a :class:`~.sql.expression.Alias` object representing the alias. """ self.alias = alias def process_query(self, query): if isinstance(self.alias, util.string_types): alias = query._mapper_zero().mapped_table.alias(self.alias) else: alias = self.alias query._from_obj_alias = sql_util.ColumnAdapter(alias)
36.305412
84
0.594135
[ "MIT" ]
slafs/sqlalchemy
lib/sqlalchemy/orm/query.py
133,495
Python
#!/usr/bin/env python # license removed for brevity import rospy, tf, socket, sys, struct from geometry_msgs.msg import PoseStamped topic = "/mocap_client/ARBI/pose" UDP_IP = "10.201.0.100" UDP_PORT = 21444 def callback(data): x = data.pose.position.x y = data.pose.position.y z = data.pose.position.z qx = data.pose.orientation.x qy = data.pose.orientation.y qz = data.pose.orientation.z qw = data.pose.orientation.w timestamp = data.header.seq MESSAGE = struct.pack('ddddddd',x,y,z,qx,qy,qz,qw) sock.sendto(MESSAGE, (UDP_IP, UDP_PORT)) def talker(): global sock rospy.init_node('mocap_2_udp', anonymous=True) sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP rospy.Subscriber(topic, PoseStamped, callback) rospy.spin() if __name__ == '__main__': try: talker() except rospy.ROSInterruptException: pass
21.431818
54
0.663839
[ "MIT" ]
alfalcmar/grvc-utils
mocap_bridge/scripts/mocap2udp.py
943
Python
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from unittest import skipUnless import numpy as np from numpy.testing import assert_array_equal from parameterized import parameterized from monai.apps.pathology.data import PatchWSIDataset from monai.apps.utils import download_url from monai.utils import optional_import _cucim, has_cim = optional_import("cucim") has_cim = has_cim and hasattr(_cucim, "CuImage") _, has_osl = optional_import("openslide") FILE_URL = "https://drive.google.com/uc?id=1sGTKZlJBIz53pfqTxoTqiIQzIoEzHLAe" base_name, extension = FILE_URL.split("id=")[1], ".tiff" FILE_PATH = os.path.join(os.path.dirname(__file__), "testing_data", "temp_" + base_name + extension) TEST_CASE_0 = [ { "data": [{"image": FILE_PATH, "location": [0, 0], "label": [1]}], "region_size": (1, 1), "grid_shape": (1, 1), "patch_size": 1, "image_reader_name": "cuCIM", }, [{"image": np.array([[[239]], [[239]], [[239]]], dtype=np.uint8), "label": np.array([[[1]]])}], ] TEST_CASE_1 = [ { "data": [{"image": FILE_PATH, "location": [10004, 20004], "label": [0, 0, 0, 1]}], "region_size": (8, 8), "grid_shape": (2, 2), "patch_size": 1, "image_reader_name": "cuCIM", }, [ {"image": np.array([[[247]], [[245]], [[248]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[245]], [[247]], [[244]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[246]], [[246]], [[246]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[246]], [[246]], [[246]]], dtype=np.uint8), "label": np.array([[[1]]])}, ], ] TEST_CASE_2 = [ { "data": [{"image": FILE_PATH, "location": [0, 0], "label": [1]}], "region_size": 1, "grid_shape": 1, "patch_size": 1, "image_reader_name": "cuCIM", }, [{"image": np.array([[[239]], [[239]], [[239]]], dtype=np.uint8), "label": np.array([[[1]]])}], ] TEST_CASE_3 = [ { "data": [{"image": FILE_PATH, "location": [0, 0], "label": [[[0, 1], [1, 0]]]}], "region_size": 1, "grid_shape": 1, "patch_size": 1, "image_reader_name": "cuCIM", }, [{"image": np.array([[[239]], [[239]], [[239]]], dtype=np.uint8), "label": np.array([[[0, 1], [1, 0]]])}], ] TEST_CASE_OPENSLIDE_0 = [ { "data": [{"image": FILE_PATH, "location": [0, 0], "label": [1]}], "region_size": (1, 1), "grid_shape": (1, 1), "patch_size": 1, "image_reader_name": "OpenSlide", }, [{"image": np.array([[[239]], [[239]], [[239]]], dtype=np.uint8), "label": np.array([[[1]]])}], ] TEST_CASE_OPENSLIDE_1 = [ { "data": [{"image": FILE_PATH, "location": [10004, 20004], "label": [0, 0, 0, 1]}], "region_size": (8, 8), "grid_shape": (2, 2), "patch_size": 1, "image_reader_name": "OpenSlide", }, [ {"image": np.array([[[247]], [[245]], [[248]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[245]], [[247]], [[244]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[246]], [[246]], [[246]]], dtype=np.uint8), "label": np.array([[[0]]])}, {"image": np.array([[[246]], [[246]], [[246]]], dtype=np.uint8), "label": np.array([[[1]]])}, ], ] class TestPatchWSIDataset(unittest.TestCase): def setUp(self): download_url(FILE_URL, FILE_PATH, "5a3cfd4fd725c50578ddb80b517b759f") @parameterized.expand([TEST_CASE_0, TEST_CASE_1, TEST_CASE_2, TEST_CASE_3]) @skipUnless(has_cim, "Requires CuCIM") def test_read_patches_cucim(self, input_parameters, expected): dataset = PatchWSIDataset(**input_parameters) samples = dataset[0] for i in range(len(samples)): self.assertTupleEqual(samples[i]["label"].shape, expected[i]["label"].shape) self.assertTupleEqual(samples[i]["image"].shape, expected[i]["image"].shape) self.assertIsNone(assert_array_equal(samples[i]["label"], expected[i]["label"])) self.assertIsNone(assert_array_equal(samples[i]["image"], expected[i]["image"])) @parameterized.expand([TEST_CASE_OPENSLIDE_0, TEST_CASE_OPENSLIDE_1]) @skipUnless(has_osl, "Requires OpenSlide") def test_read_patches_openslide(self, input_parameters, expected): dataset = PatchWSIDataset(**input_parameters) samples = dataset[0] for i in range(len(samples)): self.assertTupleEqual(samples[i]["label"].shape, expected[i]["label"].shape) self.assertTupleEqual(samples[i]["image"].shape, expected[i]["image"].shape) self.assertIsNone(assert_array_equal(samples[i]["label"], expected[i]["label"])) self.assertIsNone(assert_array_equal(samples[i]["image"], expected[i]["image"])) if __name__ == "__main__": unittest.main()
39.753623
110
0.594969
[ "Apache-2.0" ]
LarcoScarsa/MONAI
tests/test_patch_wsi_dataset.py
5,486
Python
from currency_exchanger.currencies.models import Currency from currency_exchanger.wallets.models import Wallet from django.db import models class Stock(models.Model): symbol = models.CharField(max_length=10) currency = models.ForeignKey(Currency, on_delete=models.CASCADE, related_name="stocks") price = models.DecimalField(decimal_places=2, max_digits=10) def __str__(self): return self.symbol class WalletStock(models.Model): wallet = models.ForeignKey(Wallet, on_delete=models.CASCADE) stocks = models.ForeignKey(Stock, on_delete=models.CASCADE) count = models.PositiveIntegerField(default=0) class Meta: constraints = [ models.UniqueConstraint(fields=["wallet", "stocks"], name="unique_wallet_stock") ] class StockTransfer(models.Model): wallet = models.ForeignKey(Wallet, on_delete=models.CASCADE, related_name="stock_transfers") stock = models.ForeignKey(Stock, on_delete=models.CASCADE, related_name="+") amount = models.IntegerField() class StockHistory(models.Model): stocks = models.ForeignKey(Stock, on_delete=models.CASCADE, related_name="history") timestamp = models.DateTimeField(auto_now_add=True) price = models.DecimalField(decimal_places=2, max_digits=10) class Meta: ordering = ["-timestamp"]
34.025641
96
0.740769
[ "MIT" ]
norbertcyran/currency-exchanger
backend/currency_exchanger/stocks/models.py
1,327
Python
from datetime import date, datetime from typing import Any, Dict, List, Literal, Optional from pydantic import BaseModel, Field class BadRequestResponse(BaseModel): """The client called the endpoint incorrectly.""" detail: str = Field( ..., description="A human-readable summary of the client error.", example="No identifiers provided, at least one is needed.", ) class NotFoundResponse(BaseModel): """No existing record was found for the indentifier.""" detail: str = Field( ..., description="A human-readable summary of the issue.", example="Unknown contact_id", )
25.84
68
0.668731
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
Takuya-Miyazaki/ctms-api
ctms/schemas/web.py
646
Python
import re from epcpy.epc_schemes.base_scheme import EPCScheme from epcpy.utils.common import ConvertException from epcpy.utils.regex import BIC_URI BIC_URI_REGEX = re.compile(BIC_URI) class BIC(EPCScheme): """BIC EPC scheme implementation. BIC pure identities are of the form: urn:epc:id:bic:<BICcontainerCode> Example: urn:epc:id:bic:CSQU3054383 This class can be created using EPC pure identities via its constructor """ def __init__(self, epc_uri) -> None: super().__init__() if not BIC_URI_REGEX.fullmatch(epc_uri): raise ConvertException(message=f"Invalid BIC URI {epc_uri}") self.epc_uri = epc_uri container_code = epc_uri.split(":")[4] self._container_code = container_code self._owner_code = container_code[0:3] self._equipment_category_identifier = container_code[3] self._serial = container_code[4:10] self._check_digit = container_code[10]
26.675676
75
0.694022
[ "MIT" ]
nedap/retail-epcpy
epcpy/epc_schemes/bic.py
987
Python
""" Time series analysis functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import inspect import functools import glob import numpy as np import os import weakref from functools import wraps from yt.extern.six import add_metaclass, string_types from yt.convenience import load from yt.config import ytcfg from yt.data_objects.data_containers import data_object_registry from yt.data_objects.derived_quantities import \ derived_quantity_registry from yt.data_objects.analyzer_objects import \ create_quantity_proxy, \ analysis_task_registry, \ AnalysisTask from yt.data_objects.particle_trajectories import \ ParticleTrajectories from yt.funcs import \ iterable, \ ensure_list, \ mylog from yt.units.yt_array import YTArray, YTQuantity from yt.utilities.exceptions import \ YTException, \ YTOutputNotIdentified from yt.utilities.parallel_tools.parallel_analysis_interface \ import parallel_objects, parallel_root_only, communication_system from yt.utilities.parameter_file_storage import \ simulation_time_series_registry class AnalysisTaskProxy(object): def __init__(self, time_series): self.time_series = time_series def __getitem__(self, key): task_cls = analysis_task_registry[key] @wraps(task_cls.__init__) def func(*args, **kwargs): task = task_cls(*args, **kwargs) return self.time_series.eval(task) return func def keys(self): return analysis_task_registry.keys() def __contains__(self, key): return key in analysis_task_registry def get_ds_prop(propname): def _eval(params, ds): return getattr(ds, propname) cls = type(propname, (AnalysisTask,), dict(eval = _eval, _params = tuple())) return cls def get_filenames_from_glob_pattern(filenames): file_list = glob.glob(filenames) if len(file_list) == 0: data_dir = ytcfg.get("yt", "test_data_dir") pattern = os.path.join(data_dir, filenames) td_filenames = glob.glob(pattern) if len(td_filenames) > 0: file_list = td_filenames else: raise YTOutputNotIdentified(filenames, {}) return sorted(file_list) attrs = ("refine_by", "dimensionality", "current_time", "domain_dimensions", "domain_left_edge", "domain_right_edge", "unique_identifier", "current_redshift", "cosmological_simulation", "omega_matter", "omega_lambda", "omega_radiation", "hubble_constant") class TimeSeriesParametersContainer(object): def __init__(self, data_object): self.data_object = data_object def __getattr__(self, attr): if attr in attrs: return self.data_object.eval(get_ds_prop(attr)()) raise AttributeError(attr) class DatasetSeries(object): r"""The DatasetSeries object is a container of multiple datasets, allowing easy iteration and computation on them. DatasetSeries objects are designed to provide easy ways to access, analyze, parallelize and visualize multiple datasets sequentially. This is primarily expressed through iteration, but can also be constructed via analysis tasks (see :ref:`time-series-analysis`). Parameters ---------- filenames : list or pattern This can either be a list of filenames (such as ["DD0001/DD0001", "DD0002/DD0002"]) or a pattern to match, such as "DD*/DD*.index"). If it's the former, they will be loaded in order. The latter will be identified with the glob module and then sorted. parallel : True, False or int This parameter governs the behavior when .piter() is called on the resultant DatasetSeries object. If this is set to False, the time series will not iterate in parallel when .piter() is called. If this is set to either True, one processor will be allocated for each iteration of the loop. If this is set to an integer, the loop will be parallelized over this many workgroups. It the integer value is less than the total number of available processors, more than one processor will be allocated to a given loop iteration, causing the functionality within the loop to be run in parallel. setup_function : callable, accepts a ds This function will be called whenever a dataset is loaded. mixed_dataset_types : True or False, default False Set to True if the DatasetSeries will load different dataset types, set to False if loading dataset of a single type as this will result in a considerable speed up from not having to figure out the dataset type. Examples -------- >>> ts = DatasetSeries( "GasSloshingLowRes/sloshing_low_res_hdf5_plt_cnt_0[0-6][0-9]0") >>> for ds in ts: ... SlicePlot(ds, "x", "Density").save() ... >>> def print_time(ds): ... print ds.current_time ... >>> ts = DatasetSeries( ... "GasSloshingLowRes/sloshing_low_res_hdf5_plt_cnt_0[0-6][0-9]0", ... setup_function = print_time) ... >>> for ds in ts: ... SlicePlot(ds, "x", "Density").save() """ def __new__(cls, outputs, *args, **kwargs): if isinstance(outputs, string_types): outputs = get_filenames_from_glob_pattern(outputs) ret = super(DatasetSeries, cls).__new__(cls) try: ret._pre_outputs = outputs[:] except TypeError: raise YTOutputNotIdentified(outputs, {}) return ret def __init__(self, outputs, parallel = True, setup_function = None, mixed_dataset_types = False, **kwargs): # This is needed to properly set _pre_outputs for Simulation subclasses. self._mixed_dataset_types = mixed_dataset_types if iterable(outputs) and not isinstance(outputs, string_types): self._pre_outputs = outputs[:] self.tasks = AnalysisTaskProxy(self) self.params = TimeSeriesParametersContainer(self) if setup_function is None: setup_function = lambda a: None self._setup_function = setup_function for type_name in data_object_registry: setattr(self, type_name, functools.partial( DatasetSeriesObject, self, type_name)) self.parallel = parallel self.kwargs = kwargs def __iter__(self): # We can make this fancier, but this works for o in self._pre_outputs: if isinstance(o, string_types): ds = self._load(o, **self.kwargs) self._setup_function(ds) yield ds else: yield o def __getitem__(self, key): if isinstance(key, slice): if isinstance(key.start, float): return self.get_range(key.start, key.stop) # This will return a sliced up object! return DatasetSeries(self._pre_outputs[key], self.parallel) o = self._pre_outputs[key] if isinstance(o, string_types): o = self._load(o, **self.kwargs) self._setup_function(o) return o def __len__(self): return len(self._pre_outputs) @property def outputs(self): return self._pre_outputs def piter(self, storage = None, dynamic = False): r"""Iterate over time series components in parallel. This allows you to iterate over a time series while dispatching individual components of that time series to different processors or processor groups. If the parallelism strategy was set to be multi-processor (by "parallel = N" where N is an integer when the DatasetSeries was created) this will issue each dataset to an N-processor group. For instance, this would allow you to start a 1024 processor job, loading up 100 datasets in a time series and creating 8 processor groups of 128 processors each, each of which would be assigned a different dataset. This could be accomplished as shown in the examples below. The *storage* option is as seen in :func:`~yt.utilities.parallel_tools.parallel_analysis_interface.parallel_objects` which is a mechanism for storing results of analysis on an individual dataset and then combining the results at the end, so that the entire set of processors have access to those results. Note that supplying a *store* changes the iteration mechanism; see below. Parameters ---------- storage : dict This is a dictionary, which will be filled with results during the course of the iteration. The keys will be the dataset indices and the values will be whatever is assigned to the *result* attribute on the storage during iteration. dynamic : boolean This governs whether or not dynamic load balancing will be enabled. This requires one dedicated processor; if this is enabled with a set of 128 processors available, only 127 will be available to iterate over objects as one will be load balancing the rest. Examples -------- Here is an example of iteration when the results do not need to be stored. One processor will be assigned to each dataset. >>> ts = DatasetSeries("DD*/DD*.index") >>> for ds in ts.piter(): ... SlicePlot(ds, "x", "Density").save() ... This demonstrates how one might store results: >>> def print_time(ds): ... print ds.current_time ... >>> ts = DatasetSeries("DD*/DD*.index", ... setup_function = print_time ) ... >>> my_storage = {} >>> for sto, ds in ts.piter(storage=my_storage): ... v, c = ds.find_max("density") ... sto.result = (v, c) ... >>> for i, (v, c) in sorted(my_storage.items()): ... print "% 4i %0.3e" % (i, v) ... This shows how to dispatch 4 processors to each dataset: >>> ts = DatasetSeries("DD*/DD*.index", ... parallel = 4) >>> for ds in ts.piter(): ... ProjectionPlot(ds, "x", "Density").save() ... """ if self.parallel is False: njobs = 1 elif dynamic is False: if self.parallel is True: njobs = -1 else: njobs = self.parallel else: my_communicator = communication_system.communicators[-1] nsize = my_communicator.size if nsize == 1: self.parallel = False dynamic = False njobs = 1 else: njobs = nsize - 1 for output in parallel_objects(self._pre_outputs, njobs=njobs, storage=storage, dynamic=dynamic): if storage is not None: sto, output = output if isinstance(output, string_types): ds = self._load(output, **self.kwargs) self._setup_function(ds) else: ds = output if storage is not None: next_ret = (sto, ds) else: next_ret = ds yield next_ret def eval(self, tasks, obj=None): tasks = ensure_list(tasks) return_values = {} for store, ds in self.piter(return_values): store.result = [] for task in tasks: try: style = inspect.getargspec(task.eval)[0][1] if style == 'ds': arg = ds elif style == 'data_object': if obj is None: obj = DatasetSeriesObject(self, "all_data") arg = obj.get(ds) rv = task.eval(arg) # We catch and store YT-originating exceptions # This fixes the standard problem of having a sphere that's too # small. except YTException: pass store.result.append(rv) return [v for k, v in sorted(return_values.items())] @classmethod def from_filenames(cls, filenames, parallel = True, setup_function = None, **kwargs): r"""Create a time series from either a filename pattern or a list of filenames. This method provides an easy way to create a :class:`~yt.data_objects.time_series.DatasetSeries`, given a set of filenames or a pattern that matches them. Additionally, it can set the parallelism strategy. Parameters ---------- filenames : list or pattern This can either be a list of filenames (such as ["DD0001/DD0001", "DD0002/DD0002"]) or a pattern to match, such as "DD*/DD*.index"). If it's the former, they will be loaded in order. The latter will be identified with the glob module and then sorted. parallel : True, False or int This parameter governs the behavior when .piter() is called on the resultant DatasetSeries object. If this is set to False, the time series will not iterate in parallel when .piter() is called. If this is set to either True or an integer, it will be iterated with 1 or that integer number of processors assigned to each parameter file provided to the loop. setup_function : callable, accepts a ds This function will be called whenever a dataset is loaded. Examples -------- >>> def print_time(ds): ... print ds.current_time ... >>> ts = DatasetSeries.from_filenames( ... "GasSloshingLowRes/sloshing_low_res_hdf5_plt_cnt_0[0-6][0-9]0", ... setup_function = print_time) ... >>> for ds in ts: ... SlicePlot(ds, "x", "Density").save() """ if isinstance(filenames, string_types): filenames = get_filenames_from_glob_pattern(filenames) # This will crash with a less informative error if filenames is not # iterable, but the plural keyword should give users a clue... for fn in filenames: if not isinstance(fn, string_types): raise YTOutputNotIdentified("DataSeries accepts a list of " "strings, but " "received {0}".format(fn)) obj = cls(filenames[:], parallel = parallel, setup_function = setup_function, **kwargs) return obj @classmethod def from_output_log(cls, output_log, line_prefix = "DATASET WRITTEN", parallel = True): filenames = [] for line in open(output_log): if not line.startswith(line_prefix): continue cut_line = line[len(line_prefix):].strip() fn = cut_line.split()[0] filenames.append(fn) obj = cls(filenames, parallel = parallel) return obj _dataset_cls = None def _load(self, output_fn, **kwargs): if self._dataset_cls is not None: return self._dataset_cls(output_fn, **kwargs) elif self._mixed_dataset_types: return load(output_fn, **kwargs) ds = load(output_fn, **kwargs) self._dataset_cls = ds.__class__ return ds def particle_trajectories(self, indices, fields=None, suppress_logging=False, ptype=None): r"""Create a collection of particle trajectories in time over a series of datasets. Parameters ---------- indices : array_like An integer array of particle indices whose trajectories we want to track. If they are not sorted they will be sorted. fields : list of strings, optional A set of fields that is retrieved when the trajectory collection is instantiated. Default: None (will default to the fields 'particle_position_x', 'particle_position_y', 'particle_position_z') suppress_logging : boolean Suppress yt's logging when iterating over the simulation time series. Default: False ptype : str, optional Only use this particle type. Default: None, which uses all particle type. Examples -------- >>> my_fns = glob.glob("orbit_hdf5_chk_00[0-9][0-9]") >>> my_fns.sort() >>> fields = ["particle_position_x", "particle_position_y", >>> "particle_position_z", "particle_velocity_x", >>> "particle_velocity_y", "particle_velocity_z"] >>> ds = load(my_fns[0]) >>> init_sphere = ds.sphere(ds.domain_center, (.5, "unitary")) >>> indices = init_sphere["particle_index"].astype("int") >>> ts = DatasetSeries(my_fns) >>> trajs = ts.particle_trajectories(indices, fields=fields) >>> for t in trajs : >>> print t["particle_velocity_x"].max(), t["particle_velocity_x"].min() Note ---- This function will fail if there are duplicate particle ids or if some of the particle disappear. """ return ParticleTrajectories(self, indices, fields=fields, suppress_logging=suppress_logging, ptype=ptype) class TimeSeriesQuantitiesContainer(object): def __init__(self, data_object, quantities): self.data_object = data_object self.quantities = quantities def __getitem__(self, key): if key not in self.quantities: raise KeyError(key) q = self.quantities[key] def run_quantity_wrapper(quantity, quantity_name): @wraps(derived_quantity_registry[quantity_name][1]) def run_quantity(*args, **kwargs): to_run = quantity(*args, **kwargs) return self.data_object.eval(to_run) return run_quantity return run_quantity_wrapper(q, key) class DatasetSeriesObject(object): def __init__(self, time_series, data_object_name, *args, **kwargs): self.time_series = weakref.proxy(time_series) self.data_object_name = data_object_name self._args = args self._kwargs = kwargs qs = dict([(qn, create_quantity_proxy(qv)) for qn, qv in derived_quantity_registry.items()]) self.quantities = TimeSeriesQuantitiesContainer(self, qs) def eval(self, tasks): return self.time_series.eval(tasks, self) def get(self, ds): # We get the type name, which corresponds to an attribute of the # index cls = getattr(ds, self.data_object_name) return cls(*self._args, **self._kwargs) class RegisteredSimulationTimeSeries(type): def __init__(cls, name, b, d): type.__init__(cls, name, b, d) code_name = name[:name.find('Simulation')] if code_name: simulation_time_series_registry[code_name] = cls mylog.debug("Registering simulation: %s as %s", code_name, cls) @add_metaclass(RegisteredSimulationTimeSeries) class SimulationTimeSeries(DatasetSeries): def __init__(self, parameter_filename, find_outputs=False): """ Base class for generating simulation time series types. Principally consists of a *parameter_filename*. """ if not os.path.exists(parameter_filename): raise IOError(parameter_filename) self.parameter_filename = parameter_filename self.basename = os.path.basename(parameter_filename) self.directory = os.path.dirname(parameter_filename) self.parameters = {} self.key_parameters = [] # Set some parameter defaults. self._set_parameter_defaults() # Read the simulation dataset. self._parse_parameter_file() # Set units self._set_units() # Figure out the starting and stopping times and redshift. self._calculate_simulation_bounds() # Get all possible datasets. self._get_all_outputs(find_outputs=find_outputs) self.print_key_parameters() def _set_parameter_defaults(self): pass def _parse_parameter_file(self): pass def _set_units(self): pass def _calculate_simulation_bounds(self): pass def _get_all_outputs(**kwargs): pass def __repr__(self): return self.parameter_filename _arr = None @property def arr(self): if self._arr is not None: return self._arr self._arr = functools.partial(YTArray, registry = self.unit_registry) return self._arr _quan = None @property def quan(self): if self._quan is not None: return self._quan self._quan = functools.partial(YTQuantity, registry = self.unit_registry) return self._quan @parallel_root_only def print_key_parameters(self): """ Print out some key parameters for the simulation. """ if self.simulation_type == "grid": for a in ["domain_dimensions", "domain_left_edge", "domain_right_edge"]: self._print_attr(a) for a in ["initial_time", "final_time", "cosmological_simulation"]: self._print_attr(a) if getattr(self, "cosmological_simulation", False): for a in ["box_size", "omega_matter", "omega_lambda", "omega_radiation", "hubble_constant", "initial_redshift", "final_redshift"]: self._print_attr(a) for a in self.key_parameters: self._print_attr(a) mylog.info("Total datasets: %d." % len(self.all_outputs)) def _print_attr(self, a): """ Print the attribute or warn about it missing. """ if not hasattr(self, a): mylog.error("Missing %s in dataset definition!", a) return v = getattr(self, a) mylog.info("Parameters: %-25s = %s", a, v) def _get_outputs_by_key(self, key, values, tolerance=None, outputs=None): r""" Get datasets at or near to given values. Parameters ---------- key: str The key by which to retrieve outputs, usually 'time' or 'redshift'. values: array_like A list of values, given as floats. tolerance : float If not None, do not return a dataset unless the value is within the tolerance value. If None, simply return the nearest dataset. Default: None. outputs : list The list of outputs from which to choose. If None, self.all_outputs is used. Default: None. Examples -------- >>> datasets = es.get_outputs_by_key('redshift', [0, 1, 2], tolerance=0.1) """ if not isinstance(values, YTArray): if isinstance(values, tuple) and len(values) == 2: values = self.arr(*values) else: values = self.arr(values) values = values.in_base() if outputs is None: outputs = self.all_outputs my_outputs = [] if not outputs: return my_outputs for value in values: outputs.sort(key=lambda obj:np.abs(value - obj[key])) if (tolerance is None or np.abs(value - outputs[0][key]) <= tolerance) \ and outputs[0] not in my_outputs: my_outputs.append(outputs[0]) else: mylog.error("No dataset added for %s = %f.", key, value) outputs.sort(key=lambda obj: obj['time']) return my_outputs
37.576687
100
0.601102
[ "BSD-3-Clause-Clear" ]
edilberto100/yt
yt/data_objects/time_series.py
24,500
Python
from core.attack.attack import Attack import random import os import re import sys import json try: from lxml import etree except ImportError: print("Failed to import ElementTree from any known place") sys.exit(0) try: from bs4 import UnicodeDammit # BeautifulSoup 4 def decode_html(html_string): converted = UnicodeDammit(html_string) if not converted.unicode_markup: raise UnicodeDecodeError( "Failed to detect encoding, tried [%s]", ', '.join(converted.tried_encodings)) return converted.unicode_markup except ImportError: from BeautifulSoup import UnicodeDammit # BeautifulSoup 3 def decode_html(html_string): converted = UnicodeDammit(html_string, isHTML=True) if not converted.unicode: raise UnicodeDecodeError( "Failed to detect encoding, tried [%s]", ', '.join(converted.triedEncodings)) return converted.unicode class mod_unfilter(Attack): """This class implements a unfilter vulnerabilities generator.""" name = "unfilter" payloads = [] settings = {} highest = 1 index = random.randint(0, highest) CONFIG_FILE = "unfilterPayloads.txt" require = [] PRIORITY = 5 def __init__(self, fp=None): Attack.__init__(self, fp) self.fd = open(os.path.join(self.CONFIG_DIR, self.name, self.CONFIG_FILE), "r+") self.payloads = json.load(self.fd) def generateHandler(self, tree_node=None, o=None, elem=None): if elem['type'] != "text": o[int(elem['lineno']) - 1] = re.sub(r'(.*){0}(.*)'.format(elem['identifier']), lambda m: "{0}{1}{2}".format(m.group(1), self.payloads['payloads'][ self.payloads['revisable']][self.index]['vector'].format(elem['identifier'].replace(' ', '_')), m.group(2)), o[int(elem['lineno']) - 1], flags=re.IGNORECASE) if elem['report'] is not None: self.settings['key'].append( elem['identifier'].replace(' ', '_')) self.settings['value'].append('Boik') else: o[int(elem['lineno']) - 1] = re.sub(r'(.*){0}\s*([a-z!\.\?]+)(.*)'.format(elem['identifier']), lambda m: "{0}{1} {2}{3}".format(m.group(1), elem['identifier'], self.payloads[ 'payloads'][self.payloads['revisable']][self.index]['vector'].format(elem['identifier'].replace(' ', '_')), m.group(3)), o[int(elem['lineno']) - 1], flags=re.IGNORECASE) if elem['report'] is not None: self.settings['key'].append( elem['identifier'].replace(' ', '_')) self.settings['value'].append('Boik') def doJob(self, http_res, backend, dbms, parent=None): """This method do a Job.""" self.payloads[ 'revisable'] = 'True' if self.doReturn is False else 'False' self.settings = self.generate_payloads(http_res, parent=parent) return self.settings def study(self, etree_node, entries=None, lines=None, parent=None): for identifier in self.payloads['identifiers']["{0}".format(parent if (parent is not None and parent in self.payloads['identifiers']) else "others")]: tmp_id = identifier.split('->') (report, identifier) = (tmp_id[0], tmp_id[1]) if len( tmp_id) == 2 else (None, tmp_id[0]) found_node = etree_node.xpath("//*[@*[re:test(., '{0}', 'i')] or @*[re:test(name(.), '{0}', 'i')] or re:test(local-name(),'{0}', 'i') or text()[re:test(., '{0}', 'i')]]".format( identifier), namespaces={'re': "http://exslt.org/regular-expressions"}) if found_node is not None and len(found_node) != 0: for node in found_node: if identifier in node.tag: if self.verbose: self.logY("Found in tag name {0}".format(node.tag)) d = {"type": "tag", "value": node.tag, "lineno": node.text.strip( ), "identifier": identifier, "report": report} if d not in entries: if self.verbose: self.logY("\t{0}".format(d)) entries.append(d) elif node.text is not None and identifier in node.text: if self.verbose: self.logY( "Found in text, tag {0}".format(node.tag)) d = {"type": "text", "parent": node.tag, "lineno": node.getprevious().text.strip() if node.getprevious( ) is not None else node.getparent().getprevious().text.strip(), "identifier": identifier, "report": report} if d not in entries: if self.verbose: self.logY("\t{0}".format(d)) entries.append(d) for k, v in node.attrib.iteritems(): if identifier in v: if self.verbose: self.logY( "Found in attribute value {0} of tag {1}".format(k, node.tag)) d = {"type": "attrval", "name": k, "tag": node.tag, "lineno": node.getprevious( ).text.strip(), "identifier": identifier, "report": report} if d not in entries: if self.verbose: self.logY("\t{0}".format(d)) entries.append(d) if identifier in k: if self.verbose: self.logY( "Found in attribute name {0} of tag {1}".format(k, node.tag)) d = {"type": "attrname", "name": k, "tag": node.tag, "lineno": node.getprevious( ).text.strip(), "identifier": identifier, "report": report} if d not in entries: if self.verbose: self.logY("\t{0}".format(d)) entries.append(d) found_node = etree_node.xpath("//comment()[re:test(., '{0}', 'i')]".format( identifier), namespaces={'re': "http://exslt.org/regular-expressions"}) if found_node is not None and len(found_node) != 0: for node in found_node: if self.verbose: self.logY( "Found in comment, content: \"{0}\"".format(node)) d = {"type": "comment", "lineno": (node.getparent().getprevious().text.strip()) if (node.getprevious( ) is None) else (node.getprevious().text.strip()), "identifier": identifier, "report": report} if d not in entries: if self.verbose: self.logY("\t{0}".format(d)) entries.append(d) # Generate payloads based on what situations we met. def generate_payloads(self, html_code, parent=None): e = [] o = [] l = [] for index, line in enumerate(html_code.splitlines(), 1): o.append(line) l.append("<!-- {0} -->{1}".format(index, line)) tree = etree.HTML(decode_html("\n".join(l))).getroottree() self.study(tree, entries=e, lines=l, parent=parent) self.settings = {"key": [], "value": [], "html": "", "extra": {}, "warning": [], "error": []} for elem in e: # <a href="inject_point"></a> if elem['type'] == "attrval": found_node = etree.HTML(l[int(elem['lineno']) - 1]).xpath("//*[@*[re:test(., '{0}', 'i')]]".format( elem['identifier']), namespaces={'re': "http://exslt.org/regular-expressions"}) if len(found_node) == 1: self.generateHandler(tree_node=tree, o=o, elem=elem) # <a inject_point="test"> elif elem['type'] == "attrname": found_node = etree.HTML(l[int(elem['lineno']) - 1]).xpath("//*[@*[re:test(name(.), '{0}', 'i')]]".format( elem['identifier']), namespaces={'re': "http://exslt.org/regular-expressions"}) if len(found_node) == 1: self.generateHandler(tree_node=tree, o=o, elem=elem) # <inject_point name="test" /> elif elem['type'] == "tag": found_node = etree.HTML(l[int(elem['lineno']) - 1]).xpath("//*[re:test(local-name(), '{0}', 'i')]".format( elem['identifier']), namespaces={'re': "http://exslt.org/regular-expressions"}) if len(found_node) == 1: self.generateHandler(tree_node=tree, o=o, elem=elem) # <span>inject_point</span> elif elem['type'] == "text": found_node = etree.HTML( l[int(elem['lineno']) - 1]).xpath("//*[text()]") if len(found_node) == 1: self.generateHandler(tree_node=tree, o=o, elem=elem) # <!-- inject_point --> elif elem['type'] == "comment": try: found_node = etree.HTML( l[int(elem['lineno']) - 1]).xpath("//*[comment()]") except: found_node = etree.HTML("{0}{1}{2}".format("<div>", l[int(elem['lineno']) - 1], "</div>")).xpath( "//comment()[re:test(., '{0}', 'i')]".format(elem['identifier']), namespaces={'re': "http://exslt.org/regular-expressions"}) if len(found_node) == 1: self.generateHandler(tree_node=tree, o=o, elem=elem) self.settings['html'] = "\n".join(o) if not self.settings['warning']: self.settings.pop('warning', None) if not self.settings['error']: self.settings.pop('error', None) return self.settings
51.17
189
0.496385
[ "Apache-2.0" ]
qazbnm456/VWGen
core/attack/mod_unfilter.py
10,234
Python
import os, os.path import shutil from play.utils import * COMMANDS = ['idealize', 'idea'] HELP = { 'idealize': 'Create all IntelliJ Idea configuration files' } def execute(**kargs): command = kargs.get("command") app = kargs.get("app") args = kargs.get("args") play_env = kargs.get("env") app.check() modules = app.modules() classpath = app.getClasspath() application_name = app.readConf('application.name') imlFile = os.path.join(app.path, application_name + '.iml') shutil.copyfile(os.path.join(play_env["basedir"], 'resources/idea/imlTemplate.xml'), imlFile) cpXML = "" replaceAll(imlFile, r'%PLAYHOME%', play_env["basedir"].replace('\\', '/')) if len(modules): lXML = "" cXML = "" for module in modules: lXML += ' <content url="file://%s">\n <sourceFolder url="file://%s" isTestSource="false" />\n </content>\n' % (module, os.path.join(module, 'app').replace('\\', '/')) replaceAll(imlFile, r'%LINKS%', lXML) else: replaceAll(imlFile, r'%LINKS%', '') print "~ OK, the application is ready for Intellij Idea" print "~ Use File/New Module/Import Existing module" print "~"
29.731707
189
0.607875
[ "MIT" ]
ericlink/adms-server
playframework-dist/1.1-src/framework/pym/play/commands/intellij.py
1,219
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 23 10:11:14 2018 @author: magalidrumare @ copyright https://github.com/fchollet/deep-learning-with-python-notebooks """ # Use of a pre-trained convnet : VGG16 # An effective approach to deep learning on small image dataset is to leverage a pre-trained network # A saved network trained on a large dataset for classification task. # -> ImageNet (1.4 million labeled images and 1000 different classes),VGG, ResNet, INception, Xception, etc... # Part 1-Take the convolutional base of a previous trained network and running the data throught it # Part 2- Train a new classifier on top of the output # Why not reuse the classifier on the top? # ->The representation learned by the classifier is specific to the set of classes the model was trained on. # ->The densely connected layer no longer contain any information about where the object are located. # Representation extracted by specific convolution layers depends on the depth of the layer in the model # layers that comes earlier in the model extract generic feature maps : edges, lolor, textures # layers higher-up extract abstract concepts : cat ear, dog eye. # Part 1-Take the convolutional base of a previous trained network import keras # Instantiate the VGG16 model # include_top=false not include the top of the network. from keras.applications import VGG16 conv_base=VGG16(weights='imagenet', include_top=false, input_shape=(150,150,3)) conv_base.summary() #-> the final feature map has shape (4,4,512) #-> that the features on the top of which we stick a densely-connected classifier. # Part 1......and running the data throught it # Extract features from theses images calling the predicted methods of the conv_base model # import the dataset import os import numpy as np from keras.preprocessing.image import ImageDataGenerator # à modifier base_dir = '/Users/fchollet/Downloads/cats_and_dogs_small' train_dir = os.path.join(base_dir, 'train') validation_dir = os.path.join(base_dir, 'validation') test_dir = os.path.join(base_dir, 'test') datagen = ImageDataGenerator(rescale=1./255) batch_size = 20 # Create extract features function def extract_features(directory, sample_count): # 4, 4, 512 -> the final feature map of conv_base has shape (4,4,512) features = np.zeros(shape=(sample_count, 4, 4, 512)) labels = np.zeros(shape=(sample_count)) # pre-processing of the images with datagen.flow_from_directory generator = datagen.flow_from_directory( directory, target_size=(150, 150), batch_size=batch_size, class_mode='binary') i = 0 for inputs_batch, labels_batch in generator: # extract the features from the conv_base with conv_base.predict features_batch = conv_base.predict(inputs_batch) features[i * batch_size : (i + 1) * batch_size] = features_batch labels[i * batch_size : (i + 1) * batch_size] = labels_batch i += 1 if i * batch_size >= sample_count: # Note that since generators yield data indefinitely in a loop, # we must `break` after every image has been seen once. break return features, labels # Apply extractct feature function to the training, test, validation images dataset. train_features, train_labels = extract_features(train_dir, 2000) validation_features, validation_labels = extract_features(validation_dir, 1000) test_features, test_labels = extract_features(test_dir, 1000) # shape of the extracted features (samples, 4, 4 , 512) # -> must be flattened to (samples, 8192) train_features = np.reshape(train_features, (2000, 4 * 4 * 512)) validation_features = np.reshape(validation_features, (1000, 4 * 4 * 512)) test_features = np.reshape(test_features, (1000, 4 * 4 * 512)) # Part 2- Train a new classifier on top of the output from keras import models from keras import layers from keras import optimizers model = models.Sequential() model.add(layers.Dense(256, activation='relu', input_dim=4 * 4 * 512)) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.compile(optimizer=optimizers.RMSprop(lr=2e-5), loss='binary_crossentropy', metrics=['acc']) history = model.fit(train_features, train_labels, epochs=30, batch_size=20, validation_data=(validation_features, validation_labels))
37.22314
110
0.720693
[ "MIT" ]
MagaliDrumare/How-to-learn-Keras-Deep-Learning-with-Python-book-
08_PreTrainedConvNet.py
4,505
Python
import seaborn as sns import pandas as pd import matplotlib.pyplot as plt import json import os """ Using the plotter: Call it from the command line, and supply it with logdirs to experiments. Suppose you ran an experiment with name 'test', and you ran 'test' for 10 random seeds. The runner code stored it in the directory structure data L test_EnvName_DateTime L 0 L log.txt L params.json L 1 L log.txt L params.json . . . L 9 L log.txt L params.json To plot learning curves from the experiment, averaged over all random seeds, call python plot.py data/test_EnvName_DateTime --value AverageReturn and voila. To see a different statistics, change what you put in for the keyword --value. You can also enter /multiple/ values, and it will make all of them in order. Suppose you ran two experiments: 'test1' and 'test2'. In 'test2' you tried a different set of hyperparameters from 'test1', and now you would like to compare them -- see their learning curves side-by-side. Just call python plot.py data/test1 data/test2 and it will plot them both! They will be given titles in the legend according to their exp_name parameters. If you want to use custom legend titles, use the --legend flag and then provide a title for each logdir. """ def plot_data(data, value="AverageReturn"): if isinstance(data, list): data = pd.concat(data, ignore_index=True) sns.set(style="darkgrid", font_scale=1.5) # print(data) sns.tsplot(data=data, time="Iteration", value=value, unit="Unit", condition="Condition") plt.legend(loc='best').draggable() plt.show() def get_datasets(fpath, condition=None): unit = 0 datasets = [] for root, dir, files in os.walk(fpath): if 'log.txt' in files: param_path = open(os.path.join(root, 'params.json')) params = json.load(param_path) exp_name = params['exp_name'] log_path = os.path.join(root, 'log.txt') experiment_data = pd.read_table(log_path) experiment_data.insert( len(experiment_data.columns), 'Unit', unit ) experiment_data.insert( len(experiment_data.columns), 'Condition', condition or exp_name ) datasets.append(experiment_data) unit += 1 return datasets def main(): import argparse parser = argparse.ArgumentParser() parser.add_argument('logdir', nargs='*') parser.add_argument('--legend', nargs='*') parser.add_argument('--value', default='AverageReturn', nargs='*') args = parser.parse_args() use_legend = False if args.legend is not None: assert len(args.legend) == len(args.logdir), \ "Must give a legend title for each set of experiments." use_legend = True data = [] if use_legend: for logdir, legend_title in zip(args.logdir, args.legend): data += get_datasets(logdir, legend_title) else: for logdir in args.logdir: data += get_datasets(logdir) if isinstance(args.value, list): values = args.value else: values = [args.value] for value in values: plot_data(data, value=value) if __name__ == "__main__": main()
28.616667
92
0.629004
[ "MIT" ]
tiagokv/drlberkeley
hw2/plot.py
3,434
Python
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-02 22:29 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('database', '0037_auto_20170901_0917'), ] operations = [ migrations.RenameModel( old_name='Company', new_name='CompanySettings', ), ]
20.3
48
0.625616
[ "MIT" ]
ACLARKNET/aclarknet-database
aclarknet/database/migrations/0038_auto_20170902_1829.py
406
Python
print("Hello nader from python") num = 101 if (num % 2) == 0: print("{0} is Even number".format(num)) else: print("{0} is Odd number".format(num))
17.444444
43
0.605096
[ "MIT" ]
mickknutson/SITE_BOOTCAMP_QA
StudentWork/Nader/python/main.py
157
Python
# Distributed under the MIT License. # See LICENSE.txt for details. from spectre.Visualization.GenerateXdmf import generate_xdmf import spectre.Informer as spectre_informer import unittest import os # For Py2 compatibility try: unittest.TestCase.assertRaisesRegex except AttributeError: unittest.TestCase.assertRaisesRegex = unittest.TestCase.assertRaisesRegexp class TestGenerateXdmf(unittest.TestCase): def test_generate_xdmf(self): data_file_prefix = os.path.join(spectre_informer.unit_test_path(), 'Visualization/Python', 'VolTestData') output_filename = 'Test_GenerateXdmf_output' if os.path.isfile(output_filename + '.xmf'): os.remove(output_filename + '.xmf') generate_xdmf(file_prefix=data_file_prefix, output=output_filename, subfile_name="element_data", start_time=0., stop_time=1., stride=1, coordinates='InertialCoordinates') # The script is quite opaque right now, so we only test that we can run # it and it produces output without raising an error. To test more # details, we should refactor the script into smaller units. self.assertTrue(os.path.isfile(output_filename + '.xmf')) os.remove(output_filename + '.xmf') def test_subfile_not_found(self): data_file_prefix = os.path.join(spectre_informer.unit_test_path(), 'Visualization/Python', 'VolTestData') output_filename = 'Test_GenerateXdmf_subfile_not_found' if os.path.isfile(output_filename + '.xmf'): os.remove(output_filename + '.xmf') with self.assertRaisesRegex(ValueError, 'Could not open subfile'): generate_xdmf(file_prefix=data_file_prefix, output=output_filename, subfile_name="unknown_subfile", start_time=0., stop_time=1., stride=1, coordinates='InertialCoordinates') if __name__ == '__main__': unittest.main(verbosity=2)
38.672414
79
0.617477
[ "MIT" ]
Ambrou/spectre
tests/Unit/Visualization/Python/Test_GenerateXdmf.py
2,243
Python
#!/usr/bin/python # -*- coding: utf-8 -*- # Pint integration helpers # (C) 2016 VRT Systems # from pint import UnitRegistry HAYSTACK_CONVERSION = [ (u'_', ' '), (u'°','deg'), (u'per ', '/ '), (u'per_h','per_hour'), (u'Δ','delta_'), (u'meters','meter'), (u'liters','liter'), (u'gallons','gallon'), (u'millimeters','millimeter'), (u'centimeters','centimeter'), (u'H₂O', 'H2O'), (u'Volt', 'volt'), (u'grams', 'gram'), (u'tons refrigeration', 'refrigeration_ton'), (u'%', 'percent'), (u'degree kelvin','degK'), (u'degree celsius','degC'), (u'degree farenheit','degF'), (u'pound force', 'pound_force'), (u'metric ton', 'metric_ton'), (u'fluid ounce', 'fluid_ounce'), (u'imperial gallon','imperial_gallon'), (u'galUK','UK_gallon'), (u'kgdegK','(kg degK)'), (u'tonrefh','refrigeration_ton * hour'), (u'tonref','refrigeration_ton'), (u'Nm ', 'newton meter'), (u'Ns', 'newton second'), (u'Js', 'joule second'), (u'short ton', 'short_ton'), (u'degrees angular', 'deg'), (u'degrees phase', 'deg'), (u'degPh', 'deg'), (u'yr','year '), (u'atmosphere', 'atm'), (u'mo','month '), (u'wk','week '), (u'parts / unit','ppu'), (u'parts / million','ppm'), (u'parts / billion','ppb'), (u'kcfm','kilocfm'), (u'kilohm','kiloohm'), (u'megohm','megaohm'), (u'volt ampere reactive', 'VAR'), (u'kilovolt ampere reactive', 'kVAR'), (u'megavolt ampere reactive', 'MVAR'), (u'VAh', 'volt * ampere * hour'), (u'kVAh', 'kilovolt * ampere * hour'), (u'MVAh', 'megavolt * ampere * hour'), (u'VARh', 'VAR * hour'), (u'kVARh', 'kVAR * hour'), (u'MVARh', 'MVAR * hour'), (u'hph', 'horsepower * hour'), (u'energy efficiency ratio', 'EER'), (u'coefficient of performance', 'COP'), (u'data center infrastructure efficiency', 'DCIE'), (u'power usage effectiveness', 'PUE'), (u'formazin nephelometric unit', 'fnu'), (u'nephelometric turbidity units', 'ntu'), (u'dBµV', 'dB microvolt'), (u'dBmV', 'dB millivolt'), (u'db','dB'), (u'Am', 'A * m'), (u'percent relative humidity', 'percentRH'), (u'pf', 'PF'), (u'power factor', 'PF'), (u'gH2O','g H2O'), (u'irradiance',''), (u'irr',''), (u'dry air', 'dry'), (u'dry', 'dry_air'), (u'kgAir','kg dry_air'), (u'percent obscuration', 'percentobsc'), (u'natural gas', ''), (u'Ωm', 'ohm meter'), (u'hecto cubic foot', 'hecto_cubic_foot'), (u'julian month','month'), (u'tenths second', 'tenths_second'), (u'hundredths second', 'hundredths_second'), (u'australian dollar','australian_dollar'), (u'british pound','british_pound'), (u'canadian dollar','canadian_dollar'), (u'chinese yuan','chinese_yuan'), (u'emerati dirham','emerati_dirham'), (u'indian rupee','indian_rupee'), (u'japanese yen','japanese_yen'), (u'russian ruble','russian_ruble'), (u'south korean won','south_korean_won'), (u'swedish krona','swedish_krona'), (u'swiss franc','swiss_franc'), (u'taiwan dollar','taiwan_dollar'), (u'us dollar','us_dollar'), (u'new israeli shekel','new_israeli_shekel'), (u'delta_K', 'delta_degC'), (u'delta degK', 'delta_degC'), (u'delta degC', 'delta_degC'), (u'delta degF', 'delta_degF'), (u'$', 'USD'), (u'£', 'GBP'), (u'元', 'CNY'), (u'€', 'EUR'), (u'₹', 'INR'), (u'¥', 'JPY'), (u'₩', 'KRW'), (u'of','') ] PINT_CONVERSION = [ (u'foot ** 3', 'cubic_foot'), (u'/','per'), (u'hectofoot ** 3','hecto_cubic_foot'), (u'meter ** 3','cubic_meter'), (u'Volt_per','volts_per'), (u'°ree','degree') ] def to_haystack(unit): """ Some parsing tweaks to fit pint units / handling of edge cases. """ global HAYSTACK_CONVERSION global PINT_CONVERSION if unit == u'per_minute' or \ unit == u'/min' or \ unit == u'per_second' or \ unit == u'/s' or \ unit == u'per_hour' or \ unit == u'/h' or \ unit == None: return u'' # Those units are not units... they are impossible to fit anywhere in Pint for pint_value, haystack_value in PINT_CONVERSION: unit = unit.replace(pint_value, haystack_value) for haystack_value, pint_value in HAYSTACK_CONVERSION: if pint_value == u'': continue unit = unit.replace(pint_value, haystack_value) return unit def to_pint(unit): """ Some parsing tweaks to fit pint units / handling of edge cases. """ global HAYSTACK_CONVERSION if unit == u'per_minute' or \ unit == u'/min' or \ unit == u'per_second' or \ unit == u'/s' or \ unit == u'per_hour' or \ unit == u'/h' or \ unit == None: return '' # Those units are not units... they are impossible to fit anywhere in Pint for haystack_value, pint_value in HAYSTACK_CONVERSION: unit = unit.replace(haystack_value, pint_value) return unit def define_haystack_units(): """ Missing units found in project-haystack Added to the registry """ ureg = UnitRegistry(on_redefinition='ignore') ureg.define(u'% = [] = percent') ureg.define(u'pixel = [] = px = dot = picture_element = pel') ureg.define(u'decibel = [] = dB') ureg.define(u'ppu = [] = parts_per_unit') ureg.define(u'ppm = [] = parts_per_million') ureg.define(u'ppb = [] = parts_per_billion') ureg.define(u'%RH = [] = percent_relative_humidity = percentRH') ureg.define(u'cubic_feet = ft ** 3 = cu_ft') ureg.define(u'cfm = cu_ft * minute = liter_per_second / 0.4719475') ureg.define(u'cfh = cu_ft * hour') ureg.define(u'cfs = cu_ft * second') ureg.define(u'VAR = volt * ampere') ureg.define(u'kVAR = 1000 * volt * ampere') ureg.define(u'MVAR = 1000000 * volt * ampere') ureg.define(u'inH2O = in_H2O') ureg.define(u'dry_air = []') ureg.define(u'gas = []') ureg.define(u'energy_efficiency_ratio = [] = EER') ureg.define(u'coefficient_of_performance = [] = COP') ureg.define(u'data_center_infrastructure_efficiency = [] = DCIE') ureg.define(u'power_usage_effectiveness = [] = PUE') ureg.define(u'formazin_nephelometric_unit = [] = fnu') ureg.define(u'nephelometric_turbidity_units = [] = ntu') ureg.define(u'power_factor = [] = PF') ureg.define(u'degree_day_celsius = [] = degdaysC') ureg.define(u'degree_day_farenheit = degree_day_celsius * 9 / 5 = degdaysF') ureg.define(u'footcandle = lumen / sq_ft = ftcd') ureg.define(u'Nm = newton * meter') ureg.define(u'%obsc = [] = percent_obscuration = percentobsc') ureg.define(u'cycle = []') ureg.define(u'cph = cycle / hour') ureg.define(u'cpm = cycle / minute') ureg.define(u'cps = cycle / second') ureg.define(u'hecto_cubic_foot = 100 * cubic_foot') ureg.define(u'tenths_second = second / 10') ureg.define(u'hundredths_second = second / 100') #ureg.define('irradiance = W / sq_meter = irr') # In the definition of project haystack, there's a redundancy as irr = W/m^2 # no need to use : watts_per_square_meter_irradiance # CURRENCY # I know...we won'T be able to convert right now ! ureg.define(u'australian_dollar = [] = AUD') ureg.define(u'british_pound = [] = GBP = £') ureg.define(u'canadian_dollar = [] = CAD') ureg.define(u'chinese_yuan = [] = CNY = 元') ureg.define(u'emerati_dirham = [] = AED') ureg.define(u'euro = [] = EUR = €') ureg.define(u'indian_rupee = [] = INR = ₹') ureg.define(u'japanese_yen = [] = JPY = ¥') ureg.define(u'russian_ruble = [] = RUB = руб') ureg.define(u'south_korean_won = [] = KRW = ₩') ureg.define(u'swedish_krona = [] = SEK = kr') ureg.define(u'swiss_franc = [] = CHF = Fr') ureg.define(u'taiwan_dollar = [] = TWD') ureg.define(u'us_dollar = [] = USD = $') ureg.define(u'new_israeli_shekel = [] = NIS') return ureg
42.012766
82
0.474526
[ "BSD-2-Clause" ]
clarsen/hszinc
hszinc/pintutil.py
9,903
Python
""" .. _Line-api: **Line** --- Spectral line metadata. ------------------------------------ This module defines the Line class for LINE entries in BDPs. """ # system imports import xml.etree.cElementTree as et # ADMIT imports import bdp_types as bt from UtilBase import UtilBase class Line(UtilBase): """ Class for holding information on a specific spectral line. Parameters ---------- keyval : dict Dictionary of keyword:value pairs. Attributes ---------- name : str Name of the molecule/atom. Default: "". uid : str Unique identifier for the transition. Default: "". formula : str The chemical formula. Default: "". transition : str The transition/quantum number information. Default: "". energies : 2 element list List of the lower and upper state energies of the transition. Default: [0.0, 0.0]. energyunits : str Units of the upper/lower state energy. Default: K. linestrength : float The line strength of the transition. Default: 0.0. lsunits : str The units of the line strength. Default: "Debye^2". frequency : float The frequency of the transition. Default: 0.0. funits : str The units of the frequency. Default: "GHz". blend : int If this molecule is blended with others. Value of 0 means no blending any other value gives the index of the blend. Default: 0 (no blending). """ def __init__(self, **keyval): self.name = "" self.uid = "" self.formula = "" self.transition = "" self.energies = [0.0, 0.0] self.energyunits = "K" self.linestrength = 0.0 self.lsunits = "Debye^2" self.frequency = 0.0 self.funits = "GHz" self.blend = 0 UtilBase.__init__(self, **keyval) def setupperenergy(self, value): """ Method to set the upper state energy. Parameters ---------- value : float The value to set the upper state energy to. Returns ------- None """ if isinstance(value, float) : self.energies[1] = value elif isinstance(value, int) : self.energies[1] = float(value) else : raise Exception("Energy must be a number") def setlowerenergy(self, value): """ Method to set the lower state energy. Parameters ---------- value : float The value to set the lower state energy to. Returns ------- None """ if isinstance(value, float) : self.energies[0] = value elif isinstance(value, int) : self.energies[0] = float(value) else : raise Exception("Energy must be a number") def getlowerenergy(self) : """ Method to get the lower state energy. Parameters ---------- None Returns ------- Float of the lower state energy. """ return self.energies[0] def getupperenergy(self): """ Method to get the upper state energy. Parameters ---------- None Returns ------- Float of the upper state energy. """ return self.energies[1] def setkey(self, name="", value=""): """ set keys, two styles are possible: 1. name = {key:val} e.g. **setkey({"a":1})** 2. name = "key", value = val e.g. **setkey("a", 1)** This method checks the type of the keyword value, as it must remain the same. Also new keywords cannot be added. Parameters ---------- name : dictionary or string Dictionary of keyword value pais to set or a string with the name of a single key value : any The value to change the keyword to Returns ------- None """ if isinstance(name, dict): for k, v in name.iteritems(): if hasattr(self, k): if type(v) == type(getattr(self, k)): if k == "energies" and not isinstance(v, list) and len(v) != 2: raise Exception("Energies must be a list in the format [lower, upper], use setupperenergy or setlowerenergy to set them individually.") setattr(self, k, v) else: raise Exception("Cannot change data type for %s, expected %s but got %s" % (k, str(type(getattr(self, k))), str(type(v)))) else: raise Exception("Invalid key given to Line class: %s" % (k)) elif not name == "": if hasattr(self, name): if type(value) == type(getattr(self, name)): if name == "energies" and not isinstance(value, list) and len(value) != 2: raise Exception("Energies must be a list in the format [lower, upper], use setupperenergy or setlowerenergy to set them individually.") setattr(self, name, value) else: raise Exception("Cannot change data type for %s, expected %s but got %s" % (name, str(type(getattr(self, name))), str(type(value)))) else: raise Exception("Invalid key given to Line class: %s" % (name)) else: raise Exception("Invalid name parameter given, it must be a string or a dictionary of keys:values.") def isequal(self, line): """ Experimental method to compare 2 line classes Parameters ---------- line : Line The class to compare this one to. Returns ------- Boolean whether or not the two classes contain the same data. """ try: for i in self.__dict__: if cmp(getattr(self, i), getattr(line, i)) != 0: return False except: return False return True
29.813636
163
0.495197
[ "MIT" ]
astroumd/admit
admit/util/Line.py
6,559
Python
algorithm='hc' env_class='UnityMLVector' model_class='SingleLayerPerceptron' environment = { 'name': 'compiled_unity_environments/Banana.app' } model = { 'state_size': 37, 'action_size': 4 } agent = { 'action_size': 4, 'policy': 'stochastic' } train = { 'n_episodes': 2000, 'solve_score': 13.0, 'npop': 6 }
14.291667
52
0.629738
[ "MIT" ]
danielnbarbosa/angela
cfg/unity/banana/banana_hc.py
343
Python
from functools import partial from typing import List, Optional, Sequence, cast import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd from kartothek.core.typing import StoreFactory from kartothek.io.dask.compression import pack_payload, unpack_payload_pandas from kartothek.io_components.metapartition import MetaPartition from kartothek.io_components.write import write_partition from kartothek.serialization import DataFrameSerializer _KTK_HASH_BUCKET = "__KTK_HASH_BUCKET" def _hash_bucket(df: pd.DataFrame, subset: Optional[Sequence[str]], num_buckets: int): """ Categorize each row of `df` based on the data in the columns `subset` into `num_buckets` values. This is based on `pandas.util.hash_pandas_object` """ if not subset: subset = df.columns hash_arr = pd.util.hash_pandas_object(df[subset], index=False) buckets = hash_arr % num_buckets available_bit_widths = np.array([8, 16, 32, 64]) mask = available_bit_widths > np.log2(num_buckets) bit_width = min(available_bit_widths[mask]) return df.assign(**{_KTK_HASH_BUCKET: buckets.astype(f"uint{bit_width}")}) def shuffle_store_dask_partitions( ddf: dd.DataFrame, table: str, secondary_indices: List[str], metadata_version: int, partition_on: List[str], store_factory: StoreFactory, df_serializer: Optional[DataFrameSerializer], dataset_uuid: str, num_buckets: int, sort_partitions_by: List[str], bucket_by: Sequence[str], ) -> da.Array: """ Perform a dataset update with dask reshuffling to control partitioning. The shuffle operation will perform the following steps 1. Pack payload data Payload data is serialized and compressed into a single byte value using ``distributed.protocol.serialize_bytes``, see also ``pack_payload``. 2. Apply bucketing Hash the column subset ``bucket_by`` and distribute the hashes in ``num_buckets`` bins/buckets. Internally every bucket is identified by an integer and we will create one physical file for every bucket ID. The bucket ID is not exposed to the user and is dropped after the shuffle, before the store. This is done since we do not want to guarantee at the moment, that the hash function remains stable. 3. Perform shuffle (dask.DataFrame.groupby.apply) The groupby key will be the combination of ``partition_on`` fields and the hash bucket ID. This will create a physical file for every unique tuple in ``partition_on + bucket_ID``. The function which is applied to the dataframe will perform all necessary subtask for storage of the dataset (partition_on, index calc, etc.). 4. Unpack data (within the apply-function) After the shuffle, the first step is to unpack the payload data since the follow up tasks will require the full dataframe. 5. Pre storage processing and parquet serialization We apply important pre storage processing like sorting data, applying final partitioning (at this time there should be only one group in the payload data but using the ``MetaPartition.partition_on`` guarantees the appropriate data structures kartothek expects are created.). After the preprocessing is done, the data is serialized and stored as parquet. The applied function will return an (empty) MetaPartition with indices and metadata which will then be used to commit the dataset. Returns ------- A dask.Array holding relevant MetaPartition objects as values """ if ddf.npartitions == 0: return ddf group_cols = partition_on.copy() if num_buckets is None: raise ValueError("``num_buckets`` must not be None when shuffling data.") meta = ddf._meta meta[_KTK_HASH_BUCKET] = np.uint64(0) ddf = ddf.map_partitions(_hash_bucket, bucket_by, num_buckets, meta=meta) group_cols.append(_KTK_HASH_BUCKET) unpacked_meta = ddf._meta ddf = pack_payload(ddf, group_key=group_cols) ddf_grouped = ddf.groupby(by=group_cols) unpack = partial( _unpack_store_partition, secondary_indices=secondary_indices, sort_partitions_by=sort_partitions_by, table=table, dataset_uuid=dataset_uuid, partition_on=partition_on, store_factory=store_factory, df_serializer=df_serializer, metadata_version=metadata_version, unpacked_meta=unpacked_meta, ) return cast( da.Array, # Output type depends on meta but mypy cannot infer this easily. ddf_grouped.apply(unpack, meta=("MetaPartition", "object")), ) def _unpack_store_partition( df: pd.DataFrame, secondary_indices: List[str], sort_partitions_by: List[str], table: str, dataset_uuid: str, partition_on: List[str], store_factory: StoreFactory, df_serializer: DataFrameSerializer, metadata_version: int, unpacked_meta: pd.DataFrame, ) -> MetaPartition: """Unpack payload data and store partition""" df = unpack_payload_pandas(df, unpacked_meta) if _KTK_HASH_BUCKET in df: df = df.drop(_KTK_HASH_BUCKET, axis=1) return write_partition( partition_df=df, secondary_indices=secondary_indices, sort_partitions_by=sort_partitions_by, dataset_table_name=table, dataset_uuid=dataset_uuid, partition_on=partition_on, store_factory=store_factory, df_serializer=df_serializer, metadata_version=metadata_version, )
35.301887
86
0.716195
[ "MIT" ]
MartinHaffner/kartothek
kartothek/io/dask/_shuffle.py
5,613
Python
from operator import ge from typing import List, Optional, Tuple # Dict, from fastapi import FastAPI, HTTPException, Depends, Query, status from fastapi.templating import Jinja2Templates from pathlib import Path from fastapi import Request # , Response # from fastapi.responses import JSONResponse # from pymongo.common import validate_server_api_or_none from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorDatabase import datetime as dt from app.core.config import get_logger from todoer_api.model import ( Task, TodoerInfo, TaskCreate, TaskUpdate, TaskPartialUpdate, ObjectId, ) from todoer_api.data_layer import ( TaskDatabase, DataLayerException, database_factory, ) from todoer_api import __version__, __service_name__ logger = get_logger("todoer") BASE_PATH = Path(__file__).resolve().parent TEMPLATES = Jinja2Templates(directory=str(BASE_PATH / "templates")) # ------------------------------------------------------------------------------ app = FastAPI() # ------------------------------------------------------------------------------ # task_db: TaskDatabase = database_factory("mongo") # None task_db: TaskDatabase = database_factory("mongo") # async def build_database() -> TaskDatabase: # return database_factory("mongo") async def get_database() -> TaskDatabase: # !!! for some reason when trying to saccess the DB via the data layer # it creates an error: attached to a different loop # don't know why left it to a local variable in main # global task_db return task_db def pagination( skip: int = Query(0, ge=0), limit: int = Query(10, ge=0), ) -> Tuple[int, int]: capped_limit = min(100, limit) return (skip, capped_limit) async def get_task_or_404(task_key: str, database=Depends(get_database)) -> Task: try: return await database.get(task_key) except DataLayerException: raise HTTPException(status_code=404, detail=f"Task {task_key} not found") # ------------------------------------------------------------------------------ # database_builder=Depends(build_database) @app.on_event("startup") async def startup(): global task_db # await task_db = database_factory("mongo") # @app.on_event("shutdown") async def shutdown(): global task_db del task_db task_db = None @app.get("/todoer/v1/tasks", status_code=200) async def root( request: Request, database=Depends(get_database), pagination: Tuple[int, int] = Depends(pagination), ) -> dict: # 2 """ GET tasks as html page """ tasks = await database.get_all(*pagination) return TEMPLATES.TemplateResponse( "index.html", {"request": request, "tasks": tasks}, ) @app.get("/todoer/api/v1/ping") async def model_ping(): return {"ping": dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S")} @app.get("/todoer/api/v1/info", response_model=TodoerInfo) async def model_info(database=Depends(get_database)) -> TodoerInfo: logger.info(f"get info") return TodoerInfo( timestamp=dt.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), service=__service_name__, data_source=database.db_type, version=__version__, ) @app.get("/todoer/api/v1/tests/{test_id}") async def test(test_id: int, qry: Optional[str] = None): logger.info(f"in test id={test_id} qry={qry}") return {"test_id": test_id, "q": qry} @app.get("/todoer/api/v1/tasks") async def get_tasks( pagination: Tuple[int, int] = Depends(pagination), database=Depends(get_database) ) -> List[Task]: return await database.get_all(*pagination) @app.get("/todoer/api/v1/tasks/{task_key}", response_model=Task) async def get_task_id(task: Task = Depends(get_task_or_404)) -> Task: return task @app.post("/todoer/api/v1/tasks", status_code=201, response_model=Task) async def create_task(task: TaskCreate, database=Depends(get_database)) -> Task: try: logger.info(f"request to create task in project {task.project}") added_task = await database.add(task) return added_task except DataLayerException: raise HTTPException( status_code=409, detail=f"Adding task key {task.key} failed, already exists" ) @app.put("/todoer/api/v1/tasks/{task_key}", response_model=Task) async def update_task( task_key: str, task: TaskUpdate, database=Depends(get_database) ) -> Task: try: logger.info(f"request to update task: {task_key}") udp_task = await database.update(task_key, task) return udp_task except DataLayerException: raise HTTPException(status_code=404, detail=f"Task {task_key} not found") @app.patch("/todoer/api/v1/tasks/{task_key}", response_model=Task) async def patch_task( task_key: str, task: TaskPartialUpdate, database=Depends(get_database) ) -> Task: try: logger.info(f"request to patch task: {task_key}") return await database.update(task_key, task) except DataLayerException: raise HTTPException(status_code=404, detail=f"Task {task_key} not found") @app.delete("/todoer/api/v1/tasks/{task_key}", status_code=204) async def del_task(task_key: str, database=Depends(get_database)) -> None: try: logger.info(f"request to delete task: {task_key}") await database.delete(task_key) except DataLayerException: raise HTTPException(status_code=404, detail=f"Delete task {task_key} not found") @app.delete("/todoer/admin/v1/tasks", status_code=204) async def del_all_task(database=Depends(get_database)): try: logger.info("request to delete all tasks") await database.delete_all() except DataLayerException: raise HTTPException(status_code=404, detail=f"Failed to delete all tasks")
30.114583
88
0.672778
[ "MIT" ]
owlsong/todoer
todoer_api/app/main.py
5,782
Python
import json from symro.src.automenu import Command class SpecialCommand(Command): def __init__(self, symbol: str, line_index: int = -1): super(SpecialCommand, self).__init__() self.symbol: str = symbol self.line_index: int = line_index def __str__(self) -> str: arg_tokens = [] for arg in self.get_ordered_args(): arg_tokens.append(str(arg)) for name, value in self.get_named_args().items(): if isinstance(value, list) or isinstance(value, dict): value = json.dumps(value) arg_tokens.append("{0}={1}".format(name, value)) arg_str = "" if len(arg_tokens) > 0: arg_str = "(" + ", ".join(arg_tokens) + ")" return "@{0}{1}".format(self.symbol, arg_str)
27.833333
66
0.559281
[ "MIT" ]
ari-bou/symro
src/scripting/specialcommand.py
835
Python
import os import numpy as np from keras import backend as K from keras.losses import mean_absolute_error import utils from model import wdsr_b def psnr(hr, sr, max_val=2): mse = K.mean(K.square(hr - sr)) return 10.0 / np.log(10) * K.log(max_val ** 2 / mse) def data_generator(path, batch_size=8, input_shape=96, scale=2): '''data generator for fit_generator''' fns = os.listdir(path) n = len(fns) i = 0 while True: lrs, hrs = [], [] for b in range(batch_size): if i == 0: np.random.shuffle(fns) fn = fns[i] fn = os.path.join(path, fn) lr, hr = utils.pair(fn, input_shape, scale) lr = utils.normalization(lr) hr = utils.normalization(hr) lrs.append(lr) hrs.append(hr) i = (i + 1) % n lrs = np.array(lrs) hrs = np.array(hrs) yield lrs, hrs model = wdsr_b() model.compile(optimizer='adam', loss=mean_absolute_error, metrics=[psnr]) model.fit_generator(data_generator('./datasets/train/'), steps_per_epoch=50, epochs=1250)
26.066667
64
0.55925
[ "MIT" ]
zhaipro/keras-wdsr
src/train.py
1,173
Python
""" Git Branch Merge Target Model tests """ from django.test import TestCase from django.test import Client from django.conf import settings from django.utils import timezone from app.logic.gitrepo.models.GitProjectModel import GitProjectEntry from app.logic.gitrepo.models.GitBranchModel import GitBranchEntry from app.logic.gitrepo.models.GitCommitModel import GitCommitEntry from app.logic.gitrepo.models.GitUserModel import GitUserEntry from app.logic.gitrepo.models.GitDiffModel import GitDiffEntry from app.logic.gitrepo.models.GitBranchMergeTargetModel import GitBranchMergeTargetEntry from datetime import timedelta import os import hashlib import shutil # Create your tests here. class GitBranchMergeTargetTestCase(TestCase): def setUp(self): self.git_project1 = GitProjectEntry.objects.create(url='http://test/') self.git_user1 = GitUserEntry.objects.create( project=self.git_project1, name='user1', email='[email protected]' ) self.git_commit1 = GitCommitEntry.objects.create( project=self.git_project1, commit_hash='0000100001000010000100001000010000100001', author=self.git_user1, author_date=timezone.now(), committer=self.git_user1, committer_date=timezone.now() ) self.git_commit2 = GitCommitEntry.objects.create( project=self.git_project1, commit_hash='0000200002000020000200002000020000200002', author=self.git_user1, author_date=timezone.now(), committer=self.git_user1, committer_date=timezone.now() ) self.git_branch1 = GitBranchEntry.objects.create( project=self.git_project1, commit=self.git_commit1, name='branch1' ) self.git_branch2 = GitBranchEntry.objects.create( project=self.git_project1, commit=self.git_commit2, name='branch2' ) self.git_diff1 = GitDiffEntry.objects.create( project=self.git_project1, commit_son=self.git_commit1, commit_parent=self.git_commit2, content='content-text' ) def tearDown(self): pass def test_create_git_branch_merge_target_entry(self): entry = GitBranchMergeTargetEntry.objects.create( project=self.git_project1, current_branch=self.git_branch1, target_branch=self.git_branch2, fork_point=self.git_commit2, diff=self.git_diff1, ) self.assertEqual('http://test/', entry.project.url) self.assertEqual('branch1', entry.current_branch.name) self.assertEqual('branch2', entry.target_branch.name) self.assertEqual('0000200002000020000200002000020000200002', entry.fork_point.commit_hash) self.assertEqual('content-text', entry.diff.content) self.assertEqual(False, entry.invalidated)
34.079545
98
0.679226
[ "MIT" ]
imvu/bluesteel
app/logic/gitrepo/tests/tests_model_GitBranchMergeTargetModel.py
2,999
Python
# Copyright (C) 2018 The Electrum developers # Distributed under the MIT software license, see the accompanying # file LICENCE or http://www.opensource.org/licenses/mit-license.php import asyncio import os from decimal import Decimal import random import time from typing import (Optional, Sequence, Tuple, List, Set, Dict, TYPE_CHECKING, NamedTuple, Union, Mapping, Any, Iterable) import threading import socket import aiohttp import json from datetime import datetime, timezone from functools import partial from collections import defaultdict import concurrent from concurrent import futures import urllib.parse import dns.resolver import dns.exception from aiorpcx import run_in_thread, TaskGroup, NetAddress, ignore_after from . import constants, util from . import keystore from .util import profiler, chunks from .invoices import PR_TYPE_LN, PR_UNPAID, PR_EXPIRED, PR_PAID, PR_INFLIGHT, PR_FAILED, PR_ROUTING, LNInvoice, LN_EXPIRY_NEVER from .util import NetworkRetryManager, JsonRPCClient from .lnutil import LN_MAX_FUNDING_SAT from .keystore import BIP32_KeyStore from .ravencoin import COIN from .ravencoin import opcodes, make_op_return, address_to_scripthash from .transaction import Transaction from .transaction import get_script_type_from_output_script from .crypto import sha256 from .bip32 import BIP32Node from .util import bh2u, bfh, InvoiceError, resolve_dns_srv, is_ip_address, log_exceptions from .crypto import chacha20_encrypt, chacha20_decrypt from .util import ignore_exceptions, make_aiohttp_session, SilentTaskGroup from .util import timestamp_to_datetime, random_shuffled_copy from .util import MyEncoder, is_private_netaddress from .logging import Logger from .lntransport import LNTransport, LNResponderTransport, LNTransportBase from .lnpeer import Peer, LN_P2P_NETWORK_TIMEOUT from .lnaddr import lnencode, LnAddr, lndecode from .ecc import der_sig_from_sig_string from .lnchannel import Channel, AbstractChannel from .lnchannel import ChannelState, PeerState from .lnrater import LNRater from . import lnutil from .lnutil import funding_output_script from .ravencoin import redeem_script_to_address from .lnutil import (Outpoint, LNPeerAddr, get_compressed_pubkey_from_bech32, extract_nodeid, PaymentFailure, split_host_port, ConnStringFormatError, generate_keypair, LnKeyFamily, LOCAL, REMOTE, MIN_FINAL_CLTV_EXPIRY_FOR_INVOICE, NUM_MAX_EDGES_IN_PAYMENT_PATH, SENT, RECEIVED, HTLCOwner, UpdateAddHtlc, Direction, LnFeatures, ShortChannelID, HtlcLog, derive_payment_secret_from_payment_preimage, NoPathFound, InvalidGossipMsg) from .lnutil import ln_dummy_address, ln_compare_features, IncompatibleLightningFeatures from .lnrouter import TrampolineEdge from .transaction import PartialTxOutput, PartialTransaction, PartialTxInput from .lnonion import OnionFailureCode, OnionRoutingFailure from .lnmsg import decode_msg from .i18n import _ from .lnrouter import (RouteEdge, LNPaymentRoute, LNPaymentPath, is_route_sane_to_use, NoChannelPolicy, LNPathInconsistent) from .address_synchronizer import TX_HEIGHT_LOCAL from . import lnsweep from .lnwatcher import LNWalletWatcher from .crypto import pw_encode_with_version_and_mac, pw_decode_with_version_and_mac from .lnutil import ImportedChannelBackupStorage, OnchainChannelBackupStorage from .lnchannel import ChannelBackup from .channel_db import UpdateStatus from .channel_db import get_mychannel_info, get_mychannel_policy from .submarine_swaps import SwapManager from .channel_db import ChannelInfo, Policy from .mpp_split import suggest_splits from .trampoline import create_trampoline_route_and_onion, TRAMPOLINE_FEES if TYPE_CHECKING: from .network import Network from .wallet import Abstract_Wallet from .channel_db import ChannelDB from .simple_config import SimpleConfig SAVED_PR_STATUS = [PR_PAID, PR_UNPAID] # status that are persisted NUM_PEERS_TARGET = 4 # onchain channel backup data CB_VERSION = 0 CB_MAGIC_BYTES = bytes([0, 0, 0, CB_VERSION]) FALLBACK_NODE_LIST_TESTNET = ( LNPeerAddr(host='203.132.95.10', port=9735, pubkey=bfh('038863cf8ab91046230f561cd5b386cbff8309fa02e3f0c3ed161a3aeb64a643b9')), LNPeerAddr(host='2401:d002:4402:0:bf1d:986a:7598:6d49', port=9735, pubkey=bfh('038863cf8ab91046230f561cd5b386cbff8309fa02e3f0c3ed161a3aeb64a643b9')), LNPeerAddr(host='50.116.3.223', port=9734, pubkey=bfh('03236a685d30096b26692dce0cf0fa7c8528bdf61dbf5363a3ef6d5c92733a3016')), LNPeerAddr(host='3.16.119.191', port=9735, pubkey=bfh('03d5e17a3c213fe490e1b0c389f8cfcfcea08a29717d50a9f453735e0ab2a7c003')), LNPeerAddr(host='34.250.234.192', port=9735, pubkey=bfh('03933884aaf1d6b108397e5efe5c86bcf2d8ca8d2f700eda99db9214fc2712b134')), LNPeerAddr(host='88.99.209.230', port=9735, pubkey=bfh('0260d9119979caedc570ada883ff614c6efb93f7f7382e25d73ecbeba0b62df2d7')), LNPeerAddr(host='160.16.233.215', port=9735, pubkey=bfh('023ea0a53af875580899da0ab0a21455d9c19160c4ea1b7774c9d4be6810b02d2c')), LNPeerAddr(host='197.155.6.173', port=9735, pubkey=bfh('0269a94e8b32c005e4336bfb743c08a6e9beb13d940d57c479d95c8e687ccbdb9f')), LNPeerAddr(host='2c0f:fb18:406::4', port=9735, pubkey=bfh('0269a94e8b32c005e4336bfb743c08a6e9beb13d940d57c479d95c8e687ccbdb9f')), LNPeerAddr(host='163.172.94.64', port=9735, pubkey=bfh('030f0bf260acdbd3edcad84d7588ec7c5df4711e87e6a23016f989b8d3a4147230')), LNPeerAddr(host='23.237.77.12', port=9735, pubkey=bfh('02312627fdf07fbdd7e5ddb136611bdde9b00d26821d14d94891395452f67af248')), LNPeerAddr(host='197.155.6.172', port=9735, pubkey=bfh('02ae2f22b02375e3e9b4b4a2db4f12e1b50752b4062dbefd6e01332acdaf680379')), LNPeerAddr(host='2c0f:fb18:406::3', port=9735, pubkey=bfh('02ae2f22b02375e3e9b4b4a2db4f12e1b50752b4062dbefd6e01332acdaf680379')), LNPeerAddr(host='23.239.23.44', port=9740, pubkey=bfh('034fe52e98a0e9d3c21b767e1b371881265d8c7578c21f5afd6d6438da10348b36')), LNPeerAddr(host='2600:3c01::f03c:91ff:fe05:349c', port=9740, pubkey=bfh('034fe52e98a0e9d3c21b767e1b371881265d8c7578c21f5afd6d6438da10348b36')), ) FALLBACK_NODE_LIST_MAINNET = [ LNPeerAddr(host='172.81.181.3', port=9735, pubkey=bfh('0214382bdce7750dfcb8126df8e2b12de38536902dc36abcebdaeefdeca1df8284')), LNPeerAddr(host='35.230.100.60', port=9735, pubkey=bfh('023f5e3582716bed96f6f26cfcd8037e07474d7b4743afdc8b07e692df63464d7e')), LNPeerAddr(host='40.69.71.114', port=9735, pubkey=bfh('028303182c9885da93b3b25c9621d22cf34475e63c123942e402ab530c0556e675')), LNPeerAddr(host='94.177.171.73', port=9735, pubkey=bfh('0276e09a267592e7451a939c932cf685f0754de382a3ca85d2fb3a864d4c365ad5')), LNPeerAddr(host='34.236.113.58', port=9735, pubkey=bfh('02fa50c72ee1e2eb5f1b6d9c3032080c4c864373c4201dfa2966aa34eee1051f97')), LNPeerAddr(host='52.50.244.44', port=9735, pubkey=bfh('030c3f19d742ca294a55c00376b3b355c3c90d61c6b6b39554dbc7ac19b141c14f')), LNPeerAddr(host='157.245.68.47', port=9735, pubkey=bfh('03c2abfa93eacec04721c019644584424aab2ba4dff3ac9bdab4e9c97007491dda')), LNPeerAddr(host='18.221.23.28', port=9735, pubkey=bfh('03abf6f44c355dec0d5aa155bdbdd6e0c8fefe318eff402de65c6eb2e1be55dc3e')), LNPeerAddr(host='52.224.178.244', port=9735, pubkey=bfh('026b105ac13212c48714c6be9b11577a9ce10f10e1c88a45ce217e6331209faf8b')), LNPeerAddr(host='34.239.230.56', port=9735, pubkey=bfh('03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f')), LNPeerAddr(host='46.229.165.136', port=9735, pubkey=bfh('0390b5d4492dc2f5318e5233ab2cebf6d48914881a33ef6a9c6bcdbb433ad986d0')), LNPeerAddr(host='157.230.28.160', port=9735, pubkey=bfh('0279c22ed7a068d10dc1a38ae66d2d6461e269226c60258c021b1ddcdfe4b00bc4')), LNPeerAddr(host='74.108.13.152', port=9735, pubkey=bfh('0331f80652fb840239df8dc99205792bba2e559a05469915804c08420230e23c7c')), LNPeerAddr(host='167.172.44.148', port=9735, pubkey=bfh('0395033b252c6f40e3756984162d68174e2bd8060a129c0d3462a9370471c6d28f')), LNPeerAddr(host='138.68.14.104', port=9735, pubkey=bfh('03bb88ccc444534da7b5b64b4f7b15e1eccb18e102db0e400d4b9cfe93763aa26d')), LNPeerAddr(host='3.124.63.44', port=9735, pubkey=bfh('0242a4ae0c5bef18048fbecf995094b74bfb0f7391418d71ed394784373f41e4f3')), LNPeerAddr(host='2001:470:8:2e1::43', port=9735, pubkey=bfh('03baa70886d9200af0ffbd3f9e18d96008331c858456b16e3a9b41e735c6208fef')), LNPeerAddr(host='2601:186:c100:6bcd:219:d1ff:fe75:dc2f', port=9735, pubkey=bfh('0298f6074a454a1f5345cb2a7c6f9fce206cd0bf675d177cdbf0ca7508dd28852f')), LNPeerAddr(host='2001:41d0:e:734::1', port=9735, pubkey=bfh('03a503d8e30f2ff407096d235b5db63b4fcf3f89a653acb6f43d3fc492a7674019')), LNPeerAddr(host='2a01:4f9:2b:2254::2', port=9735, pubkey=bfh('02f3069a342ae2883a6f29e275f06f28a56a6ea2e2d96f5888a3266444dcf542b6')), LNPeerAddr(host='2a02:8070:24c1:100:528c:2997:6dbc:a054', port=9735, pubkey=bfh('02a45def9ae014fdd2603dd7033d157faa3a55a72b06a63ae22ef46d9fafdc6e8d')), LNPeerAddr(host='2600:3c01::f03c:91ff:fe05:349c', port=9736, pubkey=bfh('02731b798b39a09f9f14e90ee601afb6ebb796d6e5797de14582a978770b33700f')), LNPeerAddr(host='2a00:8a60:e012:a00::21', port=9735, pubkey=bfh('027ce055380348d7812d2ae7745701c9f93e70c1adeb2657f053f91df4f2843c71')), LNPeerAddr(host='2604:a880:400:d1::8bd:1001', port=9735, pubkey=bfh('03649c72a4816f0cd546f84aafbd657e92a30ab474de7ab795e8b5650a427611f7')), LNPeerAddr(host='2a01:4f8:c0c:7b31::1', port=9735, pubkey=bfh('02c16cca44562b590dd279c942200bdccfd4f990c3a69fad620c10ef2f8228eaff')), LNPeerAddr(host='2001:41d0:1:b40d::1', port=9735, pubkey=bfh('026726a4b043d413b45b334876d17b8a98848129604429ec65532ba286a42efeac')), ] from .trampoline import trampolines_by_id, hardcoded_trampoline_nodes, is_hardcoded_trampoline class PaymentInfo(NamedTuple): payment_hash: bytes amount_msat: Optional[int] direction: int status: int class ErrorAddingPeer(Exception): pass # set some feature flags as baseline for both LNWallet and LNGossip # note that e.g. DATA_LOSS_PROTECT is needed for LNGossip as many peers require it BASE_FEATURES = LnFeatures(0)\ | LnFeatures.OPTION_DATA_LOSS_PROTECT_OPT\ | LnFeatures.OPTION_STATIC_REMOTEKEY_OPT\ | LnFeatures.VAR_ONION_OPT\ | LnFeatures.PAYMENT_SECRET_OPT\ | LnFeatures.OPTION_UPFRONT_SHUTDOWN_SCRIPT_OPT # we do not want to receive unrequested gossip (see lnpeer.maybe_save_remote_update) LNWALLET_FEATURES = BASE_FEATURES\ | LnFeatures.OPTION_DATA_LOSS_PROTECT_REQ\ | LnFeatures.OPTION_STATIC_REMOTEKEY_REQ\ | LnFeatures.GOSSIP_QUERIES_REQ\ | LnFeatures.BASIC_MPP_OPT\ | LnFeatures.OPTION_TRAMPOLINE_ROUTING_OPT LNGOSSIP_FEATURES = BASE_FEATURES\ | LnFeatures.GOSSIP_QUERIES_OPT\ | LnFeatures.GOSSIP_QUERIES_REQ class LNWorker(Logger, NetworkRetryManager[LNPeerAddr]): INITIAL_TRAMPOLINE_FEE_LEVEL = 1 # only used for trampoline payments. set to 0 in tests. def __init__(self, xprv, features: LnFeatures): Logger.__init__(self) NetworkRetryManager.__init__( self, max_retry_delay_normal=3600, init_retry_delay_normal=600, max_retry_delay_urgent=300, init_retry_delay_urgent=4, ) self.lock = threading.RLock() self.node_keypair = generate_keypair(BIP32Node.from_xkey(xprv), LnKeyFamily.NODE_KEY) self.backup_key = generate_keypair(BIP32Node.from_xkey(xprv), LnKeyFamily.BACKUP_CIPHER).privkey self._peers = {} # type: Dict[bytes, Peer] # pubkey -> Peer # needs self.lock self.taskgroup = SilentTaskGroup() self.listen_server = None # type: Optional[asyncio.AbstractServer] self.features = features self.network = None # type: Optional[Network] self.config = None # type: Optional[SimpleConfig] self.stopping_soon = False # whether we are being shut down util.register_callback(self.on_proxy_changed, ['proxy_set']) @property def channel_db(self): return self.network.channel_db if self.network else None @property def peers(self) -> Mapping[bytes, Peer]: """Returns a read-only copy of peers.""" with self.lock: return self._peers.copy() def channels_for_peer(self, node_id: bytes) -> Dict[bytes, Channel]: return {} def get_node_alias(self, node_id: bytes) -> Optional[str]: """Returns the alias of the node, or None if unknown.""" node_alias = None if self.channel_db: node_info = self.channel_db.get_node_info_for_node_id(node_id) if node_info: node_alias = node_info.alias else: for k, v in hardcoded_trampoline_nodes().items(): if v.pubkey == node_id: node_alias = k break return node_alias async def maybe_listen(self): # FIXME: only one LNWorker can listen at a time (single port) listen_addr = self.config.get('lightning_listen') if listen_addr: self.logger.info(f'lightning_listen enabled. will try to bind: {listen_addr!r}') try: netaddr = NetAddress.from_string(listen_addr) except Exception as e: self.logger.error(f"failed to parse config key 'lightning_listen'. got: {e!r}") return addr = str(netaddr.host) async def cb(reader, writer): transport = LNResponderTransport(self.node_keypair.privkey, reader, writer) try: node_id = await transport.handshake() except Exception as e: self.logger.info(f'handshake failure from incoming connection: {e!r}') return await self._add_peer_from_transport(node_id=node_id, transport=transport) try: self.listen_server = await asyncio.start_server(cb, addr, netaddr.port) except OSError as e: self.logger.error(f"cannot listen for lightning p2p. error: {e!r}") @ignore_exceptions # don't kill outer taskgroup async def main_loop(self): self.logger.info("starting taskgroup.") try: async with self.taskgroup as group: await group.spawn(self._maintain_connectivity()) except asyncio.CancelledError: raise except Exception as e: self.logger.exception("taskgroup died.") finally: self.logger.info("taskgroup stopped.") async def _maintain_connectivity(self): while True: await asyncio.sleep(1) if self.stopping_soon: return now = time.time() if len(self._peers) >= NUM_PEERS_TARGET: continue peers = await self._get_next_peers_to_try() for peer in peers: if self._can_retry_addr(peer, now=now): try: await self._add_peer(peer.host, peer.port, peer.pubkey) except ErrorAddingPeer as e: self.logger.info(f"failed to add peer: {peer}. exc: {e!r}") async def _add_peer(self, host: str, port: int, node_id: bytes) -> Peer: if node_id in self._peers: return self._peers[node_id] port = int(port) peer_addr = LNPeerAddr(host, port, node_id) self._trying_addr_now(peer_addr) self.logger.info(f"adding peer {peer_addr}") if node_id == self.node_keypair.pubkey: raise ErrorAddingPeer("cannot connect to self") transport = LNTransport(self.node_keypair.privkey, peer_addr, proxy=self.network.proxy) peer = await self._add_peer_from_transport(node_id=node_id, transport=transport) return peer async def _add_peer_from_transport(self, *, node_id: bytes, transport: LNTransportBase) -> Peer: peer = Peer(self, node_id, transport) with self.lock: existing_peer = self._peers.get(node_id) if existing_peer: existing_peer.close_and_cleanup() assert node_id not in self._peers self._peers[node_id] = peer await self.taskgroup.spawn(peer.main_loop()) return peer def peer_closed(self, peer: Peer) -> None: with self.lock: peer2 = self._peers.get(peer.pubkey) if peer2 is peer: self._peers.pop(peer.pubkey) def num_peers(self) -> int: return sum([p.is_initialized() for p in self.peers.values()]) def start_network(self, network: 'Network'): assert network self.network = network self.config = network.config self._add_peers_from_config() asyncio.run_coroutine_threadsafe(self.main_loop(), self.network.asyncio_loop) async def stop(self): if self.listen_server: self.listen_server.close() util.unregister_callback(self.on_proxy_changed) await self.taskgroup.cancel_remaining() def _add_peers_from_config(self): peer_list = self.config.get('lightning_peers', []) for host, port, pubkey in peer_list: asyncio.run_coroutine_threadsafe( self._add_peer(host, int(port), bfh(pubkey)), self.network.asyncio_loop) def is_good_peer(self, peer: LNPeerAddr) -> bool: # the purpose of this method is to filter peers that advertise the desired feature bits # it is disabled for now, because feature bits published in node announcements seem to be unreliable return True node_id = peer.pubkey node = self.channel_db._nodes.get(node_id) if not node: return False try: ln_compare_features(self.features, node.features) except IncompatibleLightningFeatures: return False #self.logger.info(f'is_good {peer.host}') return True def on_peer_successfully_established(self, peer: Peer) -> None: if isinstance(peer.transport, LNTransport): peer_addr = peer.transport.peer_addr # reset connection attempt count self._on_connection_successfully_established(peer_addr) # add into channel db if self.channel_db: self.channel_db.add_recent_peer(peer_addr) # save network address into channels we might have with peer for chan in peer.channels.values(): chan.add_or_update_peer_addr(peer_addr) async def _get_next_peers_to_try(self) -> Sequence[LNPeerAddr]: now = time.time() await self.channel_db.data_loaded.wait() # first try from recent peers recent_peers = self.channel_db.get_recent_peers() for peer in recent_peers: if not peer: continue if peer.pubkey in self._peers: continue if not self._can_retry_addr(peer, now=now): continue if not self.is_good_peer(peer): continue return [peer] # try random peer from graph unconnected_nodes = self.channel_db.get_200_randomly_sorted_nodes_not_in(self.peers.keys()) if unconnected_nodes: for node_id in unconnected_nodes: addrs = self.channel_db.get_node_addresses(node_id) if not addrs: continue host, port, timestamp = self.choose_preferred_address(list(addrs)) try: peer = LNPeerAddr(host, port, node_id) except ValueError: continue if not self._can_retry_addr(peer, now=now): continue if not self.is_good_peer(peer): continue #self.logger.info('taking random ln peer from our channel db') return [peer] # getting desperate... let's try hardcoded fallback list of peers if constants.net in (constants.RavencoinTestnet,): fallback_list = FALLBACK_NODE_LIST_TESTNET elif constants.net in (constants.RavencoinMainnet,): fallback_list = FALLBACK_NODE_LIST_MAINNET else: return [] # regtest?? fallback_list = [peer for peer in fallback_list if self._can_retry_addr(peer, now=now)] if fallback_list: return [random.choice(fallback_list)] # last resort: try dns seeds (BOLT-10) return await run_in_thread(self._get_peers_from_dns_seeds) def _get_peers_from_dns_seeds(self) -> Sequence[LNPeerAddr]: # NOTE: potentially long blocking call, do not run directly on asyncio event loop. # Return several peers to reduce the number of dns queries. if not constants.net.LN_DNS_SEEDS: return [] dns_seed = random.choice(constants.net.LN_DNS_SEEDS) self.logger.info('asking dns seed "{}" for ln peers'.format(dns_seed)) try: # note: this might block for several seconds # this will include bech32-encoded-pubkeys and ports srv_answers = resolve_dns_srv('r{}.{}'.format( constants.net.LN_REALM_BYTE, dns_seed)) except dns.exception.DNSException as e: self.logger.info(f'failed querying (1) dns seed "{dns_seed}" for ln peers: {repr(e)}') return [] random.shuffle(srv_answers) num_peers = 2 * NUM_PEERS_TARGET srv_answers = srv_answers[:num_peers] # we now have pubkeys and ports but host is still needed peers = [] for srv_ans in srv_answers: try: # note: this might block for several seconds answers = dns.resolver.resolve(srv_ans['host']) except dns.exception.DNSException as e: self.logger.info(f'failed querying (2) dns seed "{dns_seed}" for ln peers: {repr(e)}') continue try: ln_host = str(answers[0]) port = int(srv_ans['port']) bech32_pubkey = srv_ans['host'].split('.')[0] pubkey = get_compressed_pubkey_from_bech32(bech32_pubkey) peers.append(LNPeerAddr(ln_host, port, pubkey)) except Exception as e: self.logger.info(f'error with parsing peer from dns seed: {repr(e)}') continue self.logger.info(f'got {len(peers)} ln peers from dns seed') return peers @staticmethod def choose_preferred_address(addr_list: Sequence[Tuple[str, int, int]]) -> Tuple[str, int, int]: assert len(addr_list) >= 1 # choose first one that is an IP for host, port, timestamp in addr_list: if is_ip_address(host): return host, port, timestamp # otherwise choose one at random # TODO maybe filter out onion if not on tor? choice = random.choice(addr_list) return choice def on_proxy_changed(self, event, *args): for peer in self.peers.values(): peer.close_and_cleanup() self._clear_addr_retry_times() @log_exceptions async def add_peer(self, connect_str: str) -> Peer: node_id, rest = extract_nodeid(connect_str) peer = self._peers.get(node_id) if not peer: if rest is not None: host, port = split_host_port(rest) else: if not self.channel_db: addr = trampolines_by_id().get(node_id) if not addr: raise ConnStringFormatError(_('Address unknown for node:') + ' ' + bh2u(node_id)) host, port = addr.host, addr.port else: addrs = self.channel_db.get_node_addresses(node_id) if not addrs: raise ConnStringFormatError(_('Don\'t know any addresses for node:') + ' ' + bh2u(node_id)) host, port, timestamp = self.choose_preferred_address(list(addrs)) port = int(port) # Try DNS-resolving the host (if needed). This is simply so that # the caller gets a nice exception if it cannot be resolved. try: await asyncio.get_event_loop().getaddrinfo(host, port) except socket.gaierror: raise ConnStringFormatError(_('Hostname does not resolve (getaddrinfo failed)')) # add peer peer = await self._add_peer(host, port, node_id) return peer class LNGossip(LNWorker): max_age = 14*24*3600 LOGGING_SHORTCUT = 'g' def __init__(self): seed = os.urandom(32) node = BIP32Node.from_rootseed(seed, xtype='standard') xprv = node.to_xprv() super().__init__(xprv, LNGOSSIP_FEATURES) self.unknown_ids = set() def start_network(self, network: 'Network'): assert network super().start_network(network) asyncio.run_coroutine_threadsafe(self.taskgroup.spawn(self.maintain_db()), self.network.asyncio_loop) async def maintain_db(self): await self.channel_db.data_loaded.wait() while True: if len(self.unknown_ids) == 0: self.channel_db.prune_old_policies(self.max_age) self.channel_db.prune_orphaned_channels() await asyncio.sleep(120) async def add_new_ids(self, ids: Iterable[bytes]): known = self.channel_db.get_channel_ids() new = set(ids) - set(known) self.unknown_ids.update(new) util.trigger_callback('unknown_channels', len(self.unknown_ids)) util.trigger_callback('gossip_peers', self.num_peers()) util.trigger_callback('ln_gossip_sync_progress') def get_ids_to_query(self) -> Sequence[bytes]: N = 500 l = list(self.unknown_ids) self.unknown_ids = set(l[N:]) util.trigger_callback('unknown_channels', len(self.unknown_ids)) util.trigger_callback('ln_gossip_sync_progress') return l[0:N] def get_sync_progress_estimate(self) -> Tuple[Optional[int], Optional[int], Optional[int]]: """Estimates the gossip synchronization process and returns the number of synchronized channels, the total channels in the network and a rescaled percentage of the synchronization process.""" if self.num_peers() == 0: return None, None, None nchans_with_0p, nchans_with_1p, nchans_with_2p = self.channel_db.get_num_channels_partitioned_by_policy_count() num_db_channels = nchans_with_0p + nchans_with_1p + nchans_with_2p # some channels will never have two policies (only one is in gossip?...) # so if we have at least 1 policy for a channel, we consider that channel "complete" here current_est = num_db_channels - nchans_with_0p total_est = len(self.unknown_ids) + num_db_channels progress = current_est / total_est if total_est and current_est else 0 progress_percent = (1.0 / 0.95 * progress) * 100 progress_percent = min(progress_percent, 100) progress_percent = round(progress_percent) # take a minimal number of synchronized channels to get a more accurate # percentage estimate if current_est < 200: progress_percent = 0 return current_est, total_est, progress_percent async def process_gossip(self, chan_anns, node_anns, chan_upds): # note: we run in the originating peer's TaskGroup, so we can safely raise here # and disconnect only from that peer await self.channel_db.data_loaded.wait() self.logger.debug(f'process_gossip {len(chan_anns)} {len(node_anns)} {len(chan_upds)}') # channel announcements def process_chan_anns(): for payload in chan_anns: self.channel_db.verify_channel_announcement(payload) self.channel_db.add_channel_announcements(chan_anns) await run_in_thread(process_chan_anns) # node announcements def process_node_anns(): for payload in node_anns: self.channel_db.verify_node_announcement(payload) self.channel_db.add_node_announcements(node_anns) await run_in_thread(process_node_anns) # channel updates categorized_chan_upds = await run_in_thread(partial( self.channel_db.add_channel_updates, chan_upds, max_age=self.max_age)) orphaned = categorized_chan_upds.orphaned if orphaned: self.logger.info(f'adding {len(orphaned)} unknown channel ids') orphaned_ids = [c['short_channel_id'] for c in orphaned] await self.add_new_ids(orphaned_ids) if categorized_chan_upds.good: self.logger.debug(f'on_channel_update: {len(categorized_chan_upds.good)}/{len(chan_upds)}') class LNWallet(LNWorker): lnwatcher: Optional['LNWalletWatcher'] MPP_EXPIRY = 120 TIMEOUT_SHUTDOWN_FAIL_PENDING_HTLCS = 3 # seconds def __init__(self, wallet: 'Abstract_Wallet', xprv): self.wallet = wallet self.db = wallet.db Logger.__init__(self) LNWorker.__init__(self, xprv, LNWALLET_FEATURES) self.config = wallet.config self.lnwatcher = None self.lnrater: LNRater = None self.payments = self.db.get_dict('lightning_payments') # RHASH -> amount, direction, is_paid self.preimages = self.db.get_dict('lightning_preimages') # RHASH -> preimage # note: this sweep_address is only used as fallback; as it might result in address-reuse self.sweep_address = wallet.get_new_sweep_address_for_channel() self.logs = defaultdict(list) # type: Dict[str, List[HtlcLog]] # key is RHASH # (not persisted) # used in tests self.enable_htlc_settle = True self.enable_htlc_forwarding = True # note: accessing channels (besides simple lookup) needs self.lock! self._channels = {} # type: Dict[bytes, Channel] channels = self.db.get_dict("channels") for channel_id, c in random_shuffled_copy(channels.items()): self._channels[bfh(channel_id)] = Channel(c, sweep_address=self.sweep_address, lnworker=self) self._channel_backups = {} # type: Dict[bytes, ChannelBackup] # order is important: imported should overwrite onchain for name in ["onchain_channel_backups", "imported_channel_backups"]: channel_backups = self.db.get_dict(name) for channel_id, storage in channel_backups.items(): self._channel_backups[bfh(channel_id)] = ChannelBackup(storage, sweep_address=self.sweep_address, lnworker=self) self.sent_htlcs = defaultdict(asyncio.Queue) # type: Dict[bytes, asyncio.Queue[HtlcLog]] self.sent_htlcs_routes = dict() # (RHASH, scid, htlc_id) -> route, payment_secret, amount_msat, bucket_msat self.sent_buckets = dict() # payment_secret -> (amount_sent, amount_failed) self.received_mpp_htlcs = dict() # RHASH -> mpp_status, htlc_set self.swap_manager = SwapManager(wallet=self.wallet, lnworker=self) # detect inflight payments self.inflight_payments = set() # (not persisted) keys of invoices that are in PR_INFLIGHT state for payment_hash in self.get_payments(status='inflight').keys(): self.set_invoice_status(payment_hash.hex(), PR_INFLIGHT) self.trampoline_forwarding_failures = {} # todo: should be persisted def has_deterministic_node_id(self): return bool(self.db.get('lightning_xprv')) def has_recoverable_channels(self): # TODO: expose use_recoverable_channels in preferences return self.has_deterministic_node_id() \ and self.config.get('use_recoverable_channels', True) \ and not (self.config.get('lightning_listen')) @property def channels(self) -> Mapping[bytes, Channel]: """Returns a read-only copy of channels.""" with self.lock: return self._channels.copy() @property def channel_backups(self) -> Mapping[bytes, ChannelBackup]: """Returns a read-only copy of channels.""" with self.lock: return self._channel_backups.copy() def get_channel_by_id(self, channel_id: bytes) -> Optional[Channel]: return self._channels.get(channel_id, None) def diagnostic_name(self): return self.wallet.diagnostic_name() @ignore_exceptions @log_exceptions async def sync_with_local_watchtower(self): watchtower = self.network.local_watchtower if watchtower: while True: for chan in self.channels.values(): await self.sync_channel_with_watchtower(chan, watchtower.sweepstore) await asyncio.sleep(5) @ignore_exceptions @log_exceptions async def sync_with_remote_watchtower(self): while True: # periodically poll if the user updated 'watchtower_url' await asyncio.sleep(5) watchtower_url = self.config.get('watchtower_url') if not watchtower_url: continue parsed_url = urllib.parse.urlparse(watchtower_url) if not (parsed_url.scheme == 'https' or is_private_netaddress(parsed_url.hostname)): self.logger.warning(f"got watchtower URL for remote tower but we won't use it! " f"can only use HTTPS (except if private IP): not using {watchtower_url!r}") continue # try to sync with the remote watchtower try: async with make_aiohttp_session(proxy=self.network.proxy) as session: watchtower = JsonRPCClient(session, watchtower_url) watchtower.add_method('get_ctn') watchtower.add_method('add_sweep_tx') for chan in self.channels.values(): await self.sync_channel_with_watchtower(chan, watchtower) except aiohttp.client_exceptions.ClientConnectorError: self.logger.info(f'could not contact remote watchtower {watchtower_url}') async def sync_channel_with_watchtower(self, chan: Channel, watchtower): outpoint = chan.funding_outpoint.to_str() addr = chan.get_funding_address() current_ctn = chan.get_oldest_unrevoked_ctn(REMOTE) watchtower_ctn = await watchtower.get_ctn(outpoint, addr) for ctn in range(watchtower_ctn + 1, current_ctn): sweeptxs = chan.create_sweeptxs(ctn) for tx in sweeptxs: await watchtower.add_sweep_tx(outpoint, ctn, tx.inputs()[0].prevout.to_str(), tx.serialize()) def start_network(self, network: 'Network'): assert network self.network = network self.config = network.config self.lnwatcher = LNWalletWatcher(self, network) self.lnwatcher.start_network(network) self.swap_manager.start_network(network=network, lnwatcher=self.lnwatcher) self.lnrater = LNRater(self, network) for chan in self.channels.values(): self.lnwatcher.add_channel(chan.funding_outpoint.to_str(), chan.get_funding_address()) for cb in self.channel_backups.values(): self.lnwatcher.add_channel(cb.funding_outpoint.to_str(), cb.get_funding_address()) for coro in [ self.maybe_listen(), self.lnwatcher.on_network_update('network_updated'), # shortcut (don't block) if funding tx locked and verified self.reestablish_peers_and_channels(), self.sync_with_local_watchtower(), self.sync_with_remote_watchtower(), ]: tg_coro = self.taskgroup.spawn(coro) asyncio.run_coroutine_threadsafe(tg_coro, self.network.asyncio_loop) async def stop(self): self.stopping_soon = True if self.listen_server: # stop accepting new peers self.listen_server.close() async with ignore_after(self.TIMEOUT_SHUTDOWN_FAIL_PENDING_HTLCS): await self.wait_for_received_pending_htlcs_to_get_removed() await LNWorker.stop(self) if self.lnwatcher: await self.lnwatcher.stop() self.lnwatcher = None async def wait_for_received_pending_htlcs_to_get_removed(self): assert self.stopping_soon is True # We try to fail pending MPP HTLCs, and wait a bit for them to get removed. # Note: even without MPP, if we just failed/fulfilled an HTLC, it is good # to wait a bit for it to become irrevocably removed. # Note: we don't wait for *all htlcs* to get removed, only for those # that we can already fail/fulfill. e.g. forwarded htlcs cannot be removed async with TaskGroup() as group: for peer in self.peers.values(): await group.spawn(peer.wait_one_htlc_switch_iteration()) while True: if all(not peer.received_htlcs_pending_removal for peer in self.peers.values()): break async with TaskGroup(wait=any) as group: for peer in self.peers.values(): await group.spawn(peer.received_htlc_removed_event.wait()) def peer_closed(self, peer): for chan in self.channels_for_peer(peer.pubkey).values(): chan.peer_state = PeerState.DISCONNECTED util.trigger_callback('channel', self.wallet, chan) super().peer_closed(peer) def get_payments(self, *, status=None): # return one item per payment_hash # note: with AMP we will have several channels per payment out = defaultdict(list) for chan in self.channels.values(): d = chan.get_payments(status=status) for k, v in d.items(): out[k] += v return out def get_payment_value(self, info: Optional['PaymentInfo'], plist): amount_msat = 0 fee_msat = None for chan_id, htlc, _direction, _status in plist: amount_msat += int(_direction) * htlc.amount_msat if _direction == SENT and info and info.amount_msat: fee_msat = (fee_msat or 0) - info.amount_msat - amount_msat timestamp = min([htlc.timestamp for chan_id, htlc, _direction, _status in plist]) return amount_msat, fee_msat, timestamp def get_lightning_history(self): out = {} for payment_hash, plist in self.get_payments(status='settled').items(): if len(plist) == 0: continue key = payment_hash.hex() info = self.get_payment_info(payment_hash) amount_msat, fee_msat, timestamp = self.get_payment_value(info, plist) if info is not None: label = self.wallet.get_label(key) direction = ('sent' if info.direction == SENT else 'received') if len(plist)==1 else 'self-payment' else: direction = 'forwarding' label = _('Forwarding') preimage = self.get_preimage(payment_hash).hex() item = { 'type': 'payment', 'label': label, 'timestamp': timestamp or 0, 'date': timestamp_to_datetime(timestamp), 'direction': direction, 'amount_msat': amount_msat, 'fee_msat': fee_msat, 'payment_hash': key, 'preimage': preimage, } # add group_id to swap transactions swap = self.swap_manager.get_swap(payment_hash) if swap: if swap.is_reverse: item['group_id'] = swap.spending_txid item['group_label'] = 'Reverse swap' + ' ' + self.config.format_amount_and_units(swap.lightning_amount) else: item['group_id'] = swap.funding_txid item['group_label'] = 'Forward swap' + ' ' + self.config.format_amount_and_units(swap.onchain_amount) # done out[payment_hash] = item return out def get_onchain_history(self): current_height = self.wallet.get_local_height() out = {} # add funding events for chan in self.channels.values(): item = chan.get_funding_height() if item is None: continue if not self.lnwatcher: continue # lnwatcher not available with --offline (its data is not persisted) funding_txid, funding_height, funding_timestamp = item tx_height = self.lnwatcher.get_tx_height(funding_txid) item = { 'channel_id': bh2u(chan.channel_id), 'type': 'channel_opening', 'label': self.wallet.get_label_for_txid(funding_txid) or (_('Open channel') + ' ' + chan.get_id_for_log()), 'txid': funding_txid, 'amount_msat': chan.balance(LOCAL, ctn=0), 'direction': 'received', 'timestamp': tx_height.timestamp, 'date': timestamp_to_datetime(tx_height.timestamp), 'fee_sat': None, 'fee_msat': None, 'height': tx_height.height, 'confirmations': tx_height.conf, } out[funding_txid] = item item = chan.get_closing_height() if item is None: continue closing_txid, closing_height, closing_timestamp = item tx_height = self.lnwatcher.get_tx_height(closing_txid) item = { 'channel_id': bh2u(chan.channel_id), 'txid': closing_txid, 'label': self.wallet.get_label_for_txid(closing_txid) or (_('Close channel') + ' ' + chan.get_id_for_log()), 'type': 'channel_closure', 'amount_msat': -chan.balance_minus_outgoing_htlcs(LOCAL), 'direction': 'sent', 'timestamp': tx_height.timestamp, 'date': timestamp_to_datetime(tx_height.timestamp), 'fee_sat': None, 'fee_msat': None, 'height': tx_height.height, 'confirmations': tx_height.conf, } out[closing_txid] = item # add info about submarine swaps settled_payments = self.get_payments(status='settled') for payment_hash_hex, swap in self.swap_manager.swaps.items(): txid = swap.spending_txid if swap.is_reverse else swap.funding_txid if txid is None: continue payment_hash = bytes.fromhex(payment_hash_hex) if payment_hash in settled_payments: plist = settled_payments[payment_hash] info = self.get_payment_info(payment_hash) amount_msat, fee_msat, timestamp = self.get_payment_value(info, plist) else: amount_msat = 0 label = 'Reverse swap' if swap.is_reverse else 'Forward swap' delta = current_height - swap.locktime if not swap.is_redeemed and swap.spending_txid is None and delta < 0: label += f' (refundable in {-delta} blocks)' # fixme: only if unspent out[txid] = { 'txid': txid, 'group_id': txid, 'amount_msat': 0, #'amount_msat': amount_msat, # must not be added 'type': 'swap', 'label': self.wallet.get_label_for_txid(txid) or label, } return out def get_history(self): out = list(self.get_lightning_history().values()) + list(self.get_onchain_history().values()) # sort by timestamp out.sort(key=lambda x: (x.get('timestamp') or float("inf"))) balance_msat = 0 for item in out: balance_msat += item['amount_msat'] item['balance_msat'] = balance_msat return out def channel_peers(self) -> List[bytes]: node_ids = [chan.node_id for chan in self.channels.values() if not chan.is_closed()] return node_ids def channels_for_peer(self, node_id): assert type(node_id) is bytes return {chan_id: chan for (chan_id, chan) in self.channels.items() if chan.node_id == node_id} def channel_state_changed(self, chan: Channel): if type(chan) is Channel: self.save_channel(chan) util.trigger_callback('channel', self.wallet, chan) def save_channel(self, chan: Channel): assert type(chan) is Channel if chan.config[REMOTE].next_per_commitment_point == chan.config[REMOTE].current_per_commitment_point: raise Exception("Tried to save channel with next_point == current_point, this should not happen") self.wallet.save_db() util.trigger_callback('channel', self.wallet, chan) def channel_by_txo(self, txo: str) -> Optional[AbstractChannel]: for chan in self.channels.values(): if chan.funding_outpoint.to_str() == txo: return chan for chan in self.channel_backups.values(): if chan.funding_outpoint.to_str() == txo: return chan async def on_channel_update(self, chan: Channel): if type(chan) is ChannelBackup: util.trigger_callback('channel', self.wallet, chan) return if chan.get_state() == ChannelState.OPEN and chan.should_be_closed_due_to_expiring_htlcs(self.network.get_local_height()): self.logger.info(f"force-closing due to expiring htlcs") await self.try_force_closing(chan.channel_id) elif chan.get_state() == ChannelState.FUNDED: peer = self._peers.get(chan.node_id) if peer and peer.is_initialized(): peer.send_funding_locked(chan) elif chan.get_state() == ChannelState.OPEN: peer = self._peers.get(chan.node_id) if peer: await peer.maybe_update_fee(chan) conf = self.lnwatcher.get_tx_height(chan.funding_outpoint.txid).conf peer.on_network_update(chan, conf) elif chan.get_state() == ChannelState.FORCE_CLOSING: force_close_tx = chan.force_close_tx() txid = force_close_tx.txid() height = self.lnwatcher.get_tx_height(txid).height if height == TX_HEIGHT_LOCAL: self.logger.info('REBROADCASTING CLOSING TX') await self.network.try_broadcasting(force_close_tx, 'force-close') @log_exceptions async def _open_channel_coroutine( self, *, connect_str: str, funding_tx: PartialTransaction, funding_sat: int, push_sat: int, password: Optional[str]) -> Tuple[Channel, PartialTransaction]: peer = await self.add_peer(connect_str) coro = peer.channel_establishment_flow( funding_tx=funding_tx, funding_sat=funding_sat, push_msat=push_sat * 1000, temp_channel_id=os.urandom(32)) chan, funding_tx = await asyncio.wait_for(coro, LN_P2P_NETWORK_TIMEOUT) util.trigger_callback('channels_updated', self.wallet) self.wallet.add_transaction(funding_tx) # save tx as local into the wallet self.wallet.sign_transaction(funding_tx, password) self.wallet.set_label(funding_tx.txid(), _('Open channel')) if funding_tx.is_complete(): await self.network.try_broadcasting(funding_tx, 'open_channel') return chan, funding_tx def add_channel(self, chan: Channel): with self.lock: self._channels[chan.channel_id] = chan self.lnwatcher.add_channel(chan.funding_outpoint.to_str(), chan.get_funding_address()) def add_new_channel(self, chan: Channel): self.add_channel(chan) channels_db = self.db.get_dict('channels') channels_db[chan.channel_id.hex()] = chan.storage for addr in chan.get_wallet_addresses_channel_might_want_reserved(): self.wallet.set_reserved_state_of_address(addr, reserved=True) try: self.save_channel(chan) backup_dir = self.config.get_backup_dir() if backup_dir is not None: self.wallet.save_backup(backup_dir) except: chan.set_state(ChannelState.REDEEMED) self.remove_channel(chan.channel_id) raise def cb_data(self, node_id): return CB_MAGIC_BYTES + node_id[0:16] def decrypt_cb_data(self, encrypted_data, funding_address): funding_scripthash = bytes.fromhex(address_to_scripthash(funding_address)) nonce = funding_scripthash[0:12] return chacha20_decrypt(key=self.backup_key, data=encrypted_data, nonce=nonce) def encrypt_cb_data(self, data, funding_address): funding_scripthash = bytes.fromhex(address_to_scripthash(funding_address)) nonce = funding_scripthash[0:12] return chacha20_encrypt(key=self.backup_key, data=data, nonce=nonce) def mktx_for_open_channel( self, *, coins: Sequence[PartialTxInput], funding_sat: int, node_id: bytes, fee_est=None) -> PartialTransaction: outputs = [PartialTxOutput.from_address_and_value(ln_dummy_address(), funding_sat)] if self.has_recoverable_channels(): dummy_scriptpubkey = make_op_return(self.cb_data(node_id)) outputs.append(PartialTxOutput(scriptpubkey=dummy_scriptpubkey, value=0)) tx = self.wallet.make_unsigned_transaction( coins=coins, outputs=outputs, fee=fee_est) tx.set_rbf(False) return tx def open_channel(self, *, connect_str: str, funding_tx: PartialTransaction, funding_sat: int, push_amt_sat: int, password: str = None) -> Tuple[Channel, PartialTransaction]: if funding_sat > LN_MAX_FUNDING_SAT: raise Exception(_("Requested channel capacity is over protocol allowed maximum.")) coro = self._open_channel_coroutine( connect_str=connect_str, funding_tx=funding_tx, funding_sat=funding_sat, push_sat=push_amt_sat, password=password) fut = asyncio.run_coroutine_threadsafe(coro, self.network.asyncio_loop) try: chan, funding_tx = fut.result() except concurrent.futures.TimeoutError: raise Exception(_("open_channel timed out")) return chan, funding_tx def get_channel_by_short_id(self, short_channel_id: bytes) -> Optional[Channel]: for chan in self.channels.values(): if chan.short_channel_id == short_channel_id: return chan def create_routes_from_invoice(self, amount_msat: int, decoded_invoice: LnAddr, *, full_path=None): return self.create_routes_for_payment( amount_msat=amount_msat, final_total_msat=amount_msat, invoice_pubkey=decoded_invoice.pubkey.serialize(), min_cltv_expiry=decoded_invoice.get_min_final_cltv_expiry(), r_tags=decoded_invoice.get_routing_info('r'), invoice_features=decoded_invoice.get_features(), trampoline_fee_level=0, use_two_trampolines=False, payment_hash=decoded_invoice.paymenthash, payment_secret=decoded_invoice.payment_secret, full_path=full_path) @log_exceptions async def pay_invoice( self, invoice: str, *, amount_msat: int = None, attempts: int = 1, full_path: LNPaymentPath = None) -> Tuple[bool, List[HtlcLog]]: lnaddr = self._check_invoice(invoice, amount_msat=amount_msat) min_cltv_expiry = lnaddr.get_min_final_cltv_expiry() payment_hash = lnaddr.paymenthash key = payment_hash.hex() payment_secret = lnaddr.payment_secret invoice_pubkey = lnaddr.pubkey.serialize() invoice_features = lnaddr.get_features() r_tags = lnaddr.get_routing_info('r') amount_to_pay = lnaddr.get_amount_msat() status = self.get_payment_status(payment_hash) if status == PR_PAID: raise PaymentFailure(_("This invoice has been paid already")) if status == PR_INFLIGHT: raise PaymentFailure(_("A payment was already initiated for this invoice")) if payment_hash in self.get_payments(status='inflight'): raise PaymentFailure(_("A previous attempt to pay this invoice did not clear")) info = PaymentInfo(payment_hash, amount_to_pay, SENT, PR_UNPAID) self.save_payment_info(info) self.wallet.set_label(key, lnaddr.get_description()) self.set_invoice_status(key, PR_INFLIGHT) try: await self.pay_to_node( node_pubkey=invoice_pubkey, payment_hash=payment_hash, payment_secret=payment_secret, amount_to_pay=amount_to_pay, min_cltv_expiry=min_cltv_expiry, r_tags=r_tags, invoice_features=invoice_features, attempts=attempts, full_path=full_path) success = True except PaymentFailure as e: self.logger.info(f'payment failure: {e!r}') success = False reason = str(e) if success: self.set_invoice_status(key, PR_PAID) util.trigger_callback('payment_succeeded', self.wallet, key) else: self.set_invoice_status(key, PR_UNPAID) util.trigger_callback('payment_failed', self.wallet, key, reason) log = self.logs[key] return success, log async def pay_to_node( self, *, node_pubkey: bytes, payment_hash: bytes, payment_secret: Optional[bytes], amount_to_pay: int, # in msat min_cltv_expiry: int, r_tags, invoice_features: int, attempts: int = 1, full_path: LNPaymentPath = None, fwd_trampoline_onion=None, fwd_trampoline_fee=None, fwd_trampoline_cltv_delta=None) -> None: if fwd_trampoline_onion: # todo: compare to the fee of the actual route we found if fwd_trampoline_fee < 1000: raise OnionRoutingFailure(code=OnionFailureCode.TRAMPOLINE_FEE_INSUFFICIENT, data=b'') if fwd_trampoline_cltv_delta < 576: raise OnionRoutingFailure(code=OnionFailureCode.TRAMPOLINE_EXPIRY_TOO_SOON, data=b'') self.logs[payment_hash.hex()] = log = [] trampoline_fee_level = self.INITIAL_TRAMPOLINE_FEE_LEVEL use_two_trampolines = True # only used for pay to legacy amount_inflight = 0 # what we sent in htlcs (that receiver gets, without fees) while True: amount_to_send = amount_to_pay - amount_inflight if amount_to_send > 0: # 1. create a set of routes for remaining amount. # note: path-finding runs in a separate thread so that we don't block the asyncio loop # graph updates might occur during the computation routes = await run_in_thread(partial( self.create_routes_for_payment, amount_msat=amount_to_send, final_total_msat=amount_to_pay, invoice_pubkey=node_pubkey, min_cltv_expiry=min_cltv_expiry, r_tags=r_tags, invoice_features=invoice_features, full_path=full_path, payment_hash=payment_hash, payment_secret=payment_secret, trampoline_fee_level=trampoline_fee_level, use_two_trampolines=use_two_trampolines, fwd_trampoline_onion=fwd_trampoline_onion)) # 2. send htlcs for route, amount_msat, total_msat, amount_receiver_msat, cltv_delta, bucket_payment_secret, trampoline_onion in routes: amount_inflight += amount_receiver_msat if amount_inflight > amount_to_pay: # safety belts raise Exception(f"amount_inflight={amount_inflight} > amount_to_pay={amount_to_pay}") await self.pay_to_route( route=route, amount_msat=amount_msat, total_msat=total_msat, amount_receiver_msat=amount_receiver_msat, payment_hash=payment_hash, payment_secret=bucket_payment_secret, min_cltv_expiry=cltv_delta, trampoline_onion=trampoline_onion) util.trigger_callback('invoice_status', self.wallet, payment_hash.hex()) # 3. await a queue self.logger.info(f"amount inflight {amount_inflight}") htlc_log = await self.sent_htlcs[payment_hash].get() amount_inflight -= htlc_log.amount_msat if amount_inflight < 0: raise Exception(f"amount_inflight={amount_inflight} < 0") log.append(htlc_log) if htlc_log.success: # TODO: report every route to liquidity hints for mpp # even in the case of success, we report channels of the # route as being able to send the same amount in the future, # as we assume to not know the capacity if self.network.path_finder: self.network.path_finder.update_liquidity_hints(htlc_log.route, htlc_log.amount_msat) return # htlc failed if len(log) >= attempts: raise PaymentFailure('Giving up after %d attempts'%len(log)) # if we get a tmp channel failure, it might work to split the amount and try more routes # if we get a channel update, we might retry the same route and amount route = htlc_log.route sender_idx = htlc_log.sender_idx failure_msg = htlc_log.failure_msg code, data = failure_msg.code, failure_msg.data self.logger.info(f"UPDATE_FAIL_HTLC. code={repr(code)}. " f"decoded_data={failure_msg.decode_data()}. data={data.hex()!r}") self.logger.info(f"error reported by {bh2u(route[sender_idx].node_id)}") if code == OnionFailureCode.MPP_TIMEOUT: raise PaymentFailure(failure_msg.code_name()) # trampoline if not self.channel_db: if code == OnionFailureCode.TRAMPOLINE_FEE_INSUFFICIENT: # todo: parse the node parameters here (not returned by eclair yet) trampoline_fee_level += 1 continue elif use_two_trampolines: use_two_trampolines = False else: raise PaymentFailure(failure_msg.code_name()) else: self.handle_error_code_from_failed_htlc( route=route, sender_idx=sender_idx, failure_msg=failure_msg, amount=htlc_log.amount_msat) async def pay_to_route( self, *, route: LNPaymentRoute, amount_msat: int, total_msat: int, amount_receiver_msat:int, payment_hash: bytes, payment_secret: Optional[bytes], min_cltv_expiry: int, trampoline_onion: bytes = None) -> None: # send a single htlc short_channel_id = route[0].short_channel_id chan = self.get_channel_by_short_id(short_channel_id) peer = self._peers.get(route[0].node_id) if not peer: raise PaymentFailure('Dropped peer') await peer.initialized htlc = peer.pay( route=route, chan=chan, amount_msat=amount_msat, total_msat=total_msat, payment_hash=payment_hash, min_final_cltv_expiry=min_cltv_expiry, payment_secret=payment_secret, trampoline_onion=trampoline_onion) key = (payment_hash, short_channel_id, htlc.htlc_id) self.sent_htlcs_routes[key] = route, payment_secret, amount_msat, total_msat, amount_receiver_msat # if we sent MPP to a trampoline, add item to sent_buckets if not self.channel_db and amount_msat != total_msat: if payment_secret not in self.sent_buckets: self.sent_buckets[payment_secret] = (0, 0) amount_sent, amount_failed = self.sent_buckets[payment_secret] amount_sent += amount_receiver_msat self.sent_buckets[payment_secret] = amount_sent, amount_failed util.trigger_callback('htlc_added', chan, htlc, SENT) def handle_error_code_from_failed_htlc( self, *, route: LNPaymentRoute, sender_idx: int, failure_msg: OnionRoutingFailure, amount: int) -> None: code, data = failure_msg.code, failure_msg.data # TODO can we use lnmsg.OnionWireSerializer here? # TODO update onion_wire.csv # handle some specific error codes failure_codes = { OnionFailureCode.TEMPORARY_CHANNEL_FAILURE: 0, OnionFailureCode.AMOUNT_BELOW_MINIMUM: 8, OnionFailureCode.FEE_INSUFFICIENT: 8, OnionFailureCode.INCORRECT_CLTV_EXPIRY: 4, OnionFailureCode.EXPIRY_TOO_SOON: 0, OnionFailureCode.CHANNEL_DISABLED: 2, } # determine a fallback channel to blacklist if we don't get the erring # channel via the payload if sender_idx is None: raise PaymentFailure(failure_msg.code_name()) try: fallback_channel = route[sender_idx + 1].short_channel_id except IndexError: raise PaymentFailure(f'payment destination reported error: {failure_msg.code_name()}') from None # TODO: handle unknown next peer? # handle failure codes that include a channel update if code in failure_codes: offset = failure_codes[code] channel_update_len = int.from_bytes(data[offset:offset+2], byteorder="big") channel_update_as_received = data[offset+2: offset+2+channel_update_len] payload = self._decode_channel_update_msg(channel_update_as_received) if payload is None: self.logger.info(f'could not decode channel_update for failed htlc: ' f'{channel_update_as_received.hex()}') self.network.path_finder.liquidity_hints.add_to_blacklist(fallback_channel) else: # apply the channel update or get blacklisted blacklist, update = self._handle_chanupd_from_failed_htlc( payload, route=route, sender_idx=sender_idx) # we interpret a temporary channel failure as a liquidity issue # in the channel and update our liquidity hints accordingly if code == OnionFailureCode.TEMPORARY_CHANNEL_FAILURE: self.network.path_finder.update_liquidity_hints( route, amount, failing_channel=ShortChannelID(payload['short_channel_id'])) elif blacklist: self.network.path_finder.liquidity_hints.add_to_blacklist( payload['short_channel_id']) # if we can't decide on some action, we are stuck if not (blacklist or update): raise PaymentFailure(failure_msg.code_name()) # for errors that do not include a channel update else: self.network.path_finder.liquidity_hints.add_to_blacklist(fallback_channel) def _handle_chanupd_from_failed_htlc(self, payload, *, route, sender_idx) -> Tuple[bool, bool]: blacklist = False update = False try: r = self.channel_db.add_channel_update(payload, verify=True) except InvalidGossipMsg: return True, False # blacklist short_channel_id = ShortChannelID(payload['short_channel_id']) if r == UpdateStatus.GOOD: self.logger.info(f"applied channel update to {short_channel_id}") # TODO: add test for this # FIXME: this does not work for our own unannounced channels. for chan in self.channels.values(): if chan.short_channel_id == short_channel_id: chan.set_remote_update(payload) update = True elif r == UpdateStatus.ORPHANED: # maybe it is a private channel (and data in invoice was outdated) self.logger.info(f"Could not find {short_channel_id}. maybe update is for private channel?") start_node_id = route[sender_idx].node_id update = self.channel_db.add_channel_update_for_private_channel(payload, start_node_id) blacklist = not update elif r == UpdateStatus.EXPIRED: blacklist = True elif r == UpdateStatus.DEPRECATED: self.logger.info(f'channel update is not more recent.') blacklist = True elif r == UpdateStatus.UNCHANGED: blacklist = True return blacklist, update @classmethod def _decode_channel_update_msg(cls, chan_upd_msg: bytes) -> Optional[Dict[str, Any]]: channel_update_as_received = chan_upd_msg channel_update_typed = (258).to_bytes(length=2, byteorder="big") + channel_update_as_received # note: some nodes put channel updates in error msgs with the leading msg_type already there. # we try decoding both ways here. try: message_type, payload = decode_msg(channel_update_typed) if payload['chain_hash'] != constants.net.rev_genesis_bytes(): raise Exception() payload['raw'] = channel_update_typed return payload except: # FIXME: too broad try: message_type, payload = decode_msg(channel_update_as_received) if payload['chain_hash'] != constants.net.rev_genesis_bytes(): raise Exception() payload['raw'] = channel_update_as_received return payload except: return None @staticmethod def _check_invoice(invoice: str, *, amount_msat: int = None) -> LnAddr: addr = lndecode(invoice, expected_hrp=constants.net.SEGWIT_HRP) if addr.is_expired(): raise InvoiceError(_("This invoice has expired")) if amount_msat: # replace amt in invoice. main usecase is paying zero amt invoices existing_amt_msat = addr.get_amount_msat() if existing_amt_msat and amount_msat < existing_amt_msat: raise Exception("cannot pay lower amt than what is originally in LN invoice") addr.amount = Decimal(amount_msat) / COIN / 1000 if addr.amount is None: raise InvoiceError(_("Missing amount")) if addr.get_min_final_cltv_expiry() > lnutil.NBLOCK_CLTV_EXPIRY_TOO_FAR_INTO_FUTURE: raise InvoiceError("{}\n{}".format( _("Invoice wants us to risk locking funds for unreasonably long."), f"min_final_cltv_expiry: {addr.get_min_final_cltv_expiry()}")) return addr def is_trampoline_peer(self, node_id: bytes) -> bool: # until trampoline is advertised in lnfeatures, check against hardcoded list if is_hardcoded_trampoline(node_id): return True peer = self._peers.get(node_id) if peer and peer.their_features.supports(LnFeatures.OPTION_TRAMPOLINE_ROUTING_OPT): return True return False def suggest_peer(self) -> Optional[bytes]: if self.channel_db: return self.lnrater.suggest_peer() else: return random.choice(list(hardcoded_trampoline_nodes().values())).pubkey @profiler def create_routes_for_payment( self, *, amount_msat: int, # part of payment amount we want routes for now final_total_msat: int, # total payment amount final receiver will get invoice_pubkey, min_cltv_expiry, r_tags, invoice_features: int, payment_hash, payment_secret, trampoline_fee_level: int, use_two_trampolines: bool, fwd_trampoline_onion = None, full_path: LNPaymentPath = None) -> Sequence[Tuple[LNPaymentRoute, int]]: """Creates multiple routes for splitting a payment over the available private channels. We first try to conduct the payment over a single channel. If that fails and mpp is supported by the receiver, we will split the payment.""" # It could happen that the pathfinding uses a channel # in the graph multiple times, meaning we could exhaust # its capacity. This could be dealt with by temporarily # iteratively blacklisting channels for this mpp attempt. invoice_features = LnFeatures(invoice_features) trampoline_features = LnFeatures.VAR_ONION_OPT local_height = self.network.get_local_height() active_channels = [chan for chan in self.channels.values() if chan.is_active() and not chan.is_frozen_for_sending()] try: # try to send over a single channel if not self.channel_db: for chan in active_channels: if not self.is_trampoline_peer(chan.node_id): continue if chan.node_id == invoice_pubkey: trampoline_onion = None trampoline_payment_secret = payment_secret trampoline_total_msat = final_total_msat amount_with_fees = amount_msat cltv_delta = min_cltv_expiry else: trampoline_onion, amount_with_fees, cltv_delta = create_trampoline_route_and_onion( amount_msat=amount_msat, total_msat=final_total_msat, min_cltv_expiry=min_cltv_expiry, my_pubkey=self.node_keypair.pubkey, invoice_pubkey=invoice_pubkey, invoice_features=invoice_features, node_id=chan.node_id, r_tags=r_tags, payment_hash=payment_hash, payment_secret=payment_secret, local_height=local_height, trampoline_fee_level=trampoline_fee_level, use_two_trampolines=use_two_trampolines) trampoline_payment_secret = os.urandom(32) trampoline_total_msat = amount_with_fees if chan.available_to_spend(LOCAL, strict=True) < amount_with_fees: continue route = [ RouteEdge( start_node=self.node_keypair.pubkey, end_node=chan.node_id, short_channel_id=chan.short_channel_id, fee_base_msat=0, fee_proportional_millionths=0, cltv_expiry_delta=0, node_features=trampoline_features) ] routes = [(route, amount_with_fees, trampoline_total_msat, amount_msat, cltv_delta, trampoline_payment_secret, trampoline_onion)] break else: raise NoPathFound() else: route = self.create_route_for_payment( amount_msat=amount_msat, invoice_pubkey=invoice_pubkey, min_cltv_expiry=min_cltv_expiry, r_tags=r_tags, invoice_features=invoice_features, channels=active_channels, full_path=full_path) routes = [(route, amount_msat, final_total_msat, amount_msat, min_cltv_expiry, payment_secret, fwd_trampoline_onion)] except NoPathFound: if not invoice_features.supports(LnFeatures.BASIC_MPP_OPT): raise channels_with_funds = { (chan.channel_id, chan.node_id): int(chan.available_to_spend(HTLCOwner.LOCAL)) for chan in active_channels} self.logger.info(f"channels_with_funds: {channels_with_funds}") # for trampoline mpp payments we have to restrict ourselves to pay # to a single node due to some incompatibility in Eclair, see: # https://github.com/ACINQ/eclair/issues/1723 use_singe_node = not self.channel_db and constants.net is constants.BitcoinMainnet split_configurations = suggest_splits(amount_msat, channels_with_funds, single_node=use_singe_node) self.logger.info(f'suggest_split {amount_msat} returned {len(split_configurations)} configurations') for s in split_configurations: self.logger.info(f"trying split configuration: {s[0].values()} rating: {s[1]}") routes = [] try: if not self.channel_db: buckets = defaultdict(list) for (chan_id, _), part_amount_msat in s[0].items(): chan = self.channels[chan_id] if part_amount_msat: buckets[chan.node_id].append((chan_id, part_amount_msat)) for node_id, bucket in buckets.items(): bucket_amount_msat = sum([x[1] for x in bucket]) trampoline_onion, bucket_amount_with_fees, bucket_cltv_delta = create_trampoline_route_and_onion( amount_msat=bucket_amount_msat, total_msat=final_total_msat, min_cltv_expiry=min_cltv_expiry, my_pubkey=self.node_keypair.pubkey, invoice_pubkey=invoice_pubkey, invoice_features=invoice_features, node_id=node_id, r_tags=r_tags, payment_hash=payment_hash, payment_secret=payment_secret, local_height=local_height, trampoline_fee_level=trampoline_fee_level, use_two_trampolines=use_two_trampolines) # node_features is only used to determine is_tlv bucket_payment_secret = os.urandom(32) bucket_fees = bucket_amount_with_fees - bucket_amount_msat self.logger.info(f'bucket_fees {bucket_fees}') for chan_id, part_amount_msat in bucket: chan = self.channels[chan_id] margin = chan.available_to_spend(LOCAL, strict=True) - part_amount_msat delta_fee = min(bucket_fees, margin) part_amount_msat_with_fees = part_amount_msat + delta_fee bucket_fees -= delta_fee route = [ RouteEdge( start_node=self.node_keypair.pubkey, end_node=node_id, short_channel_id=chan.short_channel_id, fee_base_msat=0, fee_proportional_millionths=0, cltv_expiry_delta=0, node_features=trampoline_features) ] self.logger.info(f'adding route {part_amount_msat} {delta_fee} {margin}') routes.append((route, part_amount_msat_with_fees, bucket_amount_with_fees, part_amount_msat, bucket_cltv_delta, bucket_payment_secret, trampoline_onion)) if bucket_fees != 0: self.logger.info('not enough margin to pay trampoline fee') raise NoPathFound() else: for (chan_id, _), part_amount_msat in s[0].items(): if part_amount_msat: channel = self.channels[chan_id] route = self.create_route_for_payment( amount_msat=part_amount_msat, invoice_pubkey=invoice_pubkey, min_cltv_expiry=min_cltv_expiry, r_tags=r_tags, invoice_features=invoice_features, channels=[channel], full_path=None) routes.append((route, part_amount_msat, final_total_msat, part_amount_msat, min_cltv_expiry, payment_secret, fwd_trampoline_onion)) self.logger.info(f"found acceptable split configuration: {list(s[0].values())} rating: {s[1]}") break except NoPathFound: continue else: raise NoPathFound() return routes def create_route_for_payment( self, *, amount_msat: int, invoice_pubkey: bytes, min_cltv_expiry: int, r_tags, invoice_features: int, channels: List[Channel], full_path: Optional[LNPaymentPath]) -> Tuple[LNPaymentRoute, int]: scid_to_my_channels = { chan.short_channel_id: chan for chan in channels if chan.short_channel_id is not None } # Collect all private edges from route hints. # Note: if some route hints are multiple edges long, and these paths cross each other, # we allow our path finding to cross the paths; i.e. the route hints are not isolated. private_route_edges = {} # type: Dict[ShortChannelID, RouteEdge] for private_path in r_tags: # we need to shift the node pubkey by one towards the destination: private_path_nodes = [edge[0] for edge in private_path][1:] + [invoice_pubkey] private_path_rest = [edge[1:] for edge in private_path] start_node = private_path[0][0] for end_node, edge_rest in zip(private_path_nodes, private_path_rest): short_channel_id, fee_base_msat, fee_proportional_millionths, cltv_expiry_delta = edge_rest short_channel_id = ShortChannelID(short_channel_id) # if we have a routing policy for this edge in the db, that takes precedence, # as it is likely from a previous failure channel_policy = self.channel_db.get_policy_for_node( short_channel_id=short_channel_id, node_id=start_node, my_channels=scid_to_my_channels) if channel_policy: fee_base_msat = channel_policy.fee_base_msat fee_proportional_millionths = channel_policy.fee_proportional_millionths cltv_expiry_delta = channel_policy.cltv_expiry_delta node_info = self.channel_db.get_node_info_for_node_id(node_id=end_node) route_edge = RouteEdge( start_node=start_node, end_node=end_node, short_channel_id=short_channel_id, fee_base_msat=fee_base_msat, fee_proportional_millionths=fee_proportional_millionths, cltv_expiry_delta=cltv_expiry_delta, node_features=node_info.features if node_info else 0) private_route_edges[route_edge.short_channel_id] = route_edge start_node = end_node # now find a route, end to end: between us and the recipient try: route = self.network.path_finder.find_route( nodeA=self.node_keypair.pubkey, nodeB=invoice_pubkey, invoice_amount_msat=amount_msat, path=full_path, my_channels=scid_to_my_channels, private_route_edges=private_route_edges) except NoChannelPolicy as e: raise NoPathFound() from e if not route: raise NoPathFound() # test sanity if not is_route_sane_to_use(route, amount_msat, min_cltv_expiry): self.logger.info(f"rejecting insane route {route}") raise NoPathFound() assert len(route) > 0 if route[-1].end_node != invoice_pubkey: raise LNPathInconsistent("last node_id != invoice pubkey") # add features from invoice route[-1].node_features |= invoice_features return route def add_request(self, amount_sat, message, expiry) -> str: coro = self._add_request_coro(amount_sat, message, expiry) fut = asyncio.run_coroutine_threadsafe(coro, self.network.asyncio_loop) try: return fut.result(timeout=5) except concurrent.futures.TimeoutError: raise Exception(_("add invoice timed out")) @log_exceptions async def create_invoice( self, *, amount_msat: Optional[int], message: str, expiry: int) -> Tuple[LnAddr, str]: timestamp = int(time.time()) routing_hints = await self._calc_routing_hints_for_invoice(amount_msat) if not routing_hints: self.logger.info( "Warning. No routing hints added to invoice. " "Other clients will likely not be able to send to us.") # if not all hints are trampoline, do not create trampoline invoice invoice_features = self.features.for_invoice() trampoline_hints = [] for r in routing_hints: node_id, short_channel_id, fee_base_msat, fee_proportional_millionths, cltv_expiry_delta = r[1][0] if len(r[1])== 1 and self.is_trampoline_peer(node_id): trampoline_hints.append(('t', (node_id, fee_base_msat, fee_proportional_millionths, cltv_expiry_delta))) payment_preimage = os.urandom(32) payment_hash = sha256(payment_preimage) info = PaymentInfo(payment_hash, amount_msat, RECEIVED, PR_UNPAID) amount_btc = amount_msat/Decimal(COIN*1000) if amount_msat else None if expiry == 0: expiry = LN_EXPIRY_NEVER lnaddr = LnAddr( paymenthash=payment_hash, amount=amount_btc, tags=[ ('d', message), ('c', MIN_FINAL_CLTV_EXPIRY_FOR_INVOICE), ('x', expiry), ('9', invoice_features)] + routing_hints + trampoline_hints, date=timestamp, payment_secret=derive_payment_secret_from_payment_preimage(payment_preimage)) invoice = lnencode(lnaddr, self.node_keypair.privkey) self.save_preimage(payment_hash, payment_preimage) self.save_payment_info(info) return lnaddr, invoice async def _add_request_coro(self, amount_sat: Optional[int], message, expiry: int) -> str: amount_msat = amount_sat * 1000 if amount_sat is not None else None lnaddr, invoice = await self.create_invoice( amount_msat=amount_msat, message=message, expiry=expiry) key = bh2u(lnaddr.paymenthash) req = LNInvoice.from_bech32(invoice) self.wallet.add_payment_request(req) self.wallet.set_label(key, message) return key def save_preimage(self, payment_hash: bytes, preimage: bytes): assert sha256(preimage) == payment_hash self.preimages[bh2u(payment_hash)] = bh2u(preimage) self.wallet.save_db() def get_preimage(self, payment_hash: bytes) -> Optional[bytes]: r = self.preimages.get(bh2u(payment_hash)) return bfh(r) if r else None def get_payment_info(self, payment_hash: bytes) -> Optional[PaymentInfo]: """returns None if payment_hash is a payment we are forwarding""" key = payment_hash.hex() with self.lock: if key in self.payments: amount_msat, direction, status = self.payments[key] return PaymentInfo(payment_hash, amount_msat, direction, status) def save_payment_info(self, info: PaymentInfo) -> None: key = info.payment_hash.hex() assert info.status in SAVED_PR_STATUS with self.lock: self.payments[key] = info.amount_msat, info.direction, info.status self.wallet.save_db() def check_received_mpp_htlc(self, payment_secret, short_channel_id, htlc: UpdateAddHtlc, expected_msat: int) -> Optional[bool]: """ return MPP status: True (accepted), False (expired) or None """ payment_hash = htlc.payment_hash is_expired, is_accepted, htlc_set = self.received_mpp_htlcs.get(payment_secret, (False, False, set())) if self.get_payment_status(payment_hash) == PR_PAID: # payment_status is persisted is_accepted = True is_expired = False key = (short_channel_id, htlc) if key not in htlc_set: htlc_set.add(key) if not is_accepted and not is_expired: total = sum([_htlc.amount_msat for scid, _htlc in htlc_set]) first_timestamp = min([_htlc.timestamp for scid, _htlc in htlc_set]) if self.stopping_soon: is_expired = True # try to time out pending HTLCs before shutting down elif time.time() - first_timestamp > self.MPP_EXPIRY: is_expired = True elif total == expected_msat: is_accepted = True if is_accepted or is_expired: htlc_set.remove(key) if len(htlc_set) > 0: self.received_mpp_htlcs[payment_secret] = is_expired, is_accepted, htlc_set elif payment_secret in self.received_mpp_htlcs: self.received_mpp_htlcs.pop(payment_secret) return True if is_accepted else (False if is_expired else None) def get_payment_status(self, payment_hash: bytes) -> int: info = self.get_payment_info(payment_hash) return info.status if info else PR_UNPAID def get_invoice_status(self, invoice: LNInvoice) -> int: key = invoice.rhash log = self.logs[key] if key in self.inflight_payments: return PR_INFLIGHT # status may be PR_FAILED status = self.get_payment_status(bfh(key)) if status == PR_UNPAID and log: status = PR_FAILED return status def set_invoice_status(self, key: str, status: int) -> None: if status == PR_INFLIGHT: self.inflight_payments.add(key) elif key in self.inflight_payments: self.inflight_payments.remove(key) if status in SAVED_PR_STATUS: self.set_payment_status(bfh(key), status) util.trigger_callback('invoice_status', self.wallet, key) def set_request_status(self, payment_hash: bytes, status: int) -> None: if self.get_payment_status(payment_hash) != status: self.set_payment_status(payment_hash, status) util.trigger_callback('request_status', self.wallet, payment_hash.hex(), status) def set_payment_status(self, payment_hash: bytes, status: int) -> None: info = self.get_payment_info(payment_hash) if info is None: # if we are forwarding return info = info._replace(status=status) self.save_payment_info(info) def htlc_fulfilled(self, chan, payment_hash: bytes, htlc_id:int): util.trigger_callback('htlc_fulfilled', payment_hash, chan.channel_id) q = self.sent_htlcs.get(payment_hash) if q: route, payment_secret, amount_msat, bucket_msat, amount_receiver_msat = self.sent_htlcs_routes[(payment_hash, chan.short_channel_id, htlc_id)] htlc_log = HtlcLog( success=True, route=route, amount_msat=amount_receiver_msat) q.put_nowait(htlc_log) else: key = payment_hash.hex() self.set_invoice_status(key, PR_PAID) util.trigger_callback('payment_succeeded', self.wallet, key) def htlc_failed( self, chan: Channel, payment_hash: bytes, htlc_id: int, error_bytes: Optional[bytes], failure_message: Optional['OnionRoutingFailure']): util.trigger_callback('htlc_failed', payment_hash, chan.channel_id) q = self.sent_htlcs.get(payment_hash) if q: # detect if it is part of a bucket # if yes, wait until the bucket completely failed key = (payment_hash, chan.short_channel_id, htlc_id) route, payment_secret, amount_msat, bucket_msat, amount_receiver_msat = self.sent_htlcs_routes[key] if error_bytes: # TODO "decode_onion_error" might raise, catch and maybe blacklist/penalise someone? try: failure_message, sender_idx = chan.decode_onion_error(error_bytes, route, htlc_id) except Exception as e: sender_idx = None failure_message = OnionRoutingFailure(-1, str(e)) else: # probably got "update_fail_malformed_htlc". well... who to penalise now? assert failure_message is not None sender_idx = None self.logger.info(f"htlc_failed {failure_message}") # check sent_buckets if we use trampoline if not self.channel_db and payment_secret in self.sent_buckets: amount_sent, amount_failed = self.sent_buckets[payment_secret] amount_failed += amount_receiver_msat self.sent_buckets[payment_secret] = amount_sent, amount_failed if amount_sent != amount_failed: self.logger.info('bucket still active...') return self.logger.info('bucket failed') amount_receiver_msat = amount_sent htlc_log = HtlcLog( success=False, route=route, amount_msat=amount_receiver_msat, error_bytes=error_bytes, failure_msg=failure_message, sender_idx=sender_idx) q.put_nowait(htlc_log) else: self.logger.info(f"received unknown htlc_failed, probably from previous session") key = payment_hash.hex() self.set_invoice_status(key, PR_UNPAID) util.trigger_callback('payment_failed', self.wallet, key, '') async def _calc_routing_hints_for_invoice(self, amount_msat: Optional[int]): """calculate routing hints (BOLT-11 'r' field)""" routing_hints = [] channels = list(self.channels.values()) # do minimal filtering of channels. # we include channels that cannot *right now* receive (e.g. peer disconnected or balance insufficient) channels = [chan for chan in channels if (chan.is_open() and not chan.is_frozen_for_receiving())] # cap max channels to include to keep QR code reasonably scannable channels = sorted(channels, key=lambda chan: (not chan.is_active(), -chan.available_to_spend(REMOTE))) channels = channels[:15] random.shuffle(channels) # let's not leak channel order scid_to_my_channels = {chan.short_channel_id: chan for chan in channels if chan.short_channel_id is not None} for chan in channels: chan_id = chan.short_channel_id assert isinstance(chan_id, bytes), chan_id channel_info = get_mychannel_info(chan_id, scid_to_my_channels) # note: as a fallback, if we don't have a channel update for the # incoming direction of our private channel, we fill the invoice with garbage. # the sender should still be able to pay us, but will incur an extra round trip # (they will get the channel update from the onion error) # at least, that's the theory. https://github.com/lightningnetwork/lnd/issues/2066 fee_base_msat = fee_proportional_millionths = 0 cltv_expiry_delta = 1 # lnd won't even try with zero missing_info = True if channel_info: policy = get_mychannel_policy(channel_info.short_channel_id, chan.node_id, scid_to_my_channels) if policy: fee_base_msat = policy.fee_base_msat fee_proportional_millionths = policy.fee_proportional_millionths cltv_expiry_delta = policy.cltv_expiry_delta missing_info = False if missing_info: self.logger.info( f"Warning. Missing channel update for our channel {chan_id}; " f"filling invoice with incorrect data.") routing_hints.append(('r', [( chan.node_id, chan_id, fee_base_msat, fee_proportional_millionths, cltv_expiry_delta)])) return routing_hints def delete_payment(self, payment_hash_hex: str): try: with self.lock: del self.payments[payment_hash_hex] except KeyError: return self.wallet.save_db() def get_balance(self): with self.lock: return Decimal(sum( chan.balance(LOCAL) if not chan.is_closed() else 0 for chan in self.channels.values())) / 1000 def num_sats_can_send(self) -> Decimal: can_send = 0 with self.lock: if self.channels: for c in self.channels.values(): if c.is_active() and not c.is_frozen_for_sending(): can_send += c.available_to_spend(LOCAL) # Here we have to guess a fee, because some callers (submarine swaps) # use this method to initiate a payment, which would otherwise fail. fee_base_msat = TRAMPOLINE_FEES[3]['fee_base_msat'] fee_proportional_millionths = TRAMPOLINE_FEES[3]['fee_proportional_millionths'] # inverse of fee_for_edge_msat can_send_minus_fees = (can_send - fee_base_msat) * 1_000_000 // ( 1_000_000 + fee_proportional_millionths) can_send_minus_fees = max(0, can_send_minus_fees) return Decimal(can_send_minus_fees) / 1000 def num_sats_can_receive(self) -> Decimal: with self.lock: channels = [ c for c in self.channels.values() if c.is_active() and not c.is_frozen_for_receiving() ] can_receive = sum([c.available_to_spend(REMOTE) for c in channels]) if channels else 0 return Decimal(can_receive) / 1000 def num_sats_can_receive_no_mpp(self) -> Decimal: with self.lock: channels = [ c for c in self.channels.values() if c.is_active() and not c.is_frozen_for_receiving() ] can_receive = max([c.available_to_spend(REMOTE) for c in channels]) if channels else 0 return Decimal(can_receive) / 1000 def can_pay_invoice(self, invoice: LNInvoice) -> bool: return invoice.get_amount_sat() <= self.num_sats_can_send() def can_receive_invoice(self, invoice: LNInvoice) -> bool: return invoice.get_amount_sat() <= self.num_sats_can_receive() async def close_channel(self, chan_id): chan = self._channels[chan_id] peer = self._peers[chan.node_id] return await peer.close_channel(chan_id) async def force_close_channel(self, chan_id): # returns txid or raises chan = self._channels[chan_id] tx = chan.force_close_tx() await self.network.broadcast_transaction(tx) chan.set_state(ChannelState.FORCE_CLOSING) return tx.txid() async def try_force_closing(self, chan_id): # fails silently but sets the state, so that we will retry later chan = self._channels[chan_id] tx = chan.force_close_tx() chan.set_state(ChannelState.FORCE_CLOSING) await self.network.try_broadcasting(tx, 'force-close') def remove_channel(self, chan_id): chan = self.channels[chan_id] assert chan.can_be_deleted() with self.lock: self._channels.pop(chan_id) self.db.get('channels').pop(chan_id.hex()) for addr in chan.get_wallet_addresses_channel_might_want_reserved(): self.wallet.set_reserved_state_of_address(addr, reserved=False) util.trigger_callback('channels_updated', self.wallet) util.trigger_callback('wallet_updated', self.wallet) @ignore_exceptions @log_exceptions async def reestablish_peer_for_given_channel(self, chan: Channel) -> None: now = time.time() peer_addresses = [] if not self.channel_db: addr = trampolines_by_id().get(chan.node_id) if addr: peer_addresses.append(addr) else: # will try last good address first, from gossip last_good_addr = self.channel_db.get_last_good_address(chan.node_id) if last_good_addr: peer_addresses.append(last_good_addr) # will try addresses for node_id from gossip addrs_from_gossip = self.channel_db.get_node_addresses(chan.node_id) or [] for host, port, ts in addrs_from_gossip: peer_addresses.append(LNPeerAddr(host, port, chan.node_id)) # will try addresses stored in channel storage peer_addresses += list(chan.get_peer_addresses()) # Done gathering addresses. # Now select first one that has not failed recently. for peer in peer_addresses: if self._can_retry_addr(peer, urgent=True, now=now): await self._add_peer(peer.host, peer.port, peer.pubkey) return async def reestablish_peers_and_channels(self): while True: await asyncio.sleep(1) if self.stopping_soon: return for chan in self.channels.values(): if chan.is_closed(): continue # reestablish if not chan.should_try_to_reestablish_peer(): continue peer = self._peers.get(chan.node_id, None) if peer: await peer.taskgroup.spawn(peer.reestablish_channel(chan)) else: await self.taskgroup.spawn(self.reestablish_peer_for_given_channel(chan)) def current_feerate_per_kw(self): from .simple_config import FEE_LN_ETA_TARGET, FEERATE_FALLBACK_STATIC_FEE, FEERATE_REGTEST_HARDCODED if constants.net is constants.BitcoinRegtest: return FEERATE_REGTEST_HARDCODED // 4 feerate_per_kvbyte = self.network.config.eta_target_to_fee(FEE_LN_ETA_TARGET) if feerate_per_kvbyte is None: feerate_per_kvbyte = FEERATE_FALLBACK_STATIC_FEE return max(253, feerate_per_kvbyte // 4) def create_channel_backup(self, channel_id): chan = self._channels[channel_id] # do not backup old-style channels assert chan.is_static_remotekey_enabled() peer_addresses = list(chan.get_peer_addresses()) peer_addr = peer_addresses[0] return ImportedChannelBackupStorage( node_id = chan.node_id, privkey = self.node_keypair.privkey, funding_txid = chan.funding_outpoint.txid, funding_index = chan.funding_outpoint.output_index, funding_address = chan.get_funding_address(), host = peer_addr.host, port = peer_addr.port, is_initiator = chan.constraints.is_initiator, channel_seed = chan.config[LOCAL].channel_seed, local_delay = chan.config[LOCAL].to_self_delay, remote_delay = chan.config[REMOTE].to_self_delay, remote_revocation_pubkey = chan.config[REMOTE].revocation_basepoint.pubkey, remote_payment_pubkey = chan.config[REMOTE].payment_basepoint.pubkey) def export_channel_backup(self, channel_id): xpub = self.wallet.get_fingerprint() backup_bytes = self.create_channel_backup(channel_id).to_bytes() assert backup_bytes == ImportedChannelBackupStorage.from_bytes(backup_bytes).to_bytes(), "roundtrip failed" encrypted = pw_encode_with_version_and_mac(backup_bytes, xpub) assert backup_bytes == pw_decode_with_version_and_mac(encrypted, xpub), "encrypt failed" return 'channel_backup:' + encrypted async def request_force_close(self, channel_id: bytes, *, connect_str=None) -> None: if channel_id in self.channels: chan = self.channels[channel_id] peer = self._peers.get(chan.node_id) if not peer: raise Exception('Peer not found') chan.should_request_force_close = True peer.close_and_cleanup() elif connect_str: peer = await self.add_peer(connect_str) await peer.trigger_force_close(channel_id) elif channel_id in self.channel_backups: await self._request_force_close_from_backup(channel_id) else: raise Exception(f'Unknown channel {channel_id.hex()}') def import_channel_backup(self, data): assert data.startswith('channel_backup:') encrypted = data[15:] xpub = self.wallet.get_fingerprint() decrypted = pw_decode_with_version_and_mac(encrypted, xpub) cb_storage = ImportedChannelBackupStorage.from_bytes(decrypted) channel_id = cb_storage.channel_id() if channel_id.hex() in self.db.get_dict("channels"): raise Exception('Channel already in wallet') self.logger.info(f'importing channel backup: {channel_id.hex()}') d = self.db.get_dict("imported_channel_backups") d[channel_id.hex()] = cb_storage with self.lock: cb = ChannelBackup(cb_storage, sweep_address=self.sweep_address, lnworker=self) self._channel_backups[channel_id] = cb self.wallet.save_db() util.trigger_callback('channels_updated', self.wallet) self.lnwatcher.add_channel(cb.funding_outpoint.to_str(), cb.get_funding_address()) def has_conflicting_backup_with(self, remote_node_id: bytes): """ Returns whether we have an active channel with this node on another device, using same local node id. """ channel_backup_peers = [ cb.node_id for cb in self.channel_backups.values() if (not cb.is_closed() and cb.get_local_pubkey() == self.node_keypair.pubkey)] return any(remote_node_id.startswith(cb_peer_nodeid) for cb_peer_nodeid in channel_backup_peers) def remove_channel_backup(self, channel_id): chan = self.channel_backups[channel_id] assert chan.can_be_deleted() onchain_backups = self.db.get_dict("onchain_channel_backups") imported_backups = self.db.get_dict("imported_channel_backups") if channel_id.hex() in onchain_backups: onchain_backups.pop(channel_id.hex()) elif channel_id.hex() in imported_backups: imported_backups.pop(channel_id.hex()) else: raise Exception('Channel not found') with self.lock: self._channel_backups.pop(channel_id) self.wallet.save_db() util.trigger_callback('channels_updated', self.wallet) @log_exceptions async def _request_force_close_from_backup(self, channel_id: bytes): cb = self.channel_backups.get(channel_id) if not cb: raise Exception(f'channel backup not found {self.channel_backups}') cb = cb.cb # storage self.logger.info(f'requesting channel force close: {channel_id.hex()}') if isinstance(cb, ImportedChannelBackupStorage): node_id = cb.node_id privkey = cb.privkey addresses = [(cb.host, cb.port, 0)] # TODO also try network addresses from gossip db (as it might have changed) else: assert isinstance(cb, OnchainChannelBackupStorage) if not self.channel_db: raise Exception('Enable gossip first') node_id = self.network.channel_db.get_node_by_prefix(cb.node_id_prefix) privkey = self.node_keypair.privkey addresses = self.network.channel_db.get_node_addresses(node_id) if not addresses: raise Exception('Peer not found in gossip database') for host, port, timestamp in addresses: peer_addr = LNPeerAddr(host, port, node_id) transport = LNTransport(privkey, peer_addr, proxy=self.network.proxy) peer = Peer(self, node_id, transport, is_channel_backup=True) try: async with TaskGroup(wait=any) as group: await group.spawn(peer._message_loop()) await group.spawn(peer.trigger_force_close(channel_id)) return except Exception as e: self.logger.info(f'failed to connect {host} {e}') continue # TODO close/cleanup the transport else: raise Exception('failed to connect') def maybe_add_backup_from_tx(self, tx): funding_address = None node_id_prefix = None for i, o in enumerate(tx.outputs()): script_type = get_script_type_from_output_script(o.scriptpubkey) if script_type == 'p2wsh': funding_index = i funding_address = o.address for o2 in tx.outputs(): if o2.scriptpubkey.startswith(bytes([opcodes.OP_RETURN])): encrypted_data = o2.scriptpubkey[2:] data = self.decrypt_cb_data(encrypted_data, funding_address) if data.startswith(CB_MAGIC_BYTES): node_id_prefix = data[4:] if node_id_prefix is None: return funding_txid = tx.txid() cb_storage = OnchainChannelBackupStorage( node_id_prefix = node_id_prefix, funding_txid = funding_txid, funding_index = funding_index, funding_address = funding_address, is_initiator = True) channel_id = cb_storage.channel_id().hex() if channel_id in self.db.get_dict("channels"): return self.logger.info(f"adding backup from tx") d = self.db.get_dict("onchain_channel_backups") d[channel_id] = cb_storage cb = ChannelBackup(cb_storage, sweep_address=self.sweep_address, lnworker=self) self.wallet.save_db() with self.lock: self._channel_backups[bfh(channel_id)] = cb util.trigger_callback('channels_updated', self.wallet) self.lnwatcher.add_channel(cb.funding_outpoint.to_str(), cb.get_funding_address())
48.687807
185
0.632389
[ "MIT" ]
jeroz1/electrum-ravencoin-utd
electrum/lnworker.py
109,012
Python
# ********************************************************************************************************************** # ********************************************************************************************************************** # ********************************************************************************************************************** # *** Using Reinforcement Learning for Load Testing of Video Games *** # *** Game: CartPole *** # *** RL-baseline: Cross Entropy Method *** # *** Play 1000 episodes (still training) and save injected bugs spotted *** # ********************************************************************************************************************** # ********************************************************************************************************************** # ********************************************************************************************************************** import gym import numpy as np import torch import torch.nn as nn import torch.optim as optim from collections import namedtuple HIDDEN_SIZE = 128 # neural network size BATCH_SIZE = 16 # num episodes PERCENTILE = 70 # elite episodes class Net(nn.Module): def __init__(self, obs_size, hidden_size, n_actions): super(Net, self).__init__() self.net = nn.Sequential( nn.Linear(obs_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, n_actions) ) def forward(self, x): return self.net(x) Episode = namedtuple('Episode', field_names=['reward', 'steps']) EpisodeStep = namedtuple('EpisodeStep', field_names=['observation', 'action']) def iterate_batches(env, net, batch_size, file): batch = [] episode_reward = 0.0 episode_steps = [] obs = env.reset() # OBSERVATION: # - x coordinate of the stick's center of mass # - speed # - angle to the platform # - angular speed sm = nn.Softmax(dim=1) flag_injected_bug_spotted = [False, False] while True: obs_v = torch.FloatTensor([obs]) act_probs_v = sm(net(obs_v)) act_probs = act_probs_v.data.numpy()[0] action = np.random.choice(len(act_probs), p=act_probs) next_obs, reward, is_done, _ = env.step(action) if -0.5 < next_obs[0] < -0.45 and not flag_injected_bug_spotted[0]: # and -0.01 < next_obs[2] < 0.00: file.write('BUG1 ') flag_injected_bug_spotted[0] = True if 0.45 < next_obs[0] < 0.5 and not flag_injected_bug_spotted[1]: # and -0.01 < next_obs[2] < 0.00: file.write('BUG2 ') flag_injected_bug_spotted[1] = True episode_reward += reward episode_steps.append(EpisodeStep(observation=obs, action=action)) if is_done: file.write('\n') batch.append(Episode(reward=episode_reward, steps=episode_steps)) episode_reward = 0.0 episode_steps = [] next_obs = env.reset() flag_injected_bug_spotted = [False, False] if len(batch) == batch_size: yield batch batch = [] obs = next_obs def filter_batch(batch, percentile): rewards = list(map(lambda s: s.reward, batch)) reward_bound = np.percentile(rewards, percentile) reward_mean = float(np.mean(rewards)) train_obs = [] train_act = [] for example in batch: if example.reward < reward_bound: continue train_obs.extend(map(lambda step: step.observation, example.steps)) train_act.extend(map(lambda step: step.action, example.steps)) train_obs_v = torch.FloatTensor(train_obs) train_act_v = torch.LongTensor(train_act) return train_obs_v, train_act_v, reward_bound, reward_mean # ********************************************************************************************************************** # * 1000 episodes start * # ********************************************************************************************************************** if __name__ == "__main__": print('\n\n*****************************************************************') print("* RL-baseline model's playing 1000 episodes (still training)... *") print('*****************************************************************\n') env = gym.make("CartPole-v0") env._max_episode_steps = 1000 # episode length obs_size = env.observation_space.shape[0] n_actions = env.action_space.n net = Net(obs_size, HIDDEN_SIZE, n_actions) net.load_state_dict(torch.load('./model_rl-baseline')) net.eval() objective = nn.CrossEntropyLoss() optimizer = optim.Adam(params=net.parameters(), lr=0.01) filename = 'injected_bugs_spotted_RL-baseline.txt' f = open(filename, 'w+') for iter_no, batch in enumerate(iterate_batches(env, net, BATCH_SIZE, f)): obs_v, acts_v, reward_b, reward_m = filter_batch(batch, PERCENTILE) optimizer.zero_grad() action_scores_v = net(obs_v) loss_v = objective(action_scores_v, acts_v) loss_v.backward() optimizer.step() print("%d: loss=%.3f, reward_mean=%.1f, reward_bound=%.1f" % (iter_no, loss_v.item(), reward_m, reward_b)) if iter_no == 63: # 63 * 16 (batch size) = 1008 episodes print('1k episodes end\n\n') break f.close() lines = [line for line in open(filename, 'r')] lines_1k = lines[:1000] count_0bug = 0 count_1bug = 0 count_2bug = 0 for line in lines_1k: if line.strip() == '': count_0bug += 1 elif len(line.strip().split()) == 1: count_1bug += 1 elif len(line.strip().split()) == 2: count_2bug += 1 print('Report injected bugs spotted:') print('0 injected bug spotted in %d episodes' % count_0bug) print('1 injected bug spotted in %d episodes' % count_1bug) print('2 injected bugs spotted in %d episodes' % count_2bug) print("\ /\ \n ) ( ') meow!\n( / )\n \(__)|") # \ /\ # ) ( ') # ( / ) # \(__)|
42.9875
120
0.447223
[ "MIT" ]
RosaliaTufano/rlgameauthors
CartPole/CartPole_RL-baseline_1k_episodes.py
6,878
Python
from .base import * from .visualization import * from .guided_backprop import * from .occlusion import * from .integrated_gradients import * from .grad_cam import * from .xrai import * from .blur_ig import *
23.111111
35
0.769231
[ "Apache-2.0" ]
aliabd/history-of-interpretation
saliency/__init__.py
208
Python
# # Copyright (c) 2018 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # """SQLAlchemy storage backend.""" import threading from oslo_log import log from oslo_config import cfg from oslo_utils import uuidutils from oslo_db import exception as db_exc from oslo_db.sqlalchemy import enginefacade from oslo_db.sqlalchemy import utils as db_utils from oslo_db.sqlalchemy import session as db_session from sqlalchemy import asc, desc, or_ from sqlalchemy.orm.exc import NoResultFound from fm.api import config from fm.common import constants from fm.common import exceptions from fm.common import utils from fm.db import api from fm.db.sqlalchemy import models from fm import objects CONF = cfg.CONF LOG = log.getLogger(__name__) _LOCK = threading.Lock() _FACADE = None context_manager = enginefacade.transaction_context() context_manager.configure() def _create_facade_lazily(): global _LOCK with _LOCK: global _FACADE if _FACADE is None: _FACADE = db_session.EngineFacade( CONF.database.connection, **dict(CONF.database) ) return _FACADE def get_engine(): facade = _create_facade_lazily() return facade.get_engine() def get_session(**kwargs): facade = _create_facade_lazily() return facade.get_session(**kwargs) def get_backend(): """The backend is this module itself.""" return Connection() def _session_for_read(): _context = threading.local() return enginefacade.reader.using(_context) def _session_for_write(): _context = threading.local() LOG.debug("_session_for_write CONTEXT=%s" % _context) return enginefacade.writer.using(_context) def _paginate_query(model, limit=None, marker=None, sort_key=None, sort_dir=None, query=None): if not query: query = model_query(model) if not sort_key: sort_keys = [] elif not isinstance(sort_key, list): sort_keys = [sort_key] else: sort_keys = sort_key if 'id' not in sort_keys: sort_keys.append('id') query = db_utils.paginate_query(query, model, limit, sort_keys, marker=marker, sort_dir=sort_dir) return query.all() def model_query(model, *args, **kwargs): """Query helper for simpler session usage. :param session: if present, the session to use """ with _session_for_read() as session: query = session.query(model, *args) return query def add_event_log_filter_by_event_suppression(query, include_suppress): """Adds an event_suppression filter to a query. Filters results by suppression status :param query: Initial query to add filter to. :param include_suppress: Value for filtering results by. :return: Modified query. """ query = query.outerjoin(models.EventSuppression, models.EventLog.event_log_id == models.EventSuppression.alarm_id) query = query.add_columns(models.EventSuppression.suppression_status) if include_suppress: return query return query.filter(or_(models.EventLog.state == 'log', models.EventSuppression.suppression_status == constants.FM_UNSUPPRESSED)) def add_alarm_filter_by_event_suppression(query, include_suppress): """Adds an event_suppression filter to a query. Filters results by suppression status :param query: Initial query to add filter to. :param include_suppress: Value for filtering results by. :return: Modified query. """ query = query.join(models.EventSuppression, models.Alarm.alarm_id == models.EventSuppression.alarm_id) query = query.add_columns(models.EventSuppression.suppression_status) if include_suppress: return query return query.filter(models.EventSuppression.suppression_status == constants.FM_UNSUPPRESSED) def add_alarm_mgmt_affecting_by_event_suppression(query): """Adds a mgmt_affecting attribute from event_suppression to query. :param query: Initial query. :return: Modified query. """ query = query.add_columns(models.EventSuppression.mgmt_affecting) return query def add_alarm_degrade_affecting_by_event_suppression(query): """Adds a degrade_affecting attribute from event_suppression to query. :param query: Initial query. :return: Modified query. """ query = query.add_columns(models.EventSuppression.degrade_affecting) return query class Connection(api.Connection): """SqlAlchemy connection.""" def __init__(self): pass def get_session(self, autocommit=True): return get_session(autocommit) def alarm_create(self, values): if not values.get('uuid'): values['uuid'] = utils.generate_uuid() alarm = models.Alarm() alarm.update(values) with _session_for_write() as session: try: session.add(alarm) session.flush() except db_exc.DBDuplicateEntry: raise exceptions.AlarmAlreadyExists(uuid=values['uuid']) return alarm @objects.objectify(objects.alarm) def alarm_get(self, uuid): query = model_query(models.Alarm) if uuid: query = query.filter_by(uuid=uuid) query = add_alarm_filter_by_event_suppression(query, include_suppress=True) query = add_alarm_mgmt_affecting_by_event_suppression(query) query = add_alarm_degrade_affecting_by_event_suppression(query) try: result = query.one() except NoResultFound: raise exceptions.AlarmNotFound(alarm=uuid) return result def alarm_get_by_ids(self, alarm_id, entity_instance_id): query = model_query(models.Alarm) if alarm_id and entity_instance_id: query = query.filter_by(alarm_id=alarm_id) query = query.filter_by(entity_instance_id=entity_instance_id) query = query.join(models.EventSuppression, models.Alarm.alarm_id == models.EventSuppression.alarm_id) query = add_alarm_mgmt_affecting_by_event_suppression(query) query = add_alarm_degrade_affecting_by_event_suppression(query) try: result = query.one() except NoResultFound: return None return result def alarm_get_all(self, uuid=None, alarm_id=None, entity_type_id=None, entity_instance_id=None, severity=None, alarm_type=None, limit=None, include_suppress=False): query = model_query(models.Alarm, read_deleted="no") query = query.order_by(asc(models.Alarm.severity), asc(models.Alarm.entity_instance_id), asc(models.Alarm.id)) if uuid is not None: query = query.filter(models.Alarm.uuid.contains(uuid)) if alarm_id is not None: query = query.filter(models.Alarm.alarm_id.contains(alarm_id)) if entity_type_id is not None: query = query.filter(models.Alarm.entity_type_id.contains( entity_type_id)) if entity_instance_id is not None: query = query.filter(models.Alarm.entity_instance_id.contains( entity_instance_id)) if severity is not None: query = query.filter(models.Alarm.severity.contains(severity)) if alarm_type is not None: query = query.filter(models.Alarm.alarm_type.contains(alarm_type)) query = add_alarm_filter_by_event_suppression(query, include_suppress) query = add_alarm_mgmt_affecting_by_event_suppression(query) query = add_alarm_degrade_affecting_by_event_suppression(query) if limit is not None: query = query.limit(limit) alarm_list = [] try: alarm_list = query.all() except UnicodeDecodeError: LOG.error("UnicodeDecodeError occurred, " "return an empty alarm list.") return alarm_list @objects.objectify(objects.alarm) def alarm_get_list(self, limit=None, marker=None, sort_key=None, sort_dir=None, include_suppress=False): query = model_query(models.Alarm) query = add_alarm_filter_by_event_suppression(query, include_suppress) query = add_alarm_mgmt_affecting_by_event_suppression(query) query = add_alarm_degrade_affecting_by_event_suppression(query) return _paginate_query(models.Alarm, limit, marker, sort_key, sort_dir, query) def alarm_update(self, id, values): with _session_for_write() as session: query = model_query(models.Alarm, session=session) query = query.filter_by(id=id) count = query.update(values, synchronize_session='fetch') if count != 1: raise exceptions.AlarmNotFound(alarm=id) return query.one() def alarm_destroy(self, id): with _session_for_write() as session: query = model_query(models.Alarm, session=session) query = query.filter_by(uuid=id) try: query.one() except NoResultFound: raise exceptions.AlarmNotFound(alarm=id) query.delete() def alarm_destroy_by_ids(self, alarm_id, entity_instance_id): with _session_for_write() as session: query = model_query(models.Alarm, session=session) if alarm_id and entity_instance_id: query = query.filter_by(alarm_id=alarm_id) query = query.filter_by(entity_instance_id=entity_instance_id) try: query.one() except NoResultFound: raise exceptions.AlarmNotFound(alarm=alarm_id) query.delete() def event_log_create(self, values): if not values.get('uuid'): values['uuid'] = utils.generate_uuid() event_log = models.EventLog() event_log.update(values) count = self.event_log_get_count() max_log = config.get_max_event_log() if count >= int(max_log): self.delete_oldest_event_log() with _session_for_write() as session: try: session.add(event_log) session.flush() except db_exc.DBDuplicateEntry: raise exceptions.EventLogAlreadyExists(id=values['id']) return event_log def event_log_get_count(self): query = model_query(models.EventLog) return query.count() def delete_oldest_event_log(self): result = self.event_log_get_oldest() self.event_log_delete(result['id']) def event_log_delete(self, id): with _session_for_write() as session: query = model_query(models.EventLog, session=session) query = query.filter_by(id=id) try: query.one() except NoResultFound: raise exceptions.EventLogNotFound(eventLog=id) query.delete() def event_log_get_oldest(self): query = model_query(models.EventLog) result = query.order_by(asc(models.EventLog.created_at)).limit(1).one() return result @objects.objectify(objects.event_log) def event_log_get(self, uuid): query = model_query(models.EventLog) if uuid: query = query.filter_by(uuid=uuid) query = add_event_log_filter_by_event_suppression(query, include_suppress=True) try: result = query.one() except NoResultFound: raise exceptions.EventLogNotFound(eventLog=uuid) return result def _addEventTypeToQuery(self, query, evtType="ALL"): if evtType is None or not (evtType in ["ALL", "ALARM", "LOG"]): evtType = "ALL" if evtType == "ALARM": query = query.filter(or_(models.EventLog.state == "set", models.EventLog.state == "clear")) if evtType == "LOG": query = query.filter(models.EventLog.state == "log") return query @objects.objectify(objects.event_log) def event_log_get_all(self, uuid=None, event_log_id=None, entity_type_id=None, entity_instance_id=None, severity=None, event_log_type=None, start=None, end=None, limit=None, evtType="ALL", include_suppress=False): query = model_query(models.EventLog, read_deleted="no") query = query.order_by(desc(models.EventLog.timestamp)) if uuid is not None: query = query.filter_by(uuid=uuid) query = self._addEventTypeToQuery(query, evtType) if event_log_id is not None: query = query.filter(models.EventLog.event_log_id.contains( event_log_id)) if entity_type_id is not None: query = query.filter(models.EventLog.entity_type_id.contains( entity_type_id)) if entity_instance_id is not None: query = query.filter(models.EventLog.entity_instance_id.contains( entity_instance_id)) if severity is not None: query = query.filter(models.EventLog.severity.contains(severity)) if event_log_type is not None: query = query.filter_by(event_log_type=event_log_type) if start is not None: query = query.filter(models.EventLog.timestamp >= start) if end is not None: query = query.filter(models.EventLog.timestamp <= end) if include_suppress is not None: query = add_event_log_filter_by_event_suppression(query, include_suppress) if limit is not None: query = query.limit(limit) hist_list = [] try: hist_list = query.all() except UnicodeDecodeError: LOG.error("UnicodeDecodeError occurred, " "return an empty event log list.") return hist_list @objects.objectify(objects.event_log) def event_log_get_list(self, limit=None, marker=None, sort_key=None, sort_dir=None, evtType="ALL", include_suppress=False): query = model_query(models.EventLog) query = self._addEventTypeToQuery(query, evtType) query = add_event_log_filter_by_event_suppression(query, include_suppress) return _paginate_query(models.EventLog, limit, marker, sort_key, sort_dir, query) @objects.objectify(objects.event_suppression) def event_suppression_get(self, id): query = model_query(models.EventSuppression) if uuidutils.is_uuid_like(id): query = query.filter_by(uuid=id) else: query = query.filter_by(id=id) try: result = query.one() except NoResultFound: raise exceptions.InvalidParameterValue( err="No event suppression entry found for %s" % id) return result @objects.objectify(objects.event_suppression) def event_suppression_get_all(self, uuid=None, alarm_id=None, description=None, suppression_status=None, limit=None, sort_key=None, sort_dir=None): query = model_query(models.EventSuppression, read_deleted="no") if uuid is not None: query = query.filter_by(uuid=uuid) if alarm_id is not None: query = query.filter_by(alarm_id=alarm_id) if description is not None: query = query.filter_by(description=description) if suppression_status is not None: query = query.filter_by(suppression_status=suppression_status) query = query.filter_by(set_for_deletion=False) return _paginate_query(models.EventSuppression, limit, None, sort_key, sort_dir, query) @objects.objectify(objects.event_suppression) def event_suppression_update(self, uuid, values): with _session_for_write() as session: query = model_query(models.EventSuppression, session=session) query = query.filter_by(uuid=uuid) count = query.update(values, synchronize_session='fetch') if count != 1: raise exceptions.NotFound(id) return query.one()
34.859213
93
0.632357
[ "Apache-2.0" ]
MarioCarrilloA/fault
fm-rest-api/fm/fm/db/sqlalchemy/api.py
16,837
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- ######################################################################## # # Copyright (c) 2015 Baidu, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ######################################################################## """ Author: Wang, Cong([email protected]) """ import unittest from bigflow import transforms from bigflow.test import test_base class TestCase(test_base.PipelineBasedTest): def test_normal(self): inp = [1, 9, 6, 2] fn = lambda x, y: x + y expect = reduce(fn, inp) result = self._pipeline.parallelize(inp).reduce(fn).get() self.assertEqual(expect, result) def test_side_input(self): inp = [1, 9, 6, 2] fn = lambda x, y: x + y expect = reduce(fn, inp) self._pipeline.parallelize(1) result = self._pipeline.parallelize(inp).reduce(fn).get() self.assertEqual(expect, result) def test_reduce_with_side_input_ptable(self): si = self._pipeline.parallelize({1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}) data = self._pipeline.parallelize([1, 2, 3]) result = data.reduce(lambda x, y, d: d[x] + d[y], si) result_data = result.get() self.assertEqual(6, result_data) def test_modify_left_param(self): """ inner function""" inp = self._pipeline.parallelize([[1, 2, 3], [6, 5, 4]]) def _sum(x, y): x[0] += y[0] x[1] += y[1] x[2] += y[2] return x result = transforms.union(inp.reduce(_sum), inp.reduce(_sum)).get() self.assertEqual([[7, 7, 7], [7, 7, 7]], result) if __name__ == "__main__": unittest.main()
31.069444
77
0.583818
[ "Apache-2.0" ]
aiplat/bigflow
bigflow_python/python/bigflow/transform_impls/test/reduce_test.py
2,237
Python
from io import BytesIO from string import ascii_letters from zipfile import ZipFile import pytest from openpyxl.chart import BarChart from openpyxl.drawing.spreadsheet_drawing import SpreadsheetDrawing from openpyxl import Workbook from openpyxl.worksheet.table import Table @pytest.fixture def ExcelWriter(): from ..excel import ExcelWriter return ExcelWriter @pytest.fixture def archive(): out = BytesIO() return ZipFile(out, "w") def test_worksheet(ExcelWriter, archive): wb = Workbook() ws = wb.active writer = ExcelWriter(wb, archive) writer._write_worksheets() assert ws.path[1:] in archive.namelist() assert ws.path in writer.manifest.filenames def test_tables(ExcelWriter, archive): wb = Workbook() ws = wb.active ws.append(list(ascii_letters)) ws._rels = [] t = Table(displayName="Table1", ref="A1:D10") ws.add_table(t) writer = ExcelWriter(wb, archive) writer._write_worksheets() assert t.path[1:] in archive.namelist() assert t.path in writer.manifest.filenames def test_drawing(ExcelWriter, archive): wb = Workbook() ws = wb.active drawing = SpreadsheetDrawing() writer = ExcelWriter(wb, archive) writer._write_drawing(drawing) assert drawing.path == '/xl/drawings/drawing1.xml' assert drawing.path[1:] in archive.namelist() assert drawing.path in writer.manifest.filenames def test_write_chart(ExcelWriter, archive): wb = Workbook() ws = wb.active chart = BarChart() ws.add_chart(chart) writer = ExcelWriter(wb, archive) writer._write_worksheets() assert 'xl/worksheets/sheet1.xml' in archive.namelist() assert ws.path in writer.manifest.filenames rel = ws._rels["rId1"] assert dict(rel) == {'Id': 'rId1', 'Target': '/xl/drawings/drawing1.xml', 'Type': 'http://schemas.openxmlformats.org/officeDocument/2006/relationships/drawing'} @pytest.mark.pil_required def test_write_images(datadir, ExcelWriter, archive): from openpyxl.drawing.image import Image datadir.chdir() writer = ExcelWriter(None, archive) img = Image("plain.png") writer._images.append(img) writer._write_images() archive.close() zipinfo = archive.infolist() assert 'xl/media/image1.png' in archive.namelist() def test_chartsheet(ExcelWriter, archive): wb = Workbook() cs = wb.create_chartsheet() writer = ExcelWriter(wb, archive) writer._write_chartsheets() assert cs.path in writer.manifest.filenames assert cs.path[1:] in writer._archive.namelist() def test_comment(ExcelWriter, archive): from openpyxl.comments import Comment wb = Workbook() ws = wb.active ws['B5'].comment = Comment("A comment", "The Author") writer = ExcelWriter(None, archive) writer._write_comment(ws) assert archive.namelist() == ['xl/comments/comment1.xml', 'xl/drawings/commentsDrawing1.vml'] assert '/xl/comments/comment1.xml' in writer.manifest.filenames assert ws.legacy_drawing == 'xl/drawings/commentsDrawing1.vml' def test_merge_vba(ExcelWriter, archive, datadir): from openpyxl import load_workbook datadir.chdir() wb = load_workbook("vba+comments.xlsm", keep_vba=True) writer = ExcelWriter(wb, archive) writer._merge_vba() assert set(archive.namelist()) == set([ 'xl/vbaProject.bin', 'xl/drawings/vmlDrawing1.vml', 'xl/ctrlProps/ctrlProp3.xml', 'xl/ctrlProps/ctrlProp1.xml', 'xl/ctrlProps/ctrlProp10.xml', 'xl/ctrlProps/ctrlProp9.xml', 'xl/ctrlProps/ctrlProp4.xml', 'xl/ctrlProps/ctrlProp5.xml', 'xl/ctrlProps/ctrlProp6.xml', 'xl/ctrlProps/ctrlProp7.xml', 'xl/ctrlProps/ctrlProp8.xml', 'xl/ctrlProps/ctrlProp2.xml', ])
26.356164
103
0.685551
[ "MIT" ]
sekcheong/openpyxl
openpyxl/writer/tests/test_excel.py
3,848
Python
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import re, ast with open('requirements.txt') as f: install_requires = f.read().strip().split('\n') # get version from __version__ variable in accounting/__init__.py _version_re = re.compile(r'__version__\s+=\s+(.*)') with open('accounting/__init__.py', 'rb') as f: version = str(ast.literal_eval(_version_re.search( f.read().decode('utf-8')).group(1))) setup( name='accounting', version=version, description='A test accounting app', author='gvn', author_email='accounts.org', packages=find_packages(), zip_safe=False, include_package_data=True, install_requires=install_requires )
25.615385
65
0.72973
[ "MIT" ]
gavindsouza/accounting-app
setup.py
666
Python
from .ShuntCompensator import ShuntCompensator class LinearShuntCompensator(ShuntCompensator): ''' A linear shunt compensator has banks or sections with equal admittance values. :bPerSection: Positive sequence shunt (charging) susceptance per section Default: 0.0 :gPerSection: Positive sequence shunt (charging) conductance per section Default: 0.0 :b0PerSection: Zero sequence shunt (charging) susceptance per section Default: 0.0 :g0PerSection: Zero sequence shunt (charging) conductance per section Default: 0.0 ''' cgmesProfile = ShuntCompensator.cgmesProfile possibleProfileList = {'class': [cgmesProfile.EQ.value, cgmesProfile.SSH.value, ], 'bPerSection': [cgmesProfile.EQ.value, ], 'gPerSection': [cgmesProfile.EQ.value, ], 'b0PerSection': [cgmesProfile.EQ.value, ], 'g0PerSection': [cgmesProfile.EQ.value, ], } serializationProfile = {} __doc__ += '\n Documentation of parent class ShuntCompensator: \n' + ShuntCompensator.__doc__ def __init__(self, bPerSection = 0.0, gPerSection = 0.0, b0PerSection = 0.0, g0PerSection = 0.0, *args, **kw_args): super().__init__(*args, **kw_args) self.bPerSection = bPerSection self.gPerSection = gPerSection self.b0PerSection = b0PerSection self.g0PerSection = g0PerSection def __str__(self): str = 'class=LinearShuntCompensator\n' attributes = self.__dict__ for key in attributes.keys(): str = str + key + '={}\n'.format(attributes[key]) return str
36
117
0.73374
[ "MPL-2.0", "MPL-2.0-no-copyleft-exception" ]
CIM-IEC/CIMpy
cimpy/cgmes_v2_4_15/LinearShuntCompensator.py
1,476
Python
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally.common.i18n import _ from rally.common import logging from rally.common import utils as rutils from rally.common import validation from rally import consts from rally.plugins.openstack.cleanup import manager as resource_manager from rally.plugins.openstack.scenarios.magnum import utils as magnum_utils from rally.task import context LOG = logging.getLogger(__name__) @validation.add("required_platform", platform="openstack", users=True) @context.configure(name="cluster_templates", platform="openstack", order=470) class ClusterTemplateGenerator(context.Context): """Context class for generating temporary cluster model for benchmarks.""" CONFIG_SCHEMA = { "type": "object", "$schema": consts.JSON_SCHEMA, "properties": { "image_id": { "type": "string" }, "flavor_id": { "type": "string" }, "master_flavor_id": { "type": "string" }, "external_network_id": { "type": "string" }, "fixed_network": { "type": "string" }, "fixed_subnet": { "type": "string" }, "dns_nameserver": { "type": "string" }, "docker_volume_size": { "type": "integer" }, "labels": { "type": "string" }, "coe": { "type": "string" }, "http_proxy": { "type": "string" }, "https_proxy": { "type": "string" }, "no_proxy": { "type": "string" }, "network_driver": { "type": "string" }, "tls_disabled": { "type": "boolean" }, "public": { "type": "boolean" }, "registry_enabled": { "type": "boolean" }, "volume_driver": { "type": "string" }, "server_type": { "type": "string" }, "docker_storage_driver": { "type": "string" }, "master_lb_enabled": { "type": "boolean" } }, "required": ["image_id", "external_network_id", "coe"], "additionalProperties": False } @logging.log_task_wrapper(LOG.info, _("Enter context: `ClusterTemplate`")) def setup(self): for user, tenant_id in rutils.iterate_per_tenants( self.context["users"]): magnum_scenario = magnum_utils.MagnumScenario({ "user": user, "task": self.context["task"], "owner_id": self.context["owner_id"], "config": {"api_versions": self.context["config"].get( "api_versions", [])} }) cluster_template = magnum_scenario._create_cluster_template( **self.config) ct_uuid = cluster_template.uuid self.context["tenants"][tenant_id]["cluster_template"] = ct_uuid @logging.log_task_wrapper(LOG.info, _("Exit context: `ClusterTemplate`")) def cleanup(self): resource_manager.cleanup( names=["magnum.cluster_templates"], users=self.context.get("users", []), superclass=magnum_utils.MagnumScenario, task_id=self.get_owner_id())
31.870229
78
0.523593
[ "Apache-2.0" ]
boris-42/rally
rally/plugins/openstack/context/magnum/cluster_templates.py
4,175
Python
########################################################################## # Author: Samuca # # brief: returns the int part of number # # this is a list exercise available on youtube: # https://www.youtube.com/playlist?list=PLHz_AreHm4dm6wYOIW20Nyg12TAjmMGT- ########################################################################## number = float(input("Enter with any number: ")) print("the int part of {} is {}".format(number, int(number))) #we can also do it with the method trunc, from math from math import trunc n = float(input("Enter with other number: ")) print("The int part of {} is {}".format(n, trunc(n)))
36.705882
76
0.540064
[ "MIT" ]
Samuca47prog/Python_exercises_CursoEmVideo
ex016.py
624
Python
import os import sys import time import random import string import argparse import torch import torch.backends.cudnn as cudnn import torch.nn.init as init import torch.optim as optim import torch.utils.data import numpy as np from utils import CTCLabelConverter, AttnLabelConverter, Averager from dataset import hierarchical_dataset, AlignCollate, Batch_Balanced_Dataset from model import Model from test import validation device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def train(opt): """ dataset preparation """ if not opt.data_filtering_off: print('Filtering the images containing characters which are not in opt.character') print('Filtering the images whose label is longer than opt.batch_max_length') # see https://github.com/clovaai/deep-text-recognition-benchmark/blob/6593928855fb7abb999a99f428b3e4477d4ae356/dataset.py#L130 opt.select_data = opt.select_data.split('-') opt.batch_ratio = opt.batch_ratio.split('-') train_dataset = Batch_Balanced_Dataset(opt) log = open(f'./saved_models/{opt.exp_name}/log_dataset.txt', 'a') AlignCollate_valid = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD) valid_dataset, valid_dataset_log = hierarchical_dataset(root=opt.valid_data, opt=opt) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=opt.batch_size, shuffle=True, # 'True' to check training progress with validation function. num_workers=int(opt.workers), collate_fn=AlignCollate_valid, pin_memory=True) log.write(valid_dataset_log) print('-' * 80) log.write('-' * 80 + '\n') log.close() """ model configuration """ if 'CTC' in opt.Prediction: converter = CTCLabelConverter(opt.character) else: converter = AttnLabelConverter(opt.character) opt.num_class = len(converter.character) if opt.rgb: opt.input_channel = 3 model = Model(opt) print('model input parameters', opt.imgH, opt.imgW, opt.num_fiducial, opt.input_channel, opt.output_channel, opt.hidden_size, opt.num_class, opt.batch_max_length, opt.Transformation, opt.FeatureExtraction, opt.SequenceModeling, opt.Prediction) # weight initialization for name, param in model.named_parameters(): if 'localization_fc2' in name: print(f'Skip {name} as it is already initialized') continue try: if 'bias' in name: init.constant_(param, 0.0) elif 'weight' in name: init.kaiming_normal_(param) except Exception as e: # for batchnorm. if 'weight' in name: param.data.fill_(1) continue # data parallel for multi-GPU model = torch.nn.DataParallel(model).to(device) model.train() if opt.saved_model != '': print(f'loading pretrained model from {opt.saved_model}') if opt.FT: model.load_state_dict(torch.load(opt.saved_model), strict=False) else: model.load_state_dict(torch.load(opt.saved_model)) print("Model:") print(model) """ setup loss """ if 'CTC' in opt.Prediction: criterion = torch.nn.CTCLoss(zero_infinity=True).to(device) else: criterion = torch.nn.CrossEntropyLoss(ignore_index=0).to(device) # ignore [GO] token = ignore index 0 # loss averager loss_avg = Averager() # filter that only require gradient decent filtered_parameters = [] params_num = [] for p in filter(lambda p: p.requires_grad, model.parameters()): filtered_parameters.append(p) params_num.append(np.prod(p.size())) print('Trainable params num : ', sum(params_num)) # [print(name, p.numel()) for name, p in filter(lambda p: p[1].requires_grad, model.named_parameters())] # setup optimizer if opt.adam: optimizer = optim.Adam(filtered_parameters, lr=opt.lr, betas=(opt.beta1, 0.999)) else: optimizer = optim.Adadelta(filtered_parameters, lr=opt.lr, rho=opt.rho, eps=opt.eps) print("Optimizer:") print(optimizer) """ final options """ # print(opt) with open(f'./saved_models/{opt.exp_name}/opt.txt', 'a') as opt_file: opt_log = '------------ Options -------------\n' args = vars(opt) for k, v in args.items(): opt_log += f'{str(k)}: {str(v)}\n' opt_log += '---------------------------------------\n' print(opt_log) opt_file.write(opt_log) """ start training """ start_iter = 0 if opt.saved_model != '': try: start_iter = int(opt.saved_model.split('_')[-1].split('.')[0]) print(f'continue to train, start_iter: {start_iter}') except: pass start_time = time.time() best_accuracy = -1 best_norm_ED = -1 iteration = start_iter while(True): # train part image_tensors, labels = train_dataset.get_batch() image = image_tensors.to(device) text, length = converter.encode(labels, batch_max_length=opt.batch_max_length) batch_size = image.size(0) if 'CTC' in opt.Prediction: preds = model(image, text) preds_size = torch.IntTensor([preds.size(1)] * batch_size) preds = preds.log_softmax(2).permute(1, 0, 2) cost = criterion(preds, text, preds_size, length) else: preds = model(image, text[:, :-1]) # align with Attention.forward target = text[:, 1:] # without [GO] Symbol cost = criterion(preds.view(-1, preds.shape[-1]), target.contiguous().view(-1)) model.zero_grad() cost.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip) # gradient clipping with 5 (Default) optimizer.step() loss_avg.add(cost) # validation part if (iteration + 1) % opt.valInterval == 0 or iteration == 0: # To see training progress, we also conduct validation when 'iteration == 0' elapsed_time = time.time() - start_time # for log with open(f'./saved_models/{opt.exp_name}/log_train.txt', 'a') as log: model.eval() with torch.no_grad(): valid_loss, current_accuracy, current_norm_ED, preds, confidence_score, labels, infer_time, length_of_data = validation( model, criterion, valid_loader, converter, opt) model.train() # training loss and validation loss loss_log = f'[{iteration+1}/{opt.num_iter}] Train loss: {loss_avg.val():0.5f}, Valid loss: {valid_loss:0.5f}, Elapsed_time: {elapsed_time:0.5f}' loss_avg.reset() current_model_log = f'{"Current_accuracy":17s}: {current_accuracy:0.3f}, {"Current_norm_ED":17s}: {current_norm_ED:0.2f}' # keep best accuracy model (on valid dataset) if current_accuracy > best_accuracy: best_accuracy = current_accuracy torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_accuracy.pth') if current_norm_ED > best_norm_ED: best_norm_ED = current_norm_ED torch.save(model.state_dict(), f'./saved_models/{opt.exp_name}/best_norm_ED.pth') best_model_log = f'{"Best_accuracy":17s}: {best_accuracy:0.3f}, {"Best_norm_ED":17s}: {best_norm_ED:0.2f}' loss_model_log = f'{loss_log}\n{current_model_log}\n{best_model_log}' print(loss_model_log) log.write(loss_model_log + '\n') # show some predicted results dashed_line = '-' * 80 head = f'{"Ground Truth":25s} | {"Prediction":25s} | Confidence Score & T/F' predicted_result_log = f'{dashed_line}\n{head}\n{dashed_line}\n' for gt, pred, confidence in zip(labels[:5], preds[:5], confidence_score[:5]): if 'Attn' in opt.Prediction: gt = gt[:gt.find('[s]')] pred = pred[:pred.find('[s]')] predicted_result_log += f'{gt:25s} | {pred:25s} | {confidence:0.4f}\t{str(pred == gt)}\n' predicted_result_log += f'{dashed_line}' print(predicted_result_log) log.write(predicted_result_log + '\n') # save model per 1e+5 iter. if (iteration + 1) % 1e+5 == 0: torch.save( model.state_dict(), f'./saved_models/{opt.exp_name}/iter_{iteration+1}.pth') if (iteration + 1) == opt.num_iter: print('end the training') sys.exit() iteration += 1 if __name__ == '__main__': os.environ['CUDA_VISIBLE_DEVICES'] = "2,3" parser = argparse.ArgumentParser() parser.add_argument('--exp_name', help='Where to store logs and models') parser.add_argument('--train_data', default="/path/to/your/lmdb/train", help='path to training dataset') parser.add_argument('--valid_data', default="/path/to/your/lmdb/val", help='path to validation dataset') parser.add_argument('--manualSeed', type=int, default=1111, help='for random seed setting') parser.add_argument('--workers', default=4, type=int, help='number of data loading workers') parser.add_argument('--batch_size', default=64, type=int, help='input batch size') parser.add_argument('--num_iter', type=int, default=300000, help='number of iterations to train for') parser.add_argument('--valInterval', type=int, default=500, help='Interval between each validation') parser.add_argument('--saved_model', default='', help="path to model to continue training") parser.add_argument('--FT', action='store_true', help='whether to do fine-tuning') parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is Adadelta)') parser.add_argument('--lr', type=float, default=1, help='learning rate, default=1.0 for Adadelta') parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for adam. default=0.9') parser.add_argument('--rho', type=float, default=0.95, help='decay rate rho for Adadelta. default=0.95') parser.add_argument('--eps', type=float, default=1e-8, help='eps for Adadelta. default=1e-8') parser.add_argument('--grad_clip', type=float, default=5, help='gradient clipping value. default=5') """ Data processing """ parser.add_argument('--select_data', type=str, default='/', help='select training data (default is MJ-ST, which means MJ and ST used as training data)') parser.add_argument('--batch_ratio', type=str, default='1', help='assign ratio for each selected data in the batch') parser.add_argument('--total_data_usage_ratio', type=str, default='1.0', help='total data usage ratio, this ratio is multiplied to total number of data.') parser.add_argument('--batch_max_length', type=int, default=25, help='maximum-label-length') parser.add_argument('--imgH', type=int, default=32, help='the height of the input image') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image') parser.add_argument('--rgb', action='store_true', help='use rgb input') parser.add_argument('--character', type=str, default='0123456789abcdefghijklmnopqrstuvwxyz', help='character label') parser.add_argument('--sensitive', action='store_true', help='for sensitive character mode') parser.add_argument('--PAD', action='store_true', help='whether to keep ratio then pad for image resize') parser.add_argument('--data_filtering_off', action='store_true', help='for data_filtering_off mode') """ Model Architecture """ parser.add_argument('--Transformation', type=str, default="TPS", help='Transformation stage. None|TPS') parser.add_argument('--FeatureExtraction', type=str, default="ResNet", help='FeatureExtraction stage. VGG|RCNN|ResNet') parser.add_argument('--SequenceModeling', type=str, default="BiLSTM", help='SequenceModeling stage. None|BiLSTM') parser.add_argument('--Prediction', type=str, default="Attn", help='Prediction stage. CTC|Attn') parser.add_argument('--num_fiducial', type=int, default=20, help='number of fiducial points of TPS-STN') parser.add_argument('--input_channel', type=int, default=1, help='the number of input channel of Feature extractor') parser.add_argument('--output_channel', type=int, default=512, help='the number of output channel of Feature extractor') parser.add_argument('--hidden_size', type=int, default=256, help='the size of the LSTM hidden state') opt = parser.parse_args() if not opt.exp_name: opt.exp_name = f'{opt.Transformation}-{opt.FeatureExtraction}-{opt.SequenceModeling}-{opt.Prediction}' opt.exp_name += f'-Seed{opt.manualSeed}' # print(opt.exp_name) os.makedirs(f'./saved_models/{opt.exp_name}', exist_ok=True) """ vocab / character number configuration """ if opt.sensitive: # opt.character += 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). """ Seed and GPU setting """ # print("Random Seed: ", opt.manualSeed) random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) torch.cuda.manual_seed(opt.manualSeed) cudnn.benchmark = True cudnn.deterministic = True opt.num_gpu = torch.cuda.device_count() # print('device count', opt.num_gpu) if opt.num_gpu > 1: print('------ Use multi-GPU setting ------') print('if you stuck too long time with multi-GPU setting, try to set --workers 0') # check multi-GPU issue https://github.com/clovaai/deep-text-recognition-benchmark/issues/1 opt.workers = opt.workers * opt.num_gpu opt.batch_size = opt.batch_size * opt.num_gpu """ previous version print('To equlize batch stats to 1-GPU setting, the batch_size is multiplied with num_gpu and multiplied batch_size is ', opt.batch_size) opt.batch_size = opt.batch_size * opt.num_gpu print('To equalize the number of epochs to 1-GPU setting, num_iter is divided with num_gpu by default.') If you dont care about it, just commnet out these line.) opt.num_iter = int(opt.num_iter / opt.num_gpu) """ train(opt)
47.62623
160
0.645257
[ "MIT" ]
unanan/deep-text-recognition-benchmark-mnn-ncnn
train.py
14,526
Python
# -*- coding: utf-8 -*- # Copyright 2017, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree. # pylint: disable=invalid-name """ Quantum Tomography Module Description: This module contains functions for performing quantum state and quantum process tomography. This includes: - Functions for generating a set of circuits to extract tomographically complete sets of measurement data. - Functions for generating a tomography data set from the results after the circuits have been executed on a backend. - Functions for reconstructing a quantum state, or quantum process (Choi-matrix) from tomography data sets. Reconstruction Methods: Currently implemented reconstruction methods are - Linear inversion by weighted least-squares fitting. - Fast maximum likelihood reconstruction using ref [1]. References: [1] J Smolin, JM Gambetta, G Smith, Phys. Rev. Lett. 108, 070502 (2012). Open access: arXiv:1106.5458 [quant-ph]. Workflow: The basic functions for performing state and tomography experiments are: - `tomography_set`, `state_tomography_set`, and `process_tomography_set` all generates data structures for tomography experiments. - `create_tomography_circuits` generates the quantum circuits specified in a `tomography_set` for performing state tomography of the output - `tomography_data` extracts the results after executing the tomography circuits and returns it in a data structure used by fitters for state reconstruction. - `fit_tomography_data` reconstructs a density matrix or Choi-matrix from the a set of tomography data. """ import logging from functools import reduce from itertools import product from re import match import numpy as np from qiskit import QuantumCircuit from qiskit import QiskitError from qiskit.tools.qi.qi import vectorize, devectorize, outer logger = logging.getLogger(__name__) ############################################################################### # Tomography Bases ############################################################################### class TomographyBasis(dict): """ Dictionary subsclass that includes methods for adding gates to circuits. A TomographyBasis is a dictionary where the keys index a measurement and the values are a list of projectors associated to that measurement. It also includes two optional methods `prep_gate` and `meas_gate`: - `prep_gate` adds gates to a circuit to prepare the corresponding basis projector from an initial ground state. - `meas_gate` adds gates to a circuit to transform the default Z-measurement into a measurement in the basis. With the exception of built in bases, these functions do nothing unless they are specified by the user. They may be set by the data members `prep_fun` and `meas_fun`. We illustrate this with an example. Example: A measurement in the Pauli-X basis has two outcomes corresponding to the projectors: `Xp = [[0.5, 0.5], [0.5, 0.5]]` `Xm = [[0.5, -0.5], [-0.5, 0.5]]` We can express this as a basis by `BX = TomographyBasis( {'X': [Xp, Xm]} )` To specifiy the gates to prepare and measure in this basis we : ``` def BX_prep_fun(circuit, qreg, op): bas, proj = op if bas == "X": if proj == 0: circuit.u2(0., np.pi, qreg) # apply H else: # proj == 1 circuit.u2(np.pi, np.pi, qreg) # apply H.X def BX_prep_fun(circuit, qreg, op): if op == "X": circuit.u2(0., np.pi, qreg) # apply H ``` We can then attach these functions to the basis using: `BX.prep_fun = BX_prep_fun` `BX.meas_fun = BX_meas_fun`. Generating function: A generating function `tomography_basis` exists to create bases in a single step. Using the above example this can be done by: ``` BX = tomography_basis({'X': [Xp, Xm]}, prep_fun=BX_prep_fun, meas_fun=BX_meas_fun) ``` """ prep_fun = None meas_fun = None def prep_gate(self, circuit, qreg, op): """ Add state preparation gates to a circuit. Args: circuit (QuantumCircuit): circuit to add a preparation to. qreg (tuple(QuantumRegister,int)): quantum register to apply preparation to. op (tuple(str, int)): the basis label and index for the preparation op. """ if self.prep_fun is None: pass else: self.prep_fun(circuit, qreg, op) def meas_gate(self, circuit, qreg, op): """ Add measurement gates to a circuit. Args: circuit (QuantumCircuit): circuit to add measurement to. qreg (tuple(QuantumRegister,int)): quantum register being measured. op (str): the basis label for the measurement. """ if self.meas_fun is None: pass else: self.meas_fun(circuit, qreg, op) def tomography_basis(basis, prep_fun=None, meas_fun=None): """ Generate a TomographyBasis object. See TomographyBasis for further details.abs Args: prep_fun (callable) optional: the function which adds preparation gates to a circuit. meas_fun (callable) optional: the function which adds measurement gates to a circuit. Returns: TomographyBasis: A tomography basis. """ ret = TomographyBasis(basis) ret.prep_fun = prep_fun ret.meas_fun = meas_fun return ret # PAULI BASIS # This corresponds to measurements in the X, Y, Z basis where # Outcomes 0,1 are the +1,-1 eigenstates respectively. # State preparation is also done in the +1 and -1 eigenstates. def __pauli_prep_gates(circuit, qreg, op): """ Add state preparation gates to a circuit. """ bas, proj = op if bas not in ['X', 'Y', 'Z']: raise QiskitError("There's no X, Y or Z basis for this Pauli " "preparation") if bas == "X": if proj == 1: circuit.u2(np.pi, np.pi, qreg) # H.X else: circuit.u2(0., np.pi, qreg) # H elif bas == "Y": if proj == 1: circuit.u2(-0.5 * np.pi, np.pi, qreg) # S.H.X else: circuit.u2(0.5 * np.pi, np.pi, qreg) # S.H elif bas == "Z" and proj == 1: circuit.u3(np.pi, 0., np.pi, qreg) # X def __pauli_meas_gates(circuit, qreg, op): """ Add state measurement gates to a circuit. """ if op not in ['X', 'Y', 'Z']: raise QiskitError("There's no X, Y or Z basis for this Pauli " "measurement") if op == "X": circuit.u2(0., np.pi, qreg) # H elif op == "Y": circuit.u2(0., 0.5 * np.pi, qreg) # H.S^* __PAULI_BASIS_OPS = { 'X': [np.array([[0.5, 0.5], [0.5, 0.5]]), np.array([[0.5, -0.5], [-0.5, 0.5]])], 'Y': [ np.array([[0.5, -0.5j], [0.5j, 0.5]]), np.array([[0.5, 0.5j], [-0.5j, 0.5]]) ], 'Z': [np.array([[1, 0], [0, 0]]), np.array([[0, 0], [0, 1]])] } # Create the actual basis PAULI_BASIS = tomography_basis( __PAULI_BASIS_OPS, prep_fun=__pauli_prep_gates, meas_fun=__pauli_meas_gates) # SIC-POVM BASIS def __sic_prep_gates(circuit, qreg, op): """ Add state preparation gates to a circuit. """ bas, proj = op if bas != 'S': raise QiskitError('Not in SIC basis!') theta = -2 * np.arctan(np.sqrt(2)) if proj == 1: circuit.u3(theta, np.pi, 0.0, qreg) elif proj == 2: circuit.u3(theta, np.pi / 3, 0.0, qreg) elif proj == 3: circuit.u3(theta, -np.pi / 3, 0.0, qreg) __SIC_BASIS_OPS = { 'S': [ np.array([[1, 0], [0, 0]]), np.array([[1, np.sqrt(2)], [np.sqrt(2), 2]]) / 3, np.array([[1, np.exp(np.pi * 2j / 3) * np.sqrt(2)], [np.exp(-np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3, np.array([[1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)], [np.exp(np.pi * 2j / 3) * np.sqrt(2), 2]]) / 3 ] } SIC_BASIS = tomography_basis(__SIC_BASIS_OPS, prep_fun=__sic_prep_gates) ############################################################################### # Tomography Set and labels ############################################################################### def tomography_set(meas_qubits, meas_basis='Pauli', prep_qubits=None, prep_basis=None): """ Generate a dictionary of tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. Quantum State Tomography: Be default it will return a set for performing Quantum State Tomography where individual qubits are measured in the Pauli basis. A custom measurement basis may also be used by defining a user `tomography_basis` and passing this in for the `meas_basis` argument. Quantum Process Tomography: A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: meas_qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. prep_qubits (list or None): The qubits being prepared. If None then meas_qubits will be used for process tomography experiments. prep_basis (tomography_basis or None): The optional qubit preparation basis. If no basis is specified state tomography will be performed instead of process tomography. A built in basis may be specified by 'SIC' or 'Pauli' (SIC basis recommended for > 2 qubits). Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "circuits". It may also optionally contain a field "prep_basis" for process tomography experiments. ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations # optionally for process tomography experiments: 'prep_basis': prep_basis (tomography_basis) } ``` Raises: QiskitError: if the Qubits argument is not a list. """ if not isinstance(meas_qubits, list): raise QiskitError('Qubits argument must be a list') num_of_qubits = len(meas_qubits) if prep_qubits is None: prep_qubits = meas_qubits if not isinstance(prep_qubits, list): raise QiskitError('prep_qubits argument must be a list') if len(prep_qubits) != len(meas_qubits): raise QiskitError('meas_qubits and prep_qubitsare different length') if isinstance(meas_basis, str): if meas_basis.lower() == 'pauli': meas_basis = PAULI_BASIS if isinstance(prep_basis, str): if prep_basis.lower() == 'pauli': prep_basis = PAULI_BASIS elif prep_basis.lower() == 'sic': prep_basis = SIC_BASIS circuits = [] circuit_labels = [] # add meas basis configs if prep_basis is None: # State Tomography for meas_product in product(meas_basis.keys(), repeat=num_of_qubits): meas = dict(zip(meas_qubits, meas_product)) circuits.append({'meas': meas}) # Make label label = '_meas_' for qubit, op in meas.items(): label += '%s(%d)' % (op[0], qubit) circuit_labels.append(label) return {'qubits': meas_qubits, 'circuits': circuits, 'circuit_labels': circuit_labels, 'meas_basis': meas_basis} # Process Tomography num_of_s = len(list(prep_basis.values())[0]) plst_single = [(b, s) for b in prep_basis.keys() for s in range(num_of_s)] for plst_product in product(plst_single, repeat=num_of_qubits): for meas_product in product(meas_basis.keys(), repeat=num_of_qubits): prep = dict(zip(prep_qubits, plst_product)) meas = dict(zip(meas_qubits, meas_product)) circuits.append({'prep': prep, 'meas': meas}) # Make label label = '_prep_' for qubit, op in prep.items(): label += '%s%d(%d)' % (op[0], op[1], qubit) label += '_meas_' for qubit, op in meas.items(): label += '%s(%d)' % (op[0], qubit) circuit_labels.append(label) return {'qubits': meas_qubits, 'circuits': circuits, 'circuit_labels': circuit_labels, 'prep_basis': prep_basis, 'meas_basis': meas_basis} def state_tomography_set(qubits, meas_basis='Pauli'): """ Generate a dictionary of state tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. Quantum State Tomography: Be default it will return a set for performing Quantum State Tomography where individual qubits are measured in the Pauli basis. A custom measurement basis may also be used by defining a user `tomography_basis` and passing this in for the `meas_basis` argument. Quantum Process Tomography: A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "circuits". ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations } ``` """ return tomography_set(qubits, meas_basis=meas_basis) def process_tomography_set(meas_qubits, meas_basis='Pauli', prep_qubits=None, prep_basis='SIC'): """ Generate a dictionary of process tomography experiment configurations. This returns a data structure that is used by other tomography functions to generate state and process tomography circuits, and extract tomography data from results after execution on a backend. A quantum process tomography set is created by specifying a preparation basis along with a measurement basis. The preparation basis may be a user defined `tomography_basis`, or one of the two built in basis 'SIC' or 'Pauli'. - SIC: Is a minimal symmetric informationally complete preparation basis for 4 states for each qubit (4 ^ number of qubits total preparation states). These correspond to the |0> state and the 3 other vertices of a tetrahedron on the Bloch-sphere. - Pauli: Is a tomographically overcomplete preparation basis of the six eigenstates of the 3 Pauli operators (6 ^ number of qubits total preparation states). Args: meas_qubits (list): The qubits being measured. meas_basis (tomography_basis or str): The qubit measurement basis. The default value is 'Pauli'. prep_qubits (list or None): The qubits being prepared. If None then meas_qubits will be used for process tomography experiments. prep_basis (tomography_basis or str): The qubit preparation basis. The default value is 'SIC'. Returns: dict: A dict of tomography configurations that can be parsed by `create_tomography_circuits` and `tomography_data` functions for implementing quantum tomography experiments. This output contains fields "qubits", "meas_basis", "prep_basus", circuits". ``` { 'qubits': qubits (list[ints]), 'meas_basis': meas_basis (tomography_basis), 'prep_basis': prep_basis (tomography_basis), 'circuit_labels': (list[string]), 'circuits': (list[dict]) # prep and meas configurations } ``` """ return tomography_set(meas_qubits, meas_basis=meas_basis, prep_qubits=prep_qubits, prep_basis=prep_basis) def tomography_circuit_names(tomo_set, name=''): """ Return a list of tomography circuit names. The returned list is the same as the one returned by `create_tomography_circuits` and can be used by a QuantumProgram to execute tomography circuits and extract measurement results. Args: tomo_set (tomography_set): a tomography set generated by `tomography_set`. name (str): the name of the base QuantumCircuit used by the tomography experiment. Returns: list: A list of circuit names. """ return [name + l for l in tomo_set['circuit_labels']] ############################################################################### # Tomography circuit generation ############################################################################### def create_tomography_circuits(circuit, qreg, creg, tomoset): """ Add tomography measurement circuits to a QuantumProgram. The quantum program must contain a circuit 'name', which is treated as a state preparation circuit for state tomography, or as teh circuit being measured for process tomography. This function then appends the circuit with a set of measurements specified by the input `tomography_set`, optionally it also prepends the circuit with state preparation circuits if they are specified in the `tomography_set`. For n-qubit tomography with a tomographically complete set of preparations and measurements this results in $4^n 3^n$ circuits being added to the quantum program. Args: circuit (QuantumCircuit): The circuit to be appended with tomography state preparation and/or measurements. qreg (QuantumRegister): the quantum register containing qubits to be measured. creg (ClassicalRegister): the classical register containing bits to store measurement outcomes. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of quantum tomography circuits for the input circuit. Raises: QiskitError: if circuit is not a valid QuantumCircuit Example: For a tomography set specifying state tomography of qubit-0 prepared by a circuit 'circ' this would return: ``` ['circ_meas_X(0)', 'circ_meas_Y(0)', 'circ_meas_Z(0)'] ``` For process tomography of the same circuit with preparation in the SIC-POVM basis it would return: ``` [ 'circ_prep_S0(0)_meas_X(0)', 'circ_prep_S0(0)_meas_Y(0)', 'circ_prep_S0(0)_meas_Z(0)', 'circ_prep_S1(0)_meas_X(0)', 'circ_prep_S1(0)_meas_Y(0)', 'circ_prep_S1(0)_meas_Z(0)', 'circ_prep_S2(0)_meas_X(0)', 'circ_prep_S2(0)_meas_Y(0)', 'circ_prep_S2(0)_meas_Z(0)', 'circ_prep_S3(0)_meas_X(0)', 'circ_prep_S3(0)_meas_Y(0)', 'circ_prep_S3(0)_meas_Z(0)' ] ``` """ if not isinstance(circuit, QuantumCircuit): raise QiskitError('Input circuit must be a QuantumCircuit object') dics = tomoset['circuits'] labels = tomography_circuit_names(tomoset, circuit.name) tomography_circuits = [] for label, conf in zip(labels, dics): tmp = circuit # Add prep circuits if 'prep' in conf: prep = QuantumCircuit(qreg, creg, name='tmp_prep') for qubit, op in conf['prep'].items(): tomoset['prep_basis'].prep_gate(prep, qreg[qubit], op) prep.barrier(qreg[qubit]) # pylint: disable=no-member tmp = prep + tmp # Add measurement circuits meas = QuantumCircuit(qreg, creg, name='tmp_meas') for qubit, op in conf['meas'].items(): meas.barrier(qreg[qubit]) # pylint: disable=no-member tomoset['meas_basis'].meas_gate(meas, qreg[qubit], op) meas.measure(qreg[qubit], creg[qubit]) tmp = tmp + meas # Add label to the circuit tmp.name = label tomography_circuits.append(tmp) logger.info('>> created tomography circuits for "%s"', circuit.name) return tomography_circuits ############################################################################### # Get results data ############################################################################### def tomography_data(results, name, tomoset): """ Return a results dict for a state or process tomography experiment. Args: results (Result): Results from execution of a process tomography circuits on a backend. name (string): The name of the circuit being reconstructed. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of dicts for the outcome of each process tomography measurement circuit. """ labels = tomography_circuit_names(tomoset, name) circuits = tomoset['circuits'] data = [] prep = None for j, _ in enumerate(labels): counts = marginal_counts(results.get_counts(labels[j]), tomoset['qubits']) shots = sum(counts.values()) meas = circuits[j]['meas'] prep = circuits[j].get('prep', None) meas_qubits = sorted(meas.keys()) if prep: prep_qubits = sorted(prep.keys()) circuit = {} for c in counts.keys(): circuit[c] = {} circuit[c]['meas'] = [(meas[meas_qubits[k]], int(c[-1 - k])) for k in range(len(meas_qubits))] if prep: circuit[c]['prep'] = [prep[prep_qubits[k]] for k in range(len(prep_qubits))] data.append({'counts': counts, 'shots': shots, 'circuit': circuit}) ret = {'data': data, 'meas_basis': tomoset['meas_basis']} if prep: ret['prep_basis'] = tomoset['prep_basis'] return ret def marginal_counts(counts, meas_qubits): """ Compute the marginal counts for a subset of measured qubits. Args: counts (dict): the counts returned from a backend ({str: int}). meas_qubits (list[int]): the qubits to return the marginal counts distribution for. Returns: dict: A counts dict for the meas_qubits.abs Example: if `counts = {'00': 10, '01': 5}` `marginal_counts(counts, [0])` returns `{'0': 15, '1': 0}`. `marginal_counts(counts, [0])` returns `{'0': 10, '1': 5}`. """ # pylint: disable=cell-var-from-loop # Extract total number of qubits from count keys num_of_qubits = len(list(counts.keys())[0]) # keys for measured qubits only qs = sorted(meas_qubits, reverse=True) meas_keys = count_keys(len(qs)) # get regex match strings for summing outcomes of other qubits rgx = [ reduce(lambda x, y: (key[qs.index(y)] if y in qs else '\\d') + x, range(num_of_qubits), '') for key in meas_keys ] # build the return list meas_counts = [] for m in rgx: c = 0 for key, val in counts.items(): if match(m, key): c += val meas_counts.append(c) # return as counts dict on measured qubits only return dict(zip(meas_keys, meas_counts)) def count_keys(n): """Generate outcome bitstrings for n-qubits. Args: n (int): the number of qubits. Returns: list: A list of bitstrings ordered as follows: Example: n=2 returns ['00', '01', '10', '11']. """ return [bin(j)[2:].zfill(n) for j in range(2**n)] ############################################################################### # Tomographic Reconstruction functions. ############################################################################### def fit_tomography_data(tomo_data, method='wizard', options=None): """ Reconstruct a density matrix or process-matrix from tomography data. If the input data is state_tomography_data the returned operator will be a density matrix. If the input data is process_tomography_data the returned operator will be a Choi-matrix in the column-vectorization convention. Args: tomo_data (dict): process tomography measurement data. method (str): the fitting method to use. Available methods: - 'wizard' (default) - 'leastsq' options (dict or None): additional options for fitting method. Returns: numpy.array: The fitted operator. Available methods: - 'wizard' (Default): The returned operator will be constrained to be positive-semidefinite. Options: - 'trace': the trace of the returned operator. The default value is 1. - 'beta': hedging parameter for computing frequencies from zero-count data. The default value is 0.50922. - 'epsilon: threshold for truncating small eigenvalues to zero. The default value is 0 - 'leastsq': Fitting without positive-semidefinite constraint. Options: - 'trace': Same as for 'wizard' method. - 'beta': Same as for 'wizard' method. Raises: Exception: if the `method` parameter is not valid. """ if isinstance(method, str) and method.lower() in ['wizard', 'leastsq']: # get options trace = __get_option('trace', options) beta = __get_option('beta', options) # fit state rho = __leastsq_fit(tomo_data, trace=trace, beta=beta) if method == 'wizard': # Use wizard method to constrain positivity epsilon = __get_option('epsilon', options) rho = __wizard(rho, epsilon=epsilon) return rho else: raise Exception('Invalid reconstruction method "%s"' % method) def __get_option(opt, options): """ Return an optional value or None if not found. """ if options is not None: if opt in options: return options[opt] return None ############################################################################### # Fit Method: Linear Inversion ############################################################################### def __leastsq_fit(tomo_data, weights=None, trace=None, beta=None): """ Reconstruct a state from unconstrained least-squares fitting. Args: tomo_data (list[dict]): state or process tomography data. weights (list or array or None): weights to use for least squares fitting. The default is standard deviation from a binomial distribution. trace (float or None): trace of returned operator. The default is 1. beta (float or None): hedge parameter (>=0) for computing frequencies from zero-count data. The default value is 0.50922. Returns: numpy.array: A numpy array of the reconstructed operator. """ if trace is None: trace = 1. # default to unit trace data = tomo_data['data'] keys = data[0]['circuit'].keys() # Get counts and shots counts = [] shots = [] ops = [] for dat in data: for key in keys: counts.append(dat['counts'][key]) shots.append(dat['shots']) projectors = dat['circuit'][key] op = __projector(projectors['meas'], tomo_data['meas_basis']) if 'prep' in projectors: op_prep = __projector(projectors['prep'], tomo_data['prep_basis']) op = np.kron(op_prep.conj(), op) ops.append(op) # Convert counts to frequencies counts = np.array(counts) shots = np.array(shots) freqs = counts / shots # Use hedged frequencies to calculate least squares fitting weights if weights is None: if beta is None: beta = 0.50922 K = len(keys) freqs_hedged = (counts + beta) / (shots + K * beta) weights = np.sqrt(shots / (freqs_hedged * (1 - freqs_hedged))) return __tomo_linear_inv(freqs, ops, weights, trace=trace) def __projector(op_list, basis): """Returns a projectors. """ ret = 1 # list is from qubit 0 to 1 for op in op_list: label, eigenstate = op ret = np.kron(basis[label][eigenstate], ret) return ret def __tomo_linear_inv(freqs, ops, weights=None, trace=None): """ Reconstruct a matrix through linear inversion. Args: freqs (list[float]): list of observed frequences. ops (list[np.array]): list of corresponding projectors. weights (list[float] or array_like): weights to be used for weighted fitting. trace (float or None): trace of returned operator. Returns: numpy.array: A numpy array of the reconstructed operator. """ # get weights matrix if weights is not None: W = np.array(weights) if W.ndim == 1: W = np.diag(W) # Get basis S matrix S = np.array([vectorize(m).conj() for m in ops]).reshape(len(ops), ops[0].size) if weights is not None: S = np.dot(W, S) # W.S # get frequencies vec v = np.array(freqs) # |f> if weights is not None: v = np.dot(W, freqs) # W.|f> Sdg = S.T.conj() # S^*.W^* inv = np.linalg.pinv(np.dot(Sdg, S)) # (S^*.W^*.W.S)^-1 # linear inversion of freqs ret = devectorize(np.dot(inv, np.dot(Sdg, v))) # renormalize to input trace value if trace is not None: ret = trace * ret / np.trace(ret) return ret ############################################################################### # Fit Method: Wizard ############################################################################### def __wizard(rho, epsilon=None): """ Returns the nearest positive semidefinite operator to an operator. This method is based on reference [1]. It constrains positivity by setting negative eigenvalues to zero and rescaling the positive eigenvalues. Args: rho (array_like): the input operator. epsilon(float or None): threshold (>=0) for truncating small eigenvalues values to zero. Returns: numpy.array: A positive semidefinite numpy array. """ if epsilon is None: epsilon = 0. # default value dim = len(rho) rho_wizard = np.zeros([dim, dim]) v, w = np.linalg.eigh(rho) # v eigenvecrors v[0] < v[1] <... for j in range(dim): if v[j] < epsilon: tmp = v[j] v[j] = 0. # redistribute loop x = 0. for k in range(j + 1, dim): x += tmp / (dim - (j + 1)) v[k] = v[k] + tmp / (dim - (j + 1)) for j in range(dim): rho_wizard = rho_wizard + v[j] * outer(w[:, j]) return rho_wizard ############################################################### # Wigner function tomography ############################################################### def build_wigner_circuits(circuit, phis, thetas, qubits, qreg, creg): """Create the circuits to rotate to points in phase space Args: circuit (QuantumCircuit): The circuit to be appended with tomography state preparation and/or measurements. phis (np.matrix[[complex]]): phis thetas (np.matrix[[complex]]): thetas qubits (list[int]): a list of the qubit indexes of qreg to be measured. qreg (QuantumRegister): the quantum register containing qubits to be measured. creg (ClassicalRegister): the classical register containing bits to store measurement outcomes. Returns: list: A list of names of the added wigner function circuits. Raises: QiskitError: if circuit is not a valid QuantumCircuit. """ if not isinstance(circuit, QuantumCircuit): raise QiskitError('Input circuit must be a QuantumCircuit object') tomography_circuits = [] points = len(phis[0]) for point in range(points): label = '_wigner_phase_point' label += str(point) tmp_circ = QuantumCircuit(qreg, creg, name=label) for qubit, _ in enumerate(qubits): tmp_circ.u3(thetas[qubit][point], 0, # pylint: disable=no-member phis[qubit][point], qreg[qubits[qubit]]) tmp_circ.measure(qreg[qubits[qubit]], creg[qubits[qubit]]) # Add to original circuit tmp_circ = circuit + tmp_circ tmp_circ.name = circuit.name + label tomography_circuits.append(tmp_circ) logger.info('>> Created Wigner function circuits for "%s"', circuit.name) return tomography_circuits def wigner_data(q_result, meas_qubits, labels, shots=None): """Get the value of the Wigner function from measurement results. Args: q_result (Result): Results from execution of a state tomography circuits on a backend. meas_qubits (list[int]): a list of the qubit indexes measured. labels (list[str]): a list of names of the circuits shots (int): number of shots Returns: list: The values of the Wigner function at measured points in phase space """ num = len(meas_qubits) dim = 2**num p = [0.5 + 0.5 * np.sqrt(3), 0.5 - 0.5 * np.sqrt(3)] parity = 1 for i in range(num): parity = np.kron(parity, p) w = [0] * len(labels) wpt = 0 counts = [marginal_counts(q_result.get_counts(circ), meas_qubits) for circ in labels] for entry in counts: x = [0] * dim for i in range(dim): if bin(i)[2:].zfill(num) in entry: x[i] = float(entry[bin(i)[2:].zfill(num)]) if shots is None: shots = np.sum(x) for i in range(dim): w[wpt] = w[wpt] + (x[i] / shots) * parity[i] wpt += 1 return w
36.681863
79
0.591025
[ "Apache-2.0" ]
filemaster/qiskit-terra
qiskit/tools/qcvv/tomography.py
37,012
Python
"""Test Pyvista camera parameters.""" import os import numpy as np import pyvista as pv import nibabel as nb FILE = "/home/faruk/data2/DATA_MRI_NIFTI/derived/sub-04/flattening/sub-04_ses-T2s_segm_rim_CS_LH_v02_borderized_multilaterate_perimeter_chunk_T2star_flat_400x400_voronoi.nii.gz" OUTDIR = "/home/faruk/data2/DATA_MRI_NIFTI/derived/movies/test_frames" MIN, MAX = 20, 45 BACKGROUND = "black" RESOLUTION = (720, 720) CMAP = "gray" # ----------------------------------------------------------------------------- # Output directory if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) print(" Output directory: {}".format(OUTDIR)) nii = nb.load(FILE) dims = nii.shape data = nii.get_fdata() # Normalize data[data > MAX] = MAX data -= MIN data /= MAX - MIN data[data < 0] = 0 data *= 255 # Prep pyvista plotter p = pv.Plotter(window_size=RESOLUTION, off_screen=True) opacity = np.ones(255) opacity[0] = 0 p.add_volume(data, cmap="gray", opacity=opacity) p.set_background(BACKGROUND) # p.camera.roll = 0 p.camera_position = 'yz' p.camera.elevation = 15 print("Roll : {}".format(p.camera.roll)) print("Elevation : {}".format(p.camera.elevation)) print("Azimuth : {}".format(p.camera.azimuth)) print("Position : {}".format(p.camera.position)) print("Focal point : {}".format(p.camera.focal_point)) print("Clip range : {}".format(p.camera.clipping_range)) CAMPOS_DEFAULT = p.camera_position # Manipulate camera # ----------------------------------------------------------------------------- p.camera_position = CAMPOS_DEFAULT p.camera.elevation += 30 for i in range(90): p.show(auto_close=False) out_name = "03_azimuth-{}.png".format(str(i).zfill(3)) p.screenshot(os.path.join(OUTDIR, out_name)) p.camera.azimuth += 4 p.camera.azimuth %= 360 print("Finished.")
27.846154
177
0.654144
[ "BSD-3-Clause" ]
ofgulban/meso-MRI
scripts/wip/anim-test_camera.py
1,810
Python
from typing import List, TYPE_CHECKING import numpy as np import scipy.sparse from qdrant_openapi_client.models.models import Distance from docarray.math.helper import EPSILON if TYPE_CHECKING: from docarray.types import ArrayType class QdrantStorageHelper: @classmethod def embedding_to_array( cls, embedding: 'ArrayType', default_dim: int ) -> List[float]: if embedding is None: embedding = np.random.rand(default_dim) else: from ....math.ndarray import to_numpy_array embedding = to_numpy_array(embedding) if embedding.ndim > 1: embedding = np.asarray(embedding).squeeze() if np.all(embedding == 0): embedding = embedding + EPSILON return embedding.tolist() DISTANCES = { 'cosine': Distance.COSINE, 'euclidean': Distance.EUCLID, 'dot': Distance.DOT, }
23.710526
56
0.662597
[ "Apache-2.0" ]
fastflair/docarray
docarray/array/storage/qdrant/helper.py
901
Python
#!/usr/bin/env python3 import torch import torch.cuda.profiler as profiler from apex import pyprof class Foo(torch.jit.ScriptModule): def __init__(self, size): super(Foo, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) @torch.jit.script_method def forward(self, input): return self.n*input + self.m #Initialize pyprof after the JIT step pyprof.nvtx.init() #Hook up the forward function to pyprof pyprof.nvtx.wrap(Foo, 'forward') foo = Foo(4) foo.cuda() x = torch.ones(4).cuda() with torch.autograd.profiler.emit_nvtx(): profiler.start() z = foo(x) profiler.stop() print(z)
21.53125
53
0.690856
[ "BSD-3-Clause" ]
58733511/apex
apex/pyprof/examples/jit/jit_script_method.py
689
Python
from pathlib import Path from typing import List, Optional, Dict, Union, Tuple, Literal, Sequence, Any import fsspec import numpy as np from xarray import DataArray from dataclasses import asdict, dataclass import json from ..io.mrc import mrc_to_dask from ..io import read import dask.array as da import dacite from xarray_multiscale.metadata.util import SpatialTransform CONTAINER_TYPES ={'mrc', 'n5', 'precomputed'} DTYPE_FORMATS = {"uint16": "n5", "uint8": "precomputed", "uint64": "n5"} CONTENT_TYPES = {"em", "lm", "prediction", "segmentation", "analysis"} ContainerTypes = Literal['n5', 'precomputed', 'mrc'] @dataclass class VolumeStorageSpec: kvStore: str containerType: ContainerTypes containerPath: str dataPath: str def toURI(self): return f'{self.kvStore}://{Path(self.containerPath).with_suffix("." + self.containerType).joinpath(self.dataPath)}' def __post_init__(self): if self.containerType not in CONTAINER_TYPES: raise ValueError( f"containerType must be one of {CONTAINER_TYPES}" ) @dataclass class ContrastLimits: min: float max: float def __post_init__(self): if not self.min <= self.max: raise ValueError('min must be less than or equal to max.') @dataclass class DisplaySettings: contrastLimits: ContrastLimits color: str = 'white' invertColormap: bool = False @classmethod def fromDict(cls, d: Dict[str, Any]): return dacite.from_dict(cls, d) @dataclass class DatasetView: datasetName: str name: str description: str position: Optional[Sequence[float]] scale: Optional[float] volumeKeys: Sequence[str] @classmethod def fromDict(cls, d: Dict[str, Any]): return dacite.from_dict(cls, d) @dataclass class MultiscaleSpec: reduction: str depth: int factors: Union[int, Sequence[int]] @dataclass class MeshSource: path: str name: str datasetName: str format: str @dataclass class VolumeSource: path: str name: str datasetName: str dataType: str dimensions: Sequence[float] transform: SpatialTransform contentType: str containerType: Optional[ContainerTypes] displaySettings: DisplaySettings description: str = '' version: str="0" tags: Optional[Sequence[str]] = None def __post_init__(self): assert self.contentType in CONTENT_TYPES assert len(self.version) > 0 def toDataArray(self): if Path(self.path).suffix == ".mrc": array = mrc_to_dask(self.path, chunks=(1, -1, -1)) else: r = read(self.path) array = da.from_array(r, chunks=r.chunks) coords = [ DataArray( self.transform.translate[idx] + np.arange(array.shape[idx]) * self.transform.scale[idx], dims=ax, attrs= {'units': self.transform.units[idx]} ) for idx, ax in enumerate(self.transform.axes) ] return DataArray(array, coords=coords, name=self.name) @classmethod def fromDict(cls, d: Dict[str, Any]): return dacite.from_dict(cls, d) @dataclass class DatasetIndex: name: str volumes: Sequence[VolumeSource] meshes: Sequence[MeshSource] views: Sequence[DatasetView] @classmethod def from_json(cls, fname: Union[str, Path], open_kwargs: dict = {}): with fsspec.open(str(fname), mode='rt', **open_kwargs) as fh: jblob = json.loads(fh.read()) return cls(**jblob) def to_json(self, fname: Union[str, Path], open_kwargs: dict = {}) -> int: jblob = json.dumps(asdict(self)) with fsspec.open(str(fname), mode='wt', **open_kwargs) as fh: result = fh.write(jblob) return result @dataclass class VolumeIngest: source: VolumeSource multiscaleSpec: MultiscaleSpec storageSpec: VolumeStorageSpec mutation: Optional[str] = None @dataclass class COSEMArrayAttrs: name: str transform: SpatialTransform @classmethod def fromDataArray(cls, data: DataArray) -> "COSEMArrayAttrs": name = data.name if name is not None: return cls(str(name), SpatialTransform.fromDataArray((data))) else: raise ValueError('DataArray argument must have a valid name') @dataclass class OMEScaleAttrs: path: str transform: SpatialTransform @dataclass class OMEMultiscaleAttrs: datasets: Sequence[OMEScaleAttrs] @dataclass class COSEMGroupAttrs: name: str multiscales: Sequence[OMEMultiscaleAttrs] @dataclass class N5PixelResolution: dimensions: Sequence[float] unit: str @dataclass class NeuroglancerGroupAttrs: # see https://github.com/google/neuroglancer/issues/176#issuecomment-553027775 axes: Sequence[str] units: Sequence[str] scales: Sequence[Sequence[int]] pixelResolution: N5PixelResolution @dataclass class MultiscaleGroupAttrs: name: str multiscales: Sequence[OMEMultiscaleAttrs] axes: Sequence[str] units: Sequence[str] scales: Sequence[Sequence[int]] pixelResolution: N5PixelResolution def makeN5ArrayAttrs(dimensions: Sequence[float], unit: str) -> Dict[str, N5PixelResolution]: return {'pixelResolution': N5PixelResolution(dimensions, unit)} def makeMultiscaleGroupAttrs(name: str, arrays: Sequence[DataArray], array_paths: Sequence[str], axis_order: str="F") -> MultiscaleGroupAttrs: assert len(arrays) == len(array_paths) cosemArrayAttrs = tuple(COSEMArrayAttrs.fromDataArray(a) for a in arrays) axis_indexer = slice(None) # neuroglancer wants the axes reported in fortran order if axis_order == "F": axis_indexer = slice(-1, None, -1) axes: Tuple[str] = arrays[0].dims[axis_indexer] scales = tuple(tuple(s.scale_factors)[axis_indexer] for s in arrays) coords_reordered = tuple(arrays[0].coords[k] for k in axes) units = tuple(d.units for d in coords_reordered) # we need this for neuroglancer pixelResolution = N5PixelResolution(dimensions=cosemArrayAttrs[0].transform.scale[axis_indexer], unit=units[0]) multiscales = OMEMultiscaleAttrs(datasets=[OMEScaleAttrs(path=ap, transform=attr.transform) for ap, attr in zip(array_paths, cosemArrayAttrs)]) result = MultiscaleGroupAttrs(name=name, multiscales=[multiscales], axes=axes, units=units, scales=scales, pixelResolution=pixelResolution) return result @dataclass class CompositeArrayAttrs: name: str transform: SpatialTransform pixelResolution: N5PixelResolution @classmethod def fromDataArray(cls, data: DataArray): cosemAttrs = COSEMArrayAttrs.fromDataArray(data) pixelResolution = N5PixelResolution(cosemAttrs.transform.scale[::-1], unit=cosemAttrs.transform.units[0]) return cls(cosemAttrs.name, cosemAttrs.transform, pixelResolution)
28.015564
147
0.659167
[ "MIT" ]
trautmane/fibsem-tools
src/fibsem_tools/attrs/attrs.py
7,200
Python
"""A dictionary of module names to pytype overlays. Some libraries need custom overlays to provide useful type information. Pytype has some built-in overlays, and additional overlays may be added to the overlays dictionary. See overlay.py for the overlay interface and the *_overlay.py files for examples. Each entry in custom_overlays maps the module name to the overlay object """ from pytype import abc_overlay from pytype import asyncio_types_overlay from pytype import collections_overlay from pytype import functools_overlay from pytype import future_overlay from pytype import six_overlay from pytype import sys_overlay from pytype import typing_overlay # Collection of module overlays, used by the vm to fetch an overlay # instead of the module itself. Memoized in the vm itself. overlays = { "abc": abc_overlay.ABCOverlay, "asyncio": asyncio_types_overlay.AsyncioOverlay, "collections": collections_overlay.CollectionsOverlay, "functools": functools_overlay.FunctoolsOverlay, "future.utils": future_overlay.FutureUtilsOverlay, "six": six_overlay.SixOverlay, "sys": sys_overlay.SysOverlay, "types": asyncio_types_overlay.TypesOverlay, "typing": typing_overlay.TypingOverlay, }
38.25
80
0.800654
[ "Apache-2.0" ]
gs-jackal/pytype
pytype/overlay_dict.py
1,224
Python
from bottle import route, run, template @route('/hello/<name>') def index(name): return template('<b>Hello {{name}}</b>!', name=name) run(host='localhost', port=8080)
19.333333
56
0.66092
[ "MIT" ]
axeldeveloper/codigos
python/hello_bottle.py
174
Python
''' Natural language understanding model based on multi-task learning. This model is trained on two tasks: slot tagging and user intent prediction. Inputs: user utterance, e.g. BOS w1 w2 ... EOS Outputs: slot tags and user intents, e.g. O O B-moviename ... O\tinform+moviename Author : Xuesong Yang Email : [email protected] Created Date: Dec. 31, 2016 ''' from DataSetCSVslotTagging import DataSetCSVslotTagging from keras.layers import Input, LSTM, Dense, Dropout, merge, Embedding, TimeDistributed from keras.models import Model from utils import print_params, eval_slotTagging, eval_intentPredict, writeTxt, getNLUpred, getActPred, getTagPred, checkExistence, getNLUframeAccuracy, eval_actPred import os import numpy as np np.random.seed(1983) def writeUtterTagIntentTxt(utter_txt, tag_txt, intent_txt, target_fname): with open(target_fname, 'wb') as f: for (utter, tag, intent) in zip(utter_txt, tag_txt, intent_txt): tag_new = [token.replace('tag-', '', 1) for token in tag.split()] intent_new = [token.replace('intent-', '', 1) for token in intent.split(';')] new_line = '{}\t{}\t{}'.format( utter, ' '.join(tag_new), ';'.join(intent_new)) f.write('{}\n'.format(new_line)) class SlotTaggingModel(object): def __init__(self, **argparams): self.train_data = argparams['train_data'] if self.train_data is not None: assert isinstance(self.train_data, DataSetCSVslotTagging) self.test_data = argparams['test_data'] if self.test_data is not None: assert isinstance(self.test_data, DataSetCSVslotTagging) self.dev_data = argparams['dev_data'] if self.dev_data is not None: assert isinstance(self.dev_data, DataSetCSVslotTagging) self.model_folder = argparams['model_folder'] if self.model_folder is None: pid = argparams['pid'] self.model_folder = './model/slot_{}'.format(pid) os.makedirs('{}/weights'.format(self.model_folder)) os.makedirs('{}/dev_results'.format(self.model_folder)) self.epoch_nb = argparams['epoch_nb'] self.batch_size = argparams['batch_size'] self.embedding_size = argparams['embedding_size'] self.hidden_size = argparams['hidden_size'] self.dropout = argparams['dropout_ratio'] self.optimizer = argparams['optimizer'] self.patience = argparams['patience'] self.loss = argparams['loss'] self.test_tag_flag = argparams['test_tag_only'] self.test_intent_flag = argparams['test_intent_only'] self.threshold = argparams['threshold'] self.weights_fname = argparams['weights_fname'] self.params = argparams def _build(self): print('Building Graph ...') words_input = Input(shape=(self.maxlen_userUtter,), dtype='int32', name='words_input') # reserve 0 for masking, therefore vocab_size + 1 embeddings = Embedding(input_dim=self.word_vocab_size + 1, output_dim=self.embedding_size, input_length=self.maxlen_userUtter, mask_zero=True)(words_input) embeddings = Dropout(self.dropout)(embeddings) lstm_forward = LSTM(output_dim=self.hidden_size, return_sequences=True, name='LSTM_forward')(embeddings) lstm_forward = Dropout(self.dropout)(lstm_forward) lstm_backward = LSTM(output_dim=self.hidden_size, return_sequences=True, go_backwards=True, name='LSTM_backward')(embeddings) lstm_backward = Dropout(self.dropout)(lstm_backward) lstm_concat = merge([lstm_forward, lstm_backward], mode='concat', concat_axis=-1, name='merge_bidirections') slot_softmax_seq = TimeDistributed(Dense( output_dim=self.userTag_vocab_size, activation='softmax'), name='slot_output')(lstm_concat) intent_summary = LSTM(output_dim=self.hidden_size, return_sequences=False, name='summarize_to_dense')(lstm_concat) intent_summary = Dropout(self.dropout)(intent_summary) # intent_softmax = Dense(output_dim=self.userIntent_vocab_size, # activation='softmax', name='intent_output')(intent_summary) intent_softmax = Dense(output_dim=self.userIntent_vocab_size, activation='sigmoid', name='intent_output')(intent_summary) self.model = Model(input=words_input, output=[ slot_softmax_seq, intent_softmax]) self.model.compile(optimizer=self.optimizer, # metrics=['accuracy'], sample_weight_mode={ 'slot_output': 'temporal', 'intent_output': None}, loss={'slot_output': self.loss, 'intent_output': 'binary_crossentropy'}) def train(self): print('Training model ...') # load params self.maxlen_userUtter = self.train_data.maxlen_userUtter self.word_vocab_size = self.train_data.word_vocab_size self.userIntent_vocab_size = self.train_data.userIntent_vocab_size self.userTag_vocab_size = self.train_data.userTag_vocab_size self.id2word = self.train_data.id2word self.id2userTag = self.train_data.id2userTag self.id2userIntent = self.train_data.id2userIntent self.userTag2id = self.train_data.userTag2id other_npz = '{}/other_vars.npz'.format(self.model_folder) train_vars = {'id2userTag': self.id2userTag, 'id2word': self.id2word, 'id2userIntent': self.id2userIntent, 'userTag2id': self.userTag2id, 'userTag_vocab_size': self.userTag_vocab_size, 'userIntent_vocab_size': self.userIntent_vocab_size, 'word_vocab_size': self.word_vocab_size, 'maxlen_userUtter': self.maxlen_userUtter} np.savez_compressed(other_npz, **train_vars) self.params['maxlen_userUtter'] = self.maxlen_userUtter self.params['word_vocab_size'] = self.word_vocab_size self.params['userTag_vocab_size'] = self.userTag_vocab_size self.params['userIntent_vocab_size'] = self.userIntent_vocab_size print_params(self.params) # build model graph, save graph and plot graph self._build() self._plot_graph() graph_yaml = '{}/graph-arch.yaml'.format(self.model_folder) with open(graph_yaml, 'w') as fyaml: fyaml.write(self.model.to_yaml()) # load train data X_train = self.train_data.userUtter_encodePad tag_train = self.train_data.userTag_1hotPad intent_train = self.train_data.userIntent_vecBin train_utter_txt = self.train_data.userUtter_txt train_intent_txt = self.train_data.userIntent_txt train_tag_txt = self.train_data.userTag_txt train_target_fname = '{}/train.target'.format(self.model_folder) writeUtterTagIntentTxt(train_utter_txt, train_tag_txt, train_intent_txt, train_target_fname) # load dev data X_dev = self.dev_data.userUtter_encodePad tag_dev = self.dev_data.userTag_1hotPad intent_dev = self.dev_data.userIntent_vecBin dev_utter_txt = self.dev_data.userUtter_txt dev_intent_txt = self.dev_data.userIntent_txt dev_tag_txt = self.dev_data.userTag_txt dev_target_fname = '{}/dev.target'.format(self.model_folder) writeUtterTagIntentTxt(dev_utter_txt, dev_tag_txt, dev_intent_txt, dev_target_fname) # get mask matrix for train and dev set mask_array_train = np.zeros_like(X_train) mask_array_train[X_train != 0] = 1 mask_array_dev = np.zeros_like(X_dev) mask_array_dev[X_dev != 0] = 1 # jointly training for ep in xrange(self.epoch_nb): print('<Epoch {}>'.format(ep)) self.model.fit(x=X_train, y={'slot_output': tag_train, 'intent_output': intent_train}, sample_weight={'slot_output': mask_array_train, 'intent_output': None}, batch_size=self.batch_size, nb_epoch=1, verbose=2) tag_probs, intent_probs = self.model.predict(X_dev) # calculate token-level scores precision_tag, recall_tag, fscore_tag, accuracy_frame_tag = eval_slotTagging(tag_probs, mask_array_dev, tag_dev, self.userTag2id['tag-O']) print('SlotTagging: ep={}, precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(ep, precision_tag, recall_tag, fscore_tag, accuracy_frame_tag)) precision_intent, recall_intent, fscore_intent, accuracy_frame_intent, threshold = eval_intentPredict(intent_probs, intent_dev) print('Intent Prediction: ep={}, precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}, threshold={:.4f}'.format(ep, precision_intent, recall_intent, fscore_intent, accuracy_frame_intent, threshold)) accuracy_frame_both = getNLUframeAccuracy(tag_probs, mask_array_dev, tag_dev, intent_probs, intent_dev, threshold) print('NLU Frame: ep={}, accuracy={:.4f}'.format(ep, accuracy_frame_both)) dev_tag_pred_txt, dev_intent_pred_txt = getNLUpred(tag_probs, mask_array_dev, self.id2userTag, intent_probs, threshold, self.id2userIntent) dev_results_fname = '{}/dev_results/dev_ep={}.pred'.format(self.model_folder, ep) writeUtterTagIntentTxt(dev_utter_txt, dev_tag_pred_txt, dev_intent_pred_txt, dev_results_fname) print('Write dev results: {}'.format(dev_results_fname)) weights_fname = '{}/weights/ep={}_tagF1={:.4f}frameAcc={:.4f}_intentF1={:.4f}frameAcc={:.4f}th={:.4f}.h5'.format(self.model_folder, ep, fscore_tag, accuracy_frame_tag, fscore_intent, accuracy_frame_intent, threshold) print('Saving Model: {}'.format(weights_fname)) self.model.save_weights(weights_fname, overwrite=True) def _plot_graph(self): from keras.utils import visualize_util graph_png = '{}/graph-plot.png'.format(self.model_folder) visualize_util.plot(self.model, to_file=graph_png, show_shapes=True, show_layer_names=True) def predict(self): print('Predicting ...') result_folder = '{}/test_result'.format(self.model_folder) if not os.path.exists(result_folder): os.makedirs(result_folder) # write user utters utter_fname = '{}/utter.txt'.format(result_folder) if not os.path.exists(utter_fname): utter_txt = self.test_data.userUtter_txt writeTxt(utter_txt, utter_fname, prefix='', delimiter=None) print('\ttest_utter={}'.format(utter_fname)) # load test data and calculate posterior probs. X_test = self.test_data.userUtter_encodePad tag_probs, intent_probs = self.model.predict(X_test) # a tuple, slot_tags and intents # make prediction if self.test_intent_flag: assert self.threshold is not None, 'Argument required: --threshold' intent_probs_fname = '{}/intentProb_{}.npz'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0]) np.savez_compressed(intent_probs_fname, probs=intent_probs) print('\tintent_probs={}'.format(intent_probs_fname)) # write prediction test results pred_intent_fname = '{}/intent_{}.pred'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0]) pred_intent_txt = getActPred(intent_probs, self.threshold, self.id2userIntent) writeTxt(pred_intent_txt, pred_intent_fname, prefix='intent-', delimiter=';') print('\tintent_pred={}'.format(pred_intent_fname)) # write target test target_intent_fname = '{}/intent_test.target'.format(result_folder) target_intent = self.test_data.userIntent_txt writeTxt(target_intent, target_intent_fname, prefix='intent-', delimiter=';') print('\tintent_target={}'.format(target_intent_fname)) # calculate performance scores preds_indicator, precision, recall, fscore, accuracy_frame = eval_actPred(intent_probs, self.test_data.userIntent_vecBin, self.threshold) print('IntentPred: precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame)) if self.test_tag_flag: tag_probs_fname = '{}/tagProb_{}.npz'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0]) np.savez_compressed(tag_probs_fname, probs=tag_probs) print('\ttag_probs={}'.format(tag_probs_fname)) # write prediction results pred_tag_fname = '{}/tag_{}.pred'.format(result_folder, os.path.basename(self.weights_fname).split('_')[0]) mask_test = np.zeros_like(X_test) mask_test[X_test != 0] = 1 pred_tag_txt = getTagPred(tag_probs, mask_test, self.id2userTag) writeTxt(pred_tag_txt, pred_tag_fname, prefix='tag-', delimiter=None) print('\ttag_pred={}'.format(pred_tag_fname)) # write target target_tag_fname = '{}/tag_test.target'.format(result_folder) target_tag = self.test_data.userTag_txt writeTxt(target_tag, target_tag_fname, prefix='tag-', delimiter=None) print('\ttag_target={}'.format(target_tag_fname)) # calculate performance scores precision, recall, fscore, accuracy_frame = eval_slotTagging(tag_probs, mask_test, self.test_data.userTag_1hotPad, self.userTag2id['tag-O']) print('SlotTagging: precision={:.4f}, recall={:.4f}, fscore={:.4f}, accuracy_frame={:.4f}'.format(precision, recall, fscore, accuracy_frame)) def load_model(self): print('Loading model ...') # check existence of params assert os.path.exists(self.model_folder), 'model_fold is not found: {}'.format(self.model_folder) assert self.weights_fname is not None, 'Argument required: --weights-file' checkExistence(self.weights_fname) model_graph = '{}/graph-arch.yaml'.format(self.model_folder) model_train_vars = '{}/other_vars.npz'.format(self.model_folder) checkExistence(model_graph) checkExistence(model_train_vars) from keras.models import model_from_yaml with open(model_graph, 'r') as fgraph: self.model = model_from_yaml(fgraph.read()) self.model.load_weights(self.weights_fname) npzfile = np.load(model_train_vars) self.maxlen_userUtter = np.int32(npzfile['maxlen_userUtter'][()]) self.word_vocab_size = np.int32(npzfile['word_vocab_size'][()]) self.userTag_vocab_size = np.int32(npzfile['userTag_vocab_size'][()]) self.userIntent_vocab_size = np.int32( npzfile['userIntent_vocab_size'][()]) self.id2userTag = npzfile['id2userTag'][()] self.id2word = npzfile['id2word'][()] self.id2userIntent = npzfile['id2userIntent'][()] self.userTag2id = npzfile['userTag2id'][()] if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--data-npz', dest='data_npz', help='.npz file including instances of DataSetCSVslotTagging for train, dev and test') parser.add_argument('--loss', dest='loss', default='categorical_crossentropy', help='objective function') parser.add_argument('--optimizer', dest='optimizer', default='adam', help='optimizer') parser.add_argument('--epoch-nb', dest='epoch_nb', type=int, default=300, help='number of epoches') parser.add_argument('--embedding-size', dest='embedding_size', type=int, default=512, help='the dimention of word embeddings.') parser.add_argument('--patience', dest='patience', type=int, default=10, help='the patience for early stopping criteria') parser.add_argument('--batch-size', dest='batch_size', type=int, default=32, help='batch size') parser.add_argument('--hidden-size', dest='hidden_size', type=int, default=128, help='the number of hidden units in recurrent layer') parser.add_argument('--dropout-ratio', dest='dropout_ratio', type=float, default=0.5, help='dropout ratio') parser.add_argument('--model-folder', dest='model_folder', help='the folder contains graph.yaml, weights.h5, and other_vars.npz') parser.add_argument('--test-tag', dest='test_tag_only', action='store_true', help='only perform user Tagging test if this option is activated.') parser.add_argument('--test-intent', dest='test_intent_only', action='store_true', help='only perform user intent test if this option is activated.') parser.add_argument('--train', dest='train_only', action='store_true', help='only perform training if this option is activated.') parser.add_argument('--weights-file', dest='weights_fname', help='.h5 weights file.') parser.add_argument('--threshold', dest='threshold', type=float, help='float number of threshold for multi-label prediction decision.') args = parser.parse_args() argparams = vars(args) # early stop criteria are different for two tasks, therefore one model is # chosen for each. test_tag_only = argparams['test_tag_only'] test_intent_only = argparams['test_intent_only'] train_only = argparams['train_only'] assert train_only or test_tag_only or test_intent_only, 'Arguments required: either --train, --test-tag, or --test-intent' pid = os.getpid() argparams['pid'] = pid npz_fname = argparams['data_npz'] checkExistence(npz_fname) data_npz = np.load(npz_fname) if train_only: # train model argparams['train_data'] = data_npz['train_data'][()] argparams['dev_data'] = data_npz['dev_data'][()] argparams['test_data'] = None model = SlotTaggingModel(**argparams) model.train() else: # train_only is False, while test_only is True # need to load model argparams['train_data'] = None argparams['dev_data'] = None argparams['test_data'] = None if argparams['model_folder'] is None: raise Exception('Argument required: --model-folder') model = SlotTaggingModel(**argparams) model.load_model() # test if test_tag_only or test_intent_only: model.test_data = data_npz['test_data'][()] model.predict()
57.956395
228
0.62853
[ "MIT" ]
XuesongYang/end2end_dialog
SlotTaggingModel_multitask.py
19,937
Python
''' PipedImagerPQ is a graphics viewer application written in PyQt that receives its images and commands primarily from another application through a pipe. A limited number of commands are provided by the viewer itself to allow saving and some manipulation of the displayed image. The controlling application, however, may be unaware of these modifications made to the image. PipedImagerPQProcess is used to create and run a PipedImagerPQ. This package was developed by the Thermal Modeling and Analysis Project (TMAP) of the National Oceanographic and Atmospheric Administration's (NOAA) Pacific Marine Environmental Lab (PMEL). ''' from __future__ import print_function import sys import os import time import signal try: import sip except ImportError: import PyQt4.sip as sip try: sip.setapi('QVariant', 2) except Exception: pass # First try to import PyQt5, then try PyQt4 if that fails try: import PyQt5 QT_VERSION = 5 except ImportError: import PyQt4 QT_VERSION = 4 # Now that the PyQt version is determined, import the parts # allowing any import errors to propagate out if QT_VERSION == 5: from PyQt5.QtCore import Qt, QPointF, QRectF, QSize, QTimer from PyQt5.QtGui import QBrush, QColor, QImage, QPainter, \ QPalette, QPen, QPixmap, QPolygonF from PyQt5.QtWidgets import QAction, QApplication, QDialog, \ QFileDialog, QLabel, QMainWindow, \ QMessageBox, QPushButton, QScrollArea else: from PyQt4.QtCore import Qt, QPointF, QRectF, QSize, QTimer from PyQt4.QtGui import QAction, QApplication, QBrush, QColor, QDialog, \ QFileDialog, QImage, QLabel, QMainWindow, \ QMessageBox, QPainter, QPalette, QPen, QPixmap, \ QPolygonF, QPushButton, QScrollArea import multiprocessing from pipedviewer import WINDOW_CLOSED_MESSAGE from pipedviewer.cmndhelperpq import CmndHelperPQ from pipedviewer.scaledialogpq import ScaleDialogPQ class PipedImagerPQ(QMainWindow): ''' A PyQt graphics viewer that receives images and commands through a pipe. A command is a dictionary with string keys. For example, { "action":"save", "filename":"ferret.png", "fileformat":"png" } The command { "action":"exit" } will shutdown the viewer. ''' def __init__(self, cmndpipe, rspdpipe): ''' Create a PyQt viewer which reads commands from the Pipe cmndpipe and writes responses back to rspdpipe. ''' super(PipedImagerPQ, self).__init__() self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe # ignore Ctrl-C signal.signal(signal.SIGINT, signal.SIG_IGN) # unmodified image for creating the scene self.__sceneimage = None # bytearray of data for the above image self.__scenedata = None # flag set if in the process of reading image data from commands self.__loadingimage = False # width and height of the unmodified scene image # when the image is defined # initialize the width and height to values that will create # a viewer (mainWindow) of the right size self.__scenewidth = int(10.8 * self.physicalDpiX()) self.__sceneheight = int(8.8 * self.physicalDpiY()) # by default pay attention to any alpha channel values in colors self.__noalpha = False # initial default color for the background (opaque white) self.__lastclearcolor = QColor(0xFFFFFF) self.__lastclearcolor.setAlpha(0xFF) # scaling factor for creating the displayed scene self.__scalefactor = 1.0 # automatically adjust the scaling factor to fit the window frame? self.__autoscale = True # minimum label width and height (for minimum scaling factor) # and minimum image width and height (for error checking) self.__minsize = 128 # create the label, that will serve as the canvas, in a scrolled area self.__scrollarea = QScrollArea(self) self.__label = QLabel(self.__scrollarea) # set the initial label size and other values for the scrolled area self.__label.setMinimumSize(self.__scenewidth, self.__sceneheight) self.__label.resize(self.__scenewidth, self.__sceneheight) # setup the scrolled area self.__scrollarea.setWidget(self.__label) self.__scrollarea.setBackgroundRole(QPalette.Dark) self.setCentralWidget(self.__scrollarea) # default file name and format for saving the image self.__lastfilename = "ferret.png" self.__lastformat = "png" # command helper object self.__helper = CmndHelperPQ(self) # create the menubar self.__scaleact = QAction(self.tr("&Scale"), self, shortcut=self.tr("Ctrl+S"), statusTip=self.tr("Scale the image (canvas and image change size)"), triggered=self.inquireSceneScale) self.__saveact = QAction(self.tr("Save &As..."), self, shortcut=self.tr("Ctrl+A"), statusTip=self.tr("Save the image to file"), triggered=self.inquireSaveFilename) self.__redrawact = QAction(self.tr("&Redraw"), self, shortcut=self.tr("Ctrl+R"), statusTip=self.tr("Clear and redraw the image"), triggered=self.redrawScene) self.__aboutact = QAction(self.tr("&About"), self, statusTip=self.tr("Show information about this viewer"), triggered=self.aboutMsg) self.__aboutqtact = QAction(self.tr("About &Qt"), self, statusTip=self.tr("Show information about the Qt library"), triggered=self.aboutQtMsg) self.createMenus() # set the initial size of the viewer self.__framedelta = 4 mwwidth = self.__scenewidth + self.__framedelta mwheight = self.__sceneheight + self.__framedelta \ + self.menuBar().height() \ + self.statusBar().height() self.resize(mwwidth, mwheight) # check the command queue any time there are no window events to deal with self.__timer = QTimer(self) self.__timer.timeout.connect(self.checkCommandPipe) self.__timer.setInterval(0) self.__timer.start() def createMenus(self): ''' Create the menu items for the viewer using the previously created actions. ''' menuBar = self.menuBar() sceneMenu = menuBar.addMenu(menuBar.tr("&Image")) sceneMenu.addAction(self.__scaleact) sceneMenu.addAction(self.__saveact) sceneMenu.addAction(self.__redrawact) helpMenu = menuBar.addMenu(menuBar.tr("&Help")) helpMenu.addAction(self.__aboutact) helpMenu.addAction(self.__aboutqtact) def resizeEvent(self, event): ''' Monitor resizing in case auto-scaling of the image is selected. ''' if self.__autoscale: if self.autoScaleScene(): # continue with the window resize event.accept() else: # another resize coming in, so ignore this one event.ignore() else: # continue with the window resize event.accept() def closeEvent(self, event): ''' Clean up and send the WINDOW_CLOSED_MESSAGE on the response pipe before closing the window. ''' self.__timer.stop() self.__cmndpipe.close() try: try: self.__rspdpipe.send(WINDOW_CLOSED_MESSAGE) finally: self.__rspdpipe.close() except Exception: pass event.accept() def exitViewer(self): ''' Close and exit the viewer. ''' self.close() def aboutMsg(self): QMessageBox.about(self, self.tr("About PipedImagerPQ"), self.tr("\n" \ "PipedImagerPQ is a graphics viewer application that receives its " \ "displayed image and commands primarily from another application " \ "through a pipe. A limited number of commands are provided by the " \ "viewer itself to allow saving and some manipulation of the " \ "displayed image. The controlling application, however, may be " \ "unaware of these modifications made to the image. " \ "\n\n" \ "PipedImagerPQ was developed by the Thermal Modeling and Analysis " \ "Project (TMAP) of the National Oceanographic and Atmospheric " \ "Administration's (NOAA) Pacific Marine Environmental Lab (PMEL). ")) def aboutQtMsg(self): QMessageBox.aboutQt(self, self.tr("About Qt")) def ignoreAlpha(self): ''' Return whether the alpha channel in colors should always be ignored. ''' return self.__noalpha def updateScene(self): ''' Clear the displayed scene using self.__lastclearcolor, then draw the scaled current image. ''' # get the scaled scene size labelwidth = int(self.__scalefactor * self.__scenewidth + 0.5) labelheight = int(self.__scalefactor * self.__sceneheight + 0.5) # Create the new pixmap for the label to display newpixmap = QPixmap(labelwidth, labelheight) newpixmap.fill(self.__lastclearcolor) if self.__sceneimage != None: # Draw the scaled image to the pixmap mypainter = QPainter(newpixmap) trgrect = QRectF(0.0, 0.0, float(labelwidth), float(labelheight)) srcrect = QRectF(0.0, 0.0, float(self.__scenewidth), float(self.__sceneheight)) mypainter.drawImage(trgrect, self.__sceneimage, srcrect, Qt.AutoColor) mypainter.end() # Assign the new pixmap to the label self.__label.setPixmap(newpixmap) # set the label size and values # so the scrollarea knows of the new size self.__label.setMinimumSize(labelwidth, labelheight) self.__label.resize(labelwidth, labelheight) # update the label from the new pixmap self.__label.update() def clearScene(self, bkgcolor=None): ''' Deletes the scene image and fills the label with bkgcolor. If bkgcolor is None or an invalid color, the color used is the one used from the last clearScene or redrawScene call with a valid color (or opaque white if a color has never been specified). ''' # get the color to use for clearing (the background color) if bkgcolor: if bkgcolor.isValid(): self.__lastclearcolor = bkgcolor # Remove the image and its bytearray self.__sceneimage = None self.__scenedata = None # Update the scene label using the current clearing color and image self.updateScene() def redrawScene(self, bkgcolor=None): ''' Clear and redraw the displayed scene. ''' # get the background color if bkgcolor: if bkgcolor.isValid(): self.__lastclearcolor = bkgcolor # Update the scene label using the current clearing color and image QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Redrawing image") ) try: self.updateScene() finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() def resizeScene(self, width, height): ''' Resize the scene to the given width and height in units of pixels. If the size changes, this deletes the current image and clear the displayed scene. ''' newwidth = int(width + 0.5) if newwidth < self.__minsize: newwidth = self.__minsize newheight = int(height + 0.5) if newheight < self.__minsize: newheight = self.__minsize if (newwidth != self.__scenewidth) or (newheight != self.__sceneheight): # set the new size for the empty scene self.__scenewidth = newwidth self.__sceneheight = newheight # If auto-scaling, set scaling factor to 1.0 and resize the window if self.__autoscale: self.__scalefactor = 1.0 barheights = self.menuBar().height() + self.statusBar().height() self.resize(newwidth + self.__framedelta, newheight + self.__framedelta + barheights) # clear the scene with the last clearing color self.clearScene(None) def loadNewSceneImage(self, imageinfo): ''' Create a new scene image from the information given in this and subsequent dictionaries imageinfo. The image is created from multiple calls to this function since there is a limit on the size of a single object passed through a pipe. The first imageinfo dictionary given when creating an image must define the following key and value pairs: "width": width of the image in pixels "height": height of the image in pixels "stride": number of bytes in one line of the image in the bytearray The scene image data is initialized to all zero (transparent) at this time. This initialization call must be followed by (multiple) calls to this method with imageinfo dictionaries defining the key and value pairs: "blocknum": data block number (1, 2, ... numblocks) "numblocks": total number of image data blocks "startindex": index in the bytearray of image data where this block of image data starts "blockdata": this block of data as a bytearray On receipt of the last block of data (blocknum == numblocks) the scene image will be created and the scene will be updated. Raises: KeyError - if one of the above keys is not given ValueError - if a value for a key is not valid ''' if not self.__loadingimage: # prepare for a new image data from subsequent calls # get dimensions of the new image myimgwidth = int( imageinfo["width"] ) myimgheight = int( imageinfo["height"] ) myimgstride = int( imageinfo["stride"] ) if (myimgwidth < self.__minsize) or (myimgheight < self.__minsize): raise ValueError("image width and height cannot be less than %s" % str(self.__minsize)) # Newer PyQt versions allow separate specification of the stride if myimgstride != 4 * myimgwidth: raise ValueError("image stride is not four times the image width") # create the bytearray to contain the new scene data # automatically initialized to zero self.__scenedata = bytearray(myimgstride * myimgheight) self.__scenewidth = myimgwidth self.__sceneheight = myimgheight # set the flag for subsequent calls to this method self.__loadingimage = True # change the cursor to warn the user this may take some time QApplication.setOverrideCursor(Qt.WaitCursor) # put up an appropriate status message self.statusBar().showMessage( self.tr("Loading new image") ) return # loading an image; add the next block of data myblocknum = int( imageinfo["blocknum"] ) mynumblocks = int( imageinfo["numblocks"] ) mystartindex = int( imageinfo["startindex"] ) myblockdata = imageinfo["blockdata"] if (myblocknum < 1) or (myblocknum > mynumblocks): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid image data block number or number of blocks") if (mystartindex < 0) or (mystartindex >= len(self.__scenedata)): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid start index for an image data block") myblocksize = len(myblockdata) myendindex = mystartindex + myblocksize if (myblocksize < 1) or (myendindex > len(self.__scenedata)): self.statusBar().clearMessage() QApplication.restoreOverrideCursor() raise ValueError("invalid length of an image data block") # update the status message to show progress self.statusBar().showMessage( self.tr("Loading new image (block %s of %s)" % \ (str(myblocknum),str(mynumblocks))) ) # assign the data self.__scenedata[mystartindex:myendindex] = myblockdata # if this is the last block of data, create and display the scene image if myblocknum == mynumblocks: self.__loadingimage = False self.statusBar().showMessage( self.tr("Creating new image") ) try: self.__sceneimage = QImage(self.__scenedata, self.__scenewidth, self.__sceneheight, QImage.Format_ARGB32_Premultiplied) self.statusBar().showMessage( self.tr("Drawing new image") ) # update the displayed scene in the label self.updateScene() finally: # clear the status message self.statusBar().clearMessage() # restore the cursor back to normal QApplication.restoreOverrideCursor() def inquireSceneScale(self): ''' Prompt the user for the desired scaling factor for the scene. ''' labelwidth = int(self.__scenewidth * self.__scalefactor + 0.5) labelheight = int(self.__sceneheight * self.__scalefactor + 0.5) scaledlg = ScaleDialogPQ(self.__scalefactor, labelwidth, labelheight, self.__minsize, self.__minsize, self.__autoscale, self) if scaledlg.exec_(): (newscale, autoscale, okay) = scaledlg.getValues() if okay: if autoscale: self.__autoscale = True self.autoScaleScene() else: self.__autoscale = False self.scaleScene(newscale, False) def autoScaleScene(self): ''' Selects a scaling factor that maximizes the scene within the window frame without requiring scroll bars. Intended to be called when the window size is changed by the user and auto-scaling is turn on. Returns: True if scaling of this scene is done (no window resize) False if the a window resize command was issued ''' barheights = self.menuBar().height() + self.statusBar().height() # get the size for the central widget cwheight = self.height() - barheights - self.__framedelta heightsf = float(cwheight) / float(self.__sceneheight) cwwidth = self.width() - self.__framedelta widthsf = float(cwwidth) / float(self.__scenewidth) if heightsf < widthsf: factor = heightsf else: factor = widthsf newcwheight = int(factor * self.__sceneheight + 0.5) newcwwidth = int(factor * self.__scenewidth + 0.5) # if the window does not have the correct aspect ratio, resize it so # it will; this will generate another call to this method. Otherwise, # scale the scene and be done. if self.isMaximized() or \ ( (abs(cwheight - newcwheight) <= self.__framedelta) and \ (abs(cwwidth - newcwwidth) <= self.__framedelta) ): self.scaleScene(factor, False) return True else: self.resize(newcwwidth + self.__framedelta, newcwheight + self.__framedelta + barheights) return False def scaleScene(self, factor, resizewin): ''' Scales both the horizontal and vertical directions by factor. Scaling factors are not accumulative. So if the scene was already scaled, that scaling is "removed" before this scaling factor is applied. If resizewin is True, the main window is resized to accommodate this new scaled scene size. If factor is zero, just switch to auto-scaling at the current window size. If factor is negative, rescale using the absolute value (possibly resizing the window) then switch to auto-scaling. ''' fltfactor = float(factor) if fltfactor != 0.0: if resizewin: # from command - turn off autoscaling for the following # then turn back on if appropriate self.__autoscale = False newfactor = abs(fltfactor) newlabwidth = int(newfactor * self.__scenewidth + 0.5) newlabheight = int(newfactor * self.__sceneheight + 0.5) if (newlabwidth < self.__minsize) or (newlabheight < self.__minsize): # Set to minimum size if self.__scenewidth <= self.__sceneheight: newfactor = float(self.__minsize) / float(self.__scenewidth) else: newfactor = float(self.__minsize) / float(self.__sceneheight) newlabwidth = int(newfactor * self.__scenewidth + 0.5) newlabheight = int(newfactor * self.__sceneheight + 0.5) oldlabwidth = int(self.__scalefactor * self.__scenewidth + 0.5) oldlabheight = int(self.__scalefactor * self.__sceneheight + 0.5) if (newlabwidth != oldlabwidth) or (newlabheight != oldlabheight): # Set the new scaling factor self.__scalefactor = newfactor # Update the scene label using the current clearing color and image QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Scaling image") ) try: self.updateScene() finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() if resizewin: # resize the main window (if possible) barheights = self.menuBar().height() + self.statusBar().height() mwheight = newlabheight + barheights + self.__framedelta mwwidth = newlabwidth + self.__framedelta # Do not exceed the available real estate on the screen. # If autoscaling is in effect, the resize will trigger # any required adjustments. scrnrect = QApplication.desktop().availableGeometry() if mwwidth > 0.95 * scrnrect.width(): mwwidth = int(0.9 * scrnrect.width() + 0.5) if mwheight > 0.95 * scrnrect.height(): mwheight = int(0.9 * scrnrect.height() + 0.5) self.resize(mwwidth, mwheight) if fltfactor <= 0.0: # From command - turn on autoscaling self.__autoscale = True self.autoScaleScene(); def inquireSaveFilename(self): ''' Prompt the user for the name of the file into which to save the scene. The file format will be determined from the filename extension. ''' formattypes = [ ( "png", "PNG - Portable Networks Graphics (*.png)" ), ( "jpeg", "JPEG - Joint Photographic Experts Group (*.jpeg *.jpg *.jpe)" ), ( "tiff", "TIFF - Tagged Image File Format (*.tiff *.tif)" ), ( "bmp", "BMP - Windows Bitmap (*.bmp)" ), ( "ppm", "PPM - Portable Pixmap (*.ppm)" ), ( "xpm", "XPM - X11 Pixmap (*.xpm)" ), ( "xbm", "XBM - X11 Bitmap (*.xbm)" ), ] filters = ";;".join( [ t[1] for t in formattypes ] ) if QT_VERSION == 5: # getSaveFileName; tr returns Python unicode strings in PyQt5/Python3 (fileName, fileFilter) = QFileDialog.getSaveFileName(self, self.tr("Save the current image as "), self.tr(self.__lastfilename), self.tr(filters)) else: # getSaveFileNameAndFilter; tr returns QStrings in PyQt4 (fileName, fileFilter) = QFileDialog.getSaveFileNameAndFilter(self, self.tr("Save the current image as "), self.tr(self.__lastfilename), self.tr(filters)) if fileName: for (fmt, fmtQName) in formattypes: if self.tr(fmtQName) == fileFilter: fileFormat = fmt break else: raise RuntimeError("Unexpected file format name '%s'" % fileFilter) self.saveSceneToFile(fileName, fileFormat, None, None) self.__lastfilename = fileName self.__lastformat = fileFormat def saveSceneToFile(self, filename, imageformat, transparent, rastsize): ''' Save the current scene to the named file. If imageformat is empty or None, the format is guessed from the filename extension. If transparent is False, the entire scene is initialized to the last clearing color. If given, rastsize is the pixels size of the saved image. If rastsize is not given, the saved image will be saved at the current scaled image size. ''' # This could be called when there is no image present. # If this is the case, ignore the call. if ( self.__sceneimage == None ): return if not imageformat: # Guess the image format from the filename extension # This is only done to silently change gif to png fileext = ( os.path.splitext(filename)[1] ).lower() if fileext == '.gif': myformat = 'gif' else: # let QImage figure out the format myformat = None else: myformat = imageformat.lower() if myformat == 'gif': # Silently convert gif filename and format to png myformat = 'png' myfilename = os.path.splitext(filename)[0] + ".png" else: myfilename = filename # set the cursor and status message to indicate a save is happending QApplication.setOverrideCursor(Qt.WaitCursor) self.statusBar().showMessage( self.tr("Saving image") ) try: if rastsize: imagewidth = int(rastsize.width() + 0.5) imageheight = int(rastsize.height() + 0.5) else: imagewidth = int(self.__scenewidth * self.__scalefactor + 0.5) imageheight = int(self.__sceneheight * self.__scalefactor + 0.5) myimage = QImage( QSize(imagewidth, imageheight), QImage.Format_ARGB32_Premultiplied ) # Initialize the image if not transparent: # Clear the image with self.__lastclearcolor fillint = self.__helper.computeARGB32PreMultInt(self.__lastclearcolor) else: fillint = 0 myimage.fill(fillint) # draw the scaled scene to this QImage mypainter = QPainter(myimage) trgrect = QRectF(0.0, 0.0, float(imagewidth), float(imageheight)) srcrect = QRectF(0.0, 0.0, float(self.__scenewidth), float(self.__sceneheight)) mypainter.drawImage(trgrect, self.__sceneimage, srcrect, Qt.AutoColor) mypainter.end() # save the image to file if not myimage.save(myfilename, myformat): raise ValueError("Unable to save the plot as " + myfilename) finally: self.statusBar().clearMessage() QApplication.restoreOverrideCursor() def checkCommandPipe(self): ''' Get and perform commands waiting in the pipe. Stop when no more commands or if more than 50 milliseconds have passed. ''' try: starttime = time.clock() # Wait up to 2 milliseconds waiting for a command. # This prevents unchecked spinning when there is # nothing to do (Qt immediately calling this method # again only for this method to immediately return). while self.__cmndpipe.poll(0.002): cmnd = self.__cmndpipe.recv() self.processCommand(cmnd) # Continue to try to process commands until # more than 50 milliseconds have passed. # This reduces Qt overhead when there are lots # of commands waiting in the queue. if (time.clock() - starttime) > 0.050: break except EOFError: # Assume PyFerret has shut down self.exitViewer() except Exception: # Some problem, but presumably still functional (exctype, excval) = sys.exc_info()[:2] try: if excval: self.__rspdpipe.send("**ERROR %s: %s" % (str(exctype), str(excval))) else: self.__rspdpipe.send("**ERROR %s" % str(exctype)) except Exception: pass def processCommand(self, cmnd): ''' Examine the action of cmnd and call the appropriate method to deal with this command. Raises a KeyError if the "action" key is missing. ''' try: cmndact = cmnd["action"] except KeyError: raise ValueError("Unknown command '%s'" % str(cmnd)) if cmndact == "clear": try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None self.clearScene(bkgcolor) elif cmndact == "exit": self.exitViewer() elif cmndact == "hide": self.showMinimized() elif cmndact == "screenInfo": scrnrect = QApplication.desktop().availableGeometry() info = ( self.physicalDpiX(), self.physicalDpiY(), scrnrect.width(), scrnrect.height() ) self.__rspdpipe.send(info) elif cmndact == "redraw": try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None self.redrawScene(bkgcolor) elif cmndact == "rescale": self.scaleScene(float(cmnd["factor"]), True) elif cmndact == "resize": mysize = self.__helper.getSizeFromCmnd(cmnd) self.resizeScene(mysize.width(), mysize.height()) elif cmndact == "newImage": self.loadNewSceneImage(cmnd) elif cmndact == "save": filename = cmnd["filename"] fileformat = cmnd.get("fileformat", None) try: bkgcolor = self.__helper.getColorFromCmnd(cmnd) except KeyError: bkgcolor = None rastsize = self.__helper.getSizeFromCmnd(cmnd["rastsize"]) self.saveSceneToFile(filename, fileformat, bkgcolor, rastsize) elif cmndact == "setTitle": self.setWindowTitle(cmnd["title"]) elif cmndact == "imgname": myvalue = cmnd.get("name", None) if myvalue: self.__lastfilename = myvalue myvalue = cmnd.get("format", None) if myvalue: self.__lastformat = myvalue.lower() elif cmndact == "show": if not self.isVisible(): self.show() elif cmndact == "noalpha": # ignore any alpha channel values in colors self.__noalpha = True else: raise ValueError("Unknown command action %s" % str(cmndact)) class PipedImagerPQProcess(multiprocessing.Process): ''' A Process specifically tailored for creating a PipedImagerPQ. ''' def __init__(self, cmndpipe, rspdpipe): ''' Create a Process that will produce a PipedImagerPQ attached to the given Pipes when run. ''' super(PipedImagerPQProcess,self).__init__(group=None, target=None, name='PipedImagerPQ') self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe self.__app = None self.__viewer = None def run(self): ''' Create a PipedImagerPQ that is attached to the Pipe of this instance. ''' self.__app = QApplication(["PipedImagerPQ"]) self.__viewer = PipedImagerPQ(self.__cmndpipe, self.__rspdpipe) myresult = self.__app.exec_() sys.exit(myresult) # # The following are for testing this module # class _CommandSubmitterPQ(QDialog): ''' Testing dialog for controlling the addition of commands to a pipe. Used for testing PipedImagerPQ in the same process as the viewer. ''' def __init__(self, parent, cmndpipe, rspdpipe, cmndlist): ''' Create a QDialog with a single QPushButton for controlling the submission of commands from cmndlist to cmndpipe. ''' super(_CommandSubmitterPQ,self).__init__(parent) self.__cmndlist = cmndlist self.__cmndpipe = cmndpipe self.__rspdpipe = rspdpipe self.__nextcmnd = 0 self.__button = QPushButton("Submit next command", self) self.__button.pressed.connect(self.submitNextCommand) self.show() def submitNextCommand(self): ''' Submit the next command from the command list to the command pipe, or shutdown if there are no more commands to submit. ''' try: cmndstr = str(self.__cmndlist[self.__nextcmnd]) if len(cmndstr) > 188: cmndstr = cmndstr[:188] + '...' print("Command: %s" % cmndstr) self.__cmndpipe.send(self.__cmndlist[self.__nextcmnd]) self.__nextcmnd += 1 while self.__rspdpipe.poll(0.1): print("Response: %s" % str(self.__rspdpipe.recv())) except IndexError: self.__rspdpipe.close() self.__cmndpipe.close() self.close() def _test_pipedimagerpq(): # vertices of a pentagon (roughly) centered in a 1000 x 1000 square pentagonpts = ( (504.5, 100.0), (100.0, 393.9), (254.5, 869.4), (754.5, 869.4), (909.0, 393.9), ) linepts = ( (350, 50), (200, 150), (400, 250), (300, 350), (150, 250), (100, 450) ) # start PyQt testapp = QApplication(["PipedImagerPQ"]) # create the list of commands to submit drawcmnds = [] drawcmnds.append( { "action":"setTitle", "title":"Tester" } ) drawcmnds.append( { "action":"show" } ) drawcmnds.append( { "action":"clear", "color":"black"} ) drawcmnds.append( { "action":"screenInfo"} ) # create the image to be displayed testimage = QImage(500, 500, QImage.Format_ARGB32_Premultiplied) # initialize a black background testimage.fill(0xFF000000) # draw some things in the image testpainter = QPainter(testimage) testpainter.setBrush( QBrush(QColor(0, 255, 0, 128), Qt.SolidPattern) ) testpainter.setPen( QPen(QBrush(QColor(255, 0, 0, 255), Qt.SolidPattern), 5.0, Qt.SolidLine, Qt.SquareCap, Qt.MiterJoin) ) testpainter.drawRect( QRectF(5.0, 255.0, 240.0, 240.0) ) testpainter.setBrush( QBrush(QColor(0, 0, 255, 255), Qt.SolidPattern) ) testpainter.setPen( QPen(QBrush(QColor(0, 0, 0, 255), Qt.SolidPattern), 5.0, Qt.DashLine, Qt.RoundCap, Qt.RoundJoin) ) testpainter.drawPolygon( QPolygonF( [ QPointF(.25 * ptx, .25 * pty + 250) for (ptx, pty) in pentagonpts ] ) ) testpainter.setBrush( Qt.NoBrush ) testpainter.setPen( QPen(QBrush(QColor(255, 255, 255, 255), Qt.SolidPattern), 3.0, Qt.DashLine, Qt.RoundCap, Qt.RoundJoin) ) testpainter.drawPolyline( QPolygonF( [ QPointF(pts, pty) for (pts, pty) in linepts ] ) ) testpainter.end() # add the image command testimgwidth = testimage.width() testimgheight = testimage.height() testimgstride = testimage.bytesPerLine() # not a good way to get the pixel data testimgdata = bytearray(testimgheight * testimgstride) k = 0 for pty in range(testimgheight): for ptx in range(testimgwidth): pixval = testimage.pixel(ptx, pty) (aval, rgbval) = divmod(pixval, 256 * 256 * 256) (rval, gbval) = divmod(rgbval, 256 * 256) (gval, bval) = divmod(gbval, 256) testimgdata[k] = bval k += 1 testimgdata[k] = gval k += 1 testimgdata[k] = rval k += 1 testimgdata[k] = aval k += 1 testblocksize = 4000 testnumblocks = (testimgheight * testimgstride + testblocksize - 1) // testblocksize drawcmnds.append( { "action":"newImage", "width":testimgwidth, "height":testimgheight, "stride":testimgstride } ) for k in range(testnumblocks): if k < (testnumblocks - 1): blkdata = testimgdata[k*testblocksize:(k+1)*testblocksize] else: blkdata = testimgdata[k*testblocksize:] drawcmnds.append( { "action":"newImage", "blocknum":k+1, "numblocks":testnumblocks, "startindex":k*testblocksize, "blockdata":blkdata } ) # finish the command list drawcmnds.append( { "action":"show" } ) drawcmnds.append( { "action":"exit" } ) # create a PipedImagerPQ in this process (cmndrecvpipe, cmndsendpipe) = multiprocessing.Pipe(False) (rspdrecvpipe, rspdsendpipe) = multiprocessing.Pipe(False) testviewer = PipedImagerPQ(cmndrecvpipe, rspdsendpipe) # create a command submitter dialog tester = _CommandSubmitterPQ(testviewer, cmndsendpipe, rspdrecvpipe, drawcmnds) tester.show() # let it all run testresult = testapp.exec_() if testresult != 0: sys.exit(testresult) if __name__ == "__main__": _test_pipedimagerpq()
43.410734
103
0.587274
[ "Unlicense" ]
Jhongesell/PyFerret
pviewmod/pipedimagerpq.py
39,634
Python
from django.core.urlresolvers import reverse_lazy from django.views import generic from select2_many_to_many.forms import TestForm from select2_many_to_many.models import TestModel class UpdateView(generic.UpdateView): model = TestModel form_class = TestForm template_name = 'select2_outside_admin.html' success_url = reverse_lazy('select2_crispy_forms') def get_object(self): return TestModel.objects.first()
27.625
54
0.789593
[ "MIT" ]
MyFinanceInc/django-autocomplete-light
test_project/select2_outside_admin/views.py
442
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import os from typing import List, Optional from omegaconf import OmegaConf from hydra.core.object_type import ObjectType from hydra.plugins.config_source import ConfigLoadError, ConfigResult, ConfigSource class FileConfigSource(ConfigSource): def __init__(self, provider: str, path: str) -> None: if path.find("://") == -1: path = f"{self.scheme()}://{path}" super().__init__(provider=provider, path=path) @staticmethod def scheme() -> str: return "file" def load_config( self, config_path: str, package_override: Optional[str] = None ) -> ConfigResult: normalized_config_path = self._normalize_file_name(config_path) full_path = os.path.realpath(os.path.join(self.path, normalized_config_path)) if not os.path.exists(full_path): raise ConfigLoadError(f"FileConfigSource: Config not found : {full_path}") with open(full_path) as f: header_text = f.read(512) header = ConfigSource._get_header_dict(header_text) self._update_package_in_header( header, normalized_config_path, package_override ) f.seek(0) cfg = OmegaConf.load(f) return ConfigResult( config=self._embed_config(cfg, header["package"]), path=f"{self.scheme()}://{self.path}", provider=self.provider, header=header, ) def is_group(self, config_path: str) -> bool: full_path = os.path.realpath(os.path.join(self.path, config_path)) return os.path.isdir(full_path) def is_config(self, config_path: str) -> bool: config_path = self._normalize_file_name(config_path) full_path = os.path.realpath(os.path.join(self.path, config_path)) return os.path.isfile(full_path) def list(self, config_path: str, results_filter: Optional[ObjectType]) -> List[str]: files: List[str] = [] full_path = os.path.realpath(os.path.join(self.path, config_path)) for file in os.listdir(full_path): file_path = os.path.join(config_path, file) self._list_add_result( files=files, file_path=file_path, file_name=file, results_filter=results_filter, ) return sorted(list(set(files)))
37.923077
88
0.627992
[ "MIT" ]
MULXCODE/hydra
hydra/_internal/core_plugins/file_config_source.py
2,465
Python
class SpaceAge(object): ORBITAL_PERIOD = 31557600 # seconds def __init__(self, seconds): self.seconds = seconds def on_mercury(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 0.2408467, 2) def on_venus(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 0.61519726, 2) def on_earth(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD), 2) def on_mars(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 1.8808158, 2) def on_jupiter(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 11.862615, 2) def on_saturn(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 29.447498, 2) def on_uranus(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 84.016846, 2) def on_neptune(self) -> float: return round(self.seconds / float(self.ORBITAL_PERIOD) / 164.79132, 2)
33.258065
79
0.659554
[ "MIT" ]
PlugaruT/exercism-playground
python/space-age/space_age.py
1,031
Python
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from heat.engine import support from heat.tests import common class SupportStatusTest(common.HeatTestCase): def test_valid_status(self): for sstatus in support.SUPPORT_STATUSES: previous = support.SupportStatus(version='test_version') status = support.SupportStatus( status=sstatus, message='test_message', version='test_version', previous_status=previous, ) self.assertEqual(sstatus, status.status) self.assertEqual('test_message', status.message) self.assertEqual('test_version', status.version) self.assertEqual(previous, status.previous_status) self.assertEqual({ 'status': sstatus, 'message': 'test_message', 'version': 'test_version', 'previous_status': {'status': 'SUPPORTED', 'message': None, 'version': 'test_version', 'previous_status': None}, }, status.to_dict()) def test_invalid_status(self): status = support.SupportStatus( status='RANDOM', message='test_message', version='test_version', previous_status=support.SupportStatus() ) self.assertEqual(support.UNKNOWN, status.status) self.assertEqual('Specified status is invalid, defaulting to UNKNOWN', status.message) self.assertIsNone(status.version) self.assertIsNone(status.previous_status) self.assertEqual({ 'status': 'UNKNOWN', 'message': 'Specified status is invalid, defaulting to UNKNOWN', 'version': None, 'previous_status': None, }, status.to_dict()) def test_previous_status(self): sstatus = support.SupportStatus( status=support.DEPRECATED, version='5.0.0', previous_status=support.SupportStatus( status=support.SUPPORTED, version='2015.1' ) ) self.assertEqual(support.DEPRECATED, sstatus.status) self.assertEqual('5.0.0', sstatus.version) self.assertEqual(support.SUPPORTED, sstatus.previous_status.status) self.assertEqual('2015.1', sstatus.previous_status.version) self.assertEqual({'status': 'DEPRECATED', 'version': '5.0.0', 'message': None, 'previous_status': {'status': 'SUPPORTED', 'version': '2015.1', 'message': None, 'previous_status': None}}, sstatus.to_dict()) def test_invalid_previous_status(self): ex = self.assertRaises(ValueError, support.SupportStatus, previous_status='YARRR') self.assertEqual('previous_status must be SupportStatus ' 'instead of %s' % str, str(ex))
41.186813
78
0.564301
[ "Apache-2.0" ]
HyunJin-Jeong/heat
heat/tests/test_support.py
3,748
Python
# # linter.py # Linter for SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by David O'Brien # Copyright (c) 2017 David O'Brien # # License: MIT # """Exports the Vcom plugin class.""" from SublimeLinter.lint import Linter class Vcom(Linter): """Provides an interface to vcom (Mentor Modelsim).""" syntax = ('vhdl') cmd = 'vcom -2008 -work work @' tempfile_suffix = 'vhd' # SAMPLE ERRORS # ** Error: (vcom-13069) .\fname.v(9): near "reg": syntax error, unexpected reg, expecting ';' or ','. # ** Error: (vcom-13069) .\fname.v(9): Unknown identifier "var": syntax error, unexpected reg, expecting ';' or ','. # ** Error (suppressible): .\fname.sv(46): (vlog-2388) 'var' already declared in this scope (mname). # ** Error: (vlog-13069) .\fname.sv(45): near "==": syntax error, unexpected ==, expecting ';' or ','. regex = ( r'^\*\* (((?P<error>Error)|(?P<warning>Warning))' # Error r'( \(suppressible\))?: )' # Maybe suppressible r'(\([a-z]+-[0-9]+\) )?' # Error code - sometimes before r'([^\(]*\((?P<line>[0-9]+)\): )' # File and line r'(\([a-z]+-[0-9]+\) )?' # Error code - sometimes after r'(?P<message>' # Start of message r'(((near|Unknown identifier|Undefined variable):? )?' # Near/Unknown/Unidentified r'["\'](?P<near>[\w=:;\.]+)["\']' # Identifier r'[ :.]*)?' # Near terminator r'.*)' # End of message ) def split_match(self, match): """Override this method to prefix the error message with the lint binary name.""" match, line, col, error, warning, message, near = super().split_match(match) if match: message = '[vcom] ' + message return match, line, col, error, warning, message, near
43
120
0.503876
[ "MIT" ]
dave2pi/SublimeLinter-contrib-vcom
linter.py
2,064
Python
import paho.mqtt.client as mqtt import time import argparse from tinydb import TinyDB, Query from tinyrecord import transaction import logging import sys import json import threading import ssl from random import randint CA_ROOT_CERT_FILE = "ag-certificate/AmazonRootCA1.pem" THING_CERT_FILE = "ag-certificate/..." THING_PRIVATE_KEY = "ag-certificate/..." # init args parser parser = argparse.ArgumentParser(description="Process some integers.") parser.add_argument( "MQTT_broker", metavar="MQTT_broker", type=str, help="Address of the MQTT broker" ) args = parser.parse_args() # init logger logFormatter = logging.Formatter( "%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s" ) logger = logging.getLogger() fileHandler = logging.FileHandler("{0}/{1}.log".format("log", f"agenceur")) fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logFormatter) logger.addHandler(consoleHandler) logger.setLevel(logging.INFO) # init opaque DB db_opaque = TinyDB("opaque.json") # init clear measures DB db_measures = TinyDB("measures.json") db_measures.truncate() lock = threading.Lock() # on received message def on_message(client, userdata, message): with lock: logger.debug( "rcvd: " + message.topic + "/" + str(message.payload.decode("utf-8")) ) if message.topic == "addToPool": # store in DB logger.info(f"storing payload") db_opaque.insert({"entry": str(message.payload.decode("utf-8"))}) if message.topic == "requestPool": asking = str(message.payload.decode("utf-8")) logger.info(f"received pool request from {asking}") completePool = db_opaque.all() # truncate because we will save it again? db_opaque.truncate() # dont sent if pool is empty if len(completePool): to_send = [] if len(completePool) > 10: for i in range(10): to_send.append(completePool.pop(0)) else: to_send = completePool.copy() completePool.clear() for left in completePool: db_opaque.insert(left) #logger.info(f"to_send: {to_send}") table_json = json.dumps(to_send) logger.info(f"publishing table to getPool{asking}, len={len(table_json)}, n={len(to_send)}") client.publish(f"getPool{asking}", table_json, qos=1) if message.topic == "measures": j = json.loads(message.payload.decode("utf-8")) logger.info(f"m: {message.payload}") db_measures.insert({"entry": message.payload.decode("utf-8")}) logger.info(f"received measure {j['MUID']}") # connecting to MQTT broker logger.info(f"Connecting to broker at {args.MQTT_broker}") client = mqtt.Client("Agenceur") client.tls_set(CA_ROOT_CERT_FILE, certfile=THING_CERT_FILE, keyfile=THING_PRIVATE_KEY)#, cert_reqs=ssl.CERT_REQUIRED, tls_version=ssl.PROTOCOL_TLSv1_2, ciphers=None) client.connect(args.MQTT_broker, 8883) # client.enable_logger() # start receive thread client.loop_start() # subscribe to # * addToPool: endpoint for opaque payload # * requestPool: endpoint for opaque pool request from devices # * measures: endpoint for clear-data measures client.subscribe("addToPool") client.subscribe("requestPool") client.subscribe("measures") # register receive routine client.on_message = on_message # only on event execution while True: time.sleep(1) client.loop_stop()
32.068966
165
0.661022
[ "MIT" ]
alexismarquet/MSE-TM-nRF9160
application/AWS-ag.py
3,720
Python
from Graphs import * G1 = Graph(NodeSize=.2) G1.addNode([-2,0]) G1.addNode([-2,1.3]) G1.addNode([-2.7,-1]) G1.addNode([-2.2,-2.3]) G1.addEdges([0,0,0,2],[1,2,3,3]) G2 = Graph(NodeSize=.2) G2.addNode([-1,0]) G2.addNode([0,0]) G2.addNode([1,.5]) G2.addNode([2,-.5]) G2.addNode([-1.5,.5]) G2.addEdges([0,1,1,0],[1,2,3,4]) def addGraphRoot(GA,GB,r1,r2): r = [i.copy() for i in GB.pos] x = GA.pos[r1][0]-GB.pos[r2][0] y = GA.pos[r1][1]-GB.pos[r2][1] for z in range(len(r)): r[z][0] += x r[z][1] += y del r[r2] G = GB.Mat.copy() rt = G[:,r2] G = np.delete(G,r2,0) G = np.delete(G,r2,1) GA.addNodes(r) GA.Mat[GA.size-GB.size+1:GA.size,GA.size-GB.size+1:GA.size] = G for pos,ed in enumerate(rt): if ed == 1: GA.addEdges([r1],[GA.size-GB.size+pos]) for i in range(G1.size): addGraphRoot(G1,G2,i,0) print(edgeDict(G1.Mat)) makeCanvas(xlim=[-4,4],ylim=[-4,4],size=[10,10]) G1.drawNodes() G1.drawLines() G1.drawText()
20.377358
68
0.513889
[ "MIT" ]
AlexanderFraebel/GraphDrawing
GraphProducts.py
1,080
Python
# -*- coding: utf-8 -*- """ Doors AOE rider """ # Adding to the system path is needed # because no longer in parent directory # and I want to run this file as a script import sys, os sys.path.append(os.path.abspath('../')) import farmbot as fb class Farmer_Doors(fb.Farmbot): def __init__(self): fb.Farmbot.__init__(self,'blue','../') def wave1(self): res = self.advancestart() if res < 0: return -1 # Skills selection (may be empty) # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npc) self.usecard(self.xy_card4) self.usecard(self.xy_card3) return 0 def wave2(self): res = self.advancewave() if res < 0: return -1 # Skills selection (may be empty) # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npb) self.usecard(self.xy_card3) self.usecard(self.xy_card4) return 0 def wave3(self): res = self.advancewave() if res < 0: return -1 # Skills selection (may be empty) # Attack res = self.attack() if res < 0: return -1 # Card selection (pick 3) self.usecard(self.xy_npa) self.usecard(self.xy_card2) self.usecard(self.xy_card3) return 0 def farm(self,nruns=1): self.runs = 0 self.refills = 0 self.refilltype = 'gapple' # [rapple,gapple,sapple,bapple] self.supportce = 'teatime' # [lunchtime,training,lesson,monalisa,eventspecific] self.supportservant = 'skadi' # [waver,skadi] self.saveframe = False while True: # Start quest (set it up for the farmer) # Repeat quest no longer uses the party screen # Battle procedure Wave1 res = self.wave1() if res < 0: return -1 # Battle prodedure Wave2 res = self.wave2() if res < 0: return -1 # Battle prodedure Wave3 res = self.wave3() if res < 0: return -1 # Finished run res = self.finishbattle() if res < 0: return -1 self.runs += 1 # Exit out to main menu if finished if self.runs >= nruns: res = self.norepeatquest() break # Repeat quest if not done (automatic refills) res = self.repeatquestrefill() if res < 0: return -1 # Select new support res = self.selectsupport() if res < 0: return -1 return self.runs def farmalarm(self, nruns=1): res = self.farm(nruns) print(res) self.playalarm() return if __name__ == "__main__": farmer = Farmer_Doors() farmer.activate()
23.637168
83
0.594534
[ "MIT" ]
fryougi/farmbot
nodes/doors.py
2,671
Python
import FWCore.ParameterSet.Config as cms from Configuration.Eras.Modifier_stage2L1Trigger_cff import stage2L1Trigger from Configuration.Eras.Modifier_stage2L1Trigger_2017_cff import stage2L1Trigger_2017 def L1TCaloStage2ParamsForHW(process): process.load("L1Trigger.L1TCalorimeter.caloStage2Params_HWConfig_cfi") return process def L1TAddBitwiseLayer1(process): from L1Trigger.L1TCaloLayer1.simCaloStage2Layer1Digis_cfi import simCaloStage2Layer1Digis as simCaloStage2BitwiseLayer1Digis from L1Trigger.L1TCalorimeter.simCaloStage2Digis_cfi import simCaloStage2Digis as simCaloStage2BitwiseDigis process.simCaloStage2BitwiseLayer1Digis = simCaloStage2BitwiseLayer1Digis.clone() process.simCaloStage2BitwiseLayer1Digis.ecalToken = cms.InputTag("ecalDigis:EcalTriggerPrimitives") process.simCaloStage2BitwiseDigis = simCaloStage2BitwiseDigis.clone() process.simCaloStage2BitwiseDigis.towerToken = cms.InputTag("simCaloStage2BitwiseLayer1Digis") process.SimL1TCalorimeter = cms.Sequence( process.simCaloStage2Layer1Digis + process.simCaloStage2Digis + process.simCaloStage2BitwiseLayer1Digis + process.simCaloStage2BitwiseDigis) from L1Trigger.L1TNtuples.l1UpgradeTree_cfi import l1UpgradeTree process.l1UpgradeBitwiseTree = l1UpgradeTree.clone() process.l1UpgradeBitwiseTree.egToken = cms.untracked.InputTag("simCaloStage2BitwiseDigis") process.l1UpgradeBitwiseTree.tauTokens = cms.untracked.VInputTag("simCaloStage2BitwiseDigis") process.l1UpgradeBitwiseTree.jetToken = cms.untracked.InputTag("simCaloStage2BitwiseDigis") process.l1UpgradeBitwiseTree.muonToken = cms.untracked.InputTag("simGmtStage2Digis") process.l1UpgradeBitwiseTree.sumToken = cms.untracked.InputTag("simCaloStage2BitwiseDigis") process.l1ntuplebitwise = cms.Path( process.l1UpgradeBitwiseTree ) process.schedule.append(process.l1ntuplebitwise) print "# modified L1TReEmul: " print "# {0}".format(process.L1TReEmul) return process # As of 80X, this ES configuration is needed for *data* GTs (mc tags work w/o) def L1TEventSetupForHF1x1TPs(process): process.es_pool_hf1x1 = cms.ESSource( "PoolDBESSource", #process.CondDBSetup, timetype = cms.string('runnumber'), toGet = cms.VPSet( cms.PSet(record = cms.string("HcalLutMetadataRcd"), tag = cms.string("HcalLutMetadata_HFTP_1x1") ), cms.PSet(record = cms.string("HcalElectronicsMapRcd"), tag = cms.string("HcalElectronicsMap_HFTP_1x1") ) ), connect = cms.string('frontier://FrontierProd/CMS_CONDITIONS'), authenticationMethod = cms.untracked.uint32(0) ) process.es_prefer_es_pool_hf1x1 = cms.ESPrefer("PoolDBESSource", "es_pool_hf1x1") return process def L1TReEmulFromRAW2015(process): process.load('L1Trigger.Configuration.SimL1Emulator_cff') process.load('L1Trigger.Configuration.CaloTriggerPrimitives_cff') process.simEcalTriggerPrimitiveDigis.Label = 'ecalDigis' process.simHcalTriggerPrimitiveDigis.inputLabel = cms.VInputTag( cms.InputTag('hcalDigis'), cms.InputTag('hcalDigis') ) process.L1TReEmul = cms.Sequence(process.simEcalTriggerPrimitiveDigis * process.simHcalTriggerPrimitiveDigis * process.SimL1Emulator) process.simDtTriggerPrimitiveDigis.digiTag = 'muonDTDigis' process.simCscTriggerPrimitiveDigis.CSCComparatorDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCComparatorDigi') process.simCscTriggerPrimitiveDigis.CSCWireDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCWireDigi' ) if stage2L1Trigger.isChosen(): process.simTwinMuxDigis.RPC_Source = cms.InputTag('muonRPCDigis') # When available, this will switch to TwinMux input Digis: process.simTwinMuxDigis.DTDigi_Source = cms.InputTag("dttfDigis") process.simTwinMuxDigis.DTThetaDigi_Source = cms.InputTag("dttfDigis") process.simOmtfDigis.srcRPC = cms.InputTag('muonRPCDigis') process.simBmtfDigis.DTDigi_Source = cms.InputTag("simTwinMuxDigis") process.simBmtfDigis.DTDigi_Theta_Source = cms.InputTag("dttfDigis") process.simEmtfDigis.CSCInput = cms.InputTag("csctfDigis") process.simEmtfDigis.RPCInput = cms.InputTag('muonRPCDigis') process.simOmtfDigis.srcCSC = cms.InputTag("csctfDigis") process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("ecalDigis:EcalTriggerPrimitives") process.L1TReEmulPath = cms.Path(process.L1TReEmul) process.schedule.append(process.L1TReEmulPath) # quiet warning abouts missing Stage-2 payloads, since they won't reliably exist in 2015 data. if hasattr(process, "caloStage2Digis"): process.caloStage2Digis.MinFeds = cms.uint32(0) if hasattr(process, "gmtStage2Digis"): process.gmtStage2Digis.MinFeds = cms.uint32(0) if hasattr(process, "gtStage2Digis"): process.gtStage2Digis.MinFeds = cms.uint32(0) else: process.simRctDigis.ecalDigis = cms.VInputTag('simEcalTriggerPrimitiveDigis') process.simRctDigis.hcalDigis = cms.VInputTag('simHcalTriggerPrimitiveDigis') process.simRpcTriggerDigis.label = 'muonRPCDigis' process.simRpcTechTrigDigis.RPCDigiLabel = 'muonRPCDigis' process.L1TReEmulPath = cms.Path(process.L1TReEmul) process.schedule.append(process.L1TReEmulPath) print "# L1TReEmul sequence: " print "# {0}".format(process.L1TReEmul) print "# {0}".format(process.schedule) return process def L1TReEmulMCFromRAW2015(process): L1TReEmulFromRAW2015(process) if stage2L1Trigger.isChosen(): process.simEmtfDigis.CSCInput = cms.InputTag('simCscTriggerPrimitiveDigis','MPCSORTED') process.simOmtfDigis.srcCSC = cms.InputTag('simCscTriggerPrimitiveDigis','MPCSORTED') return process def L1TReEmulFromRAW2015simCaloTP(process): L1TReEmulFromRAW2015(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("simEcalTriggerPrimitiveDigis") return process def L1TReEmulFromRAW2016(process): process.load('L1Trigger.Configuration.SimL1Emulator_cff') process.load('L1Trigger.Configuration.CaloTriggerPrimitives_cff') process.simEcalTriggerPrimitiveDigis.Label = 'ecalDigis' process.simHcalTriggerPrimitiveDigis.inputLabel = cms.VInputTag( cms.InputTag('hcalDigis'), cms.InputTag('hcalDigis') ) process.simHcalTriggerPrimitiveDigis.inputUpgradeLabel = cms.VInputTag( cms.InputTag('hcalDigis'), cms.InputTag('hcalDigis') ) process.simCscTriggerPrimitiveDigis.CSCComparatorDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCComparatorDigi') process.simCscTriggerPrimitiveDigis.CSCWireDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCWireDigi' ) process.L1TReEmul = cms.Sequence(process.simEcalTriggerPrimitiveDigis * process.simHcalTriggerPrimitiveDigis * process.SimL1Emulator) if stage2L1Trigger.isChosen(): #cutlist=['simDtTriggerPrimitiveDigis','simCscTriggerPrimitiveDigis'] #for b in cutlist: # process.SimL1Emulator.remove(getattr(process,b)) # TwinMux process.simTwinMuxDigis.RPC_Source = cms.InputTag('RPCTwinMuxRawToDigi') process.simTwinMuxDigis.DTDigi_Source = cms.InputTag('twinMuxStage2Digis:PhIn') process.simTwinMuxDigis.DTThetaDigi_Source = cms.InputTag('twinMuxStage2Digis:ThIn') # BMTF process.simBmtfDigis.DTDigi_Source = cms.InputTag('simTwinMuxDigis') process.simBmtfDigis.DTDigi_Theta_Source = cms.InputTag('bmtfDigis') # OMTF process.simOmtfDigis.srcRPC = cms.InputTag('muonRPCDigis') process.simOmtfDigis.srcCSC = cms.InputTag('csctfDigis') process.simOmtfDigis.srcDTPh = cms.InputTag('bmtfDigis') process.simOmtfDigis.srcDTTh = cms.InputTag('bmtfDigis') # EMTF process.simEmtfDigis.CSCInput = cms.InputTag('emtfStage2Digis') process.simEmtfDigis.RPCInput = cms.InputTag('muonRPCDigis') # Calo Layer1 process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag('ecalDigis:EcalTriggerPrimitives') process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('hcalDigis:') process.L1TReEmulPath = cms.Path(process.L1TReEmul) process.schedule.append(process.L1TReEmulPath) return process else: process.simRctDigis.ecalDigis = cms.VInputTag( cms.InputTag( 'ecalDigis:EcalTriggerPrimitives' ) ) process.simRctDigis.hcalDigis = cms.VInputTag('hcalDigis:') process.simRpcTriggerDigis.label = 'muonRPCDigis' process.L1TReEmulPath = cms.Path(process.L1TReEmul) process.schedule.append(process.L1TReEmulPath) return process def L1TReEmulFromRAW(process): L1TReEmulFromRAW2016(process) if stage2L1Trigger_2017.isChosen(): process.simOmtfDigis.srcRPC = cms.InputTag('omtfStage2Digis') process.simOmtfDigis.srcCSC = cms.InputTag('omtfStage2Digis') process.simOmtfDigis.srcDTPh = cms.InputTag('omtfStage2Digis') process.simOmtfDigis.srcDTTh = cms.InputTag('omtfStage2Digis') print "# L1TReEmul sequence: " print "# {0}".format(process.L1TReEmul) print "# {0}".format(process.schedule) return process def L1TReEmulFromRAWCalouGT(process): L1TReEmulFromRAW(process) process.simGtStage2Digis.MuonInputTag = cms.InputTag("gtStage2Digis","Muon") return process def L1TReEmulMCFromRAW(process): L1TReEmulFromRAW(process) if stage2L1Trigger.isChosen(): process.simEmtfDigis.CSCInput = cms.InputTag('simCscTriggerPrimitiveDigis','MPCSORTED') process.simOmtfDigis.srcCSC = cms.InputTag('simCscTriggerPrimitiveDigis','MPCSORTED') return process def L1TReEmulMCFromRAWSimEcalTP(process): L1TReEmulMCFromRAW(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("simEcalTriggerPrimitiveDigis") return process def L1TReEmulMCFromRAWSimHcalTP(process): L1TReEmulMCFromRAW(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('simHcalTriggerPrimitiveDigis') return process def L1TReEmulMCFrom90xRAWSimHcalTP(process): L1TReEmulMCFromRAW(process) if stage2L1Trigger.isChosen(): process.simHcalTriggerPrimitiveDigis.inputLabel = cms.VInputTag( cms.InputTag('simHcalUnsuppressedDigis'), cms.InputTag('simHcalUnsuppressedDigis') ) process.simHcalTriggerPrimitiveDigis.inputUpgradeLabel = cms.VInputTag( cms.InputTag('simHcalUnsuppressedDigis:HBHEQIE11DigiCollection'), cms.InputTag('simHcalUnsuppressedDigis:HFQIE10DigiCollection') ) process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('simHcalTriggerPrimitiveDigis') return process #inputUpgradeLabel = cms.VInputTag( # cms.InputTag('simHcalUnsuppressedDigis:HBHEQIE11DigiCollection'), # cms.InputTag('simHcalUnsuppressedDigis:HFQIE10DigiCollection')), def L1TReEmulMCFromRAWSimCalTP(process): L1TReEmulMCFromRAW(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("simEcalTriggerPrimitiveDigis") process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('simHcalTriggerPrimitiveDigis') return process def L1TReEmulFromRAWsimEcalTP(process): L1TReEmulFromRAW(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("simEcalTriggerPrimitiveDigis") return process def L1TReEmulFromRAWsimHcalTP(process): L1TReEmulFromRAW(process) if stage2L1Trigger.isChosen(): process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('simHcalTriggerPrimitiveDigis') return process def L1TReEmulFromRAWsimTP(process): L1TReEmulFromRAW(process) if stage2L1Trigger.isChosen(): # TwinMux process.simTwinMuxDigis.RPC_Source = cms.InputTag('muonRPCDigis') process.simTwinMuxDigis.DTDigi_Source = cms.InputTag('simDtTriggerPrimitiveDigis') process.simTwinMuxDigis.DTThetaDigi_Source = cms.InputTag('simDtTriggerPrimitiveDigis') # BMTF process.simBmtfDigis.DTDigi_Source = cms.InputTag('simTwinMuxDigis') process.simBmtfDigis.DTDigi_Theta_Source = cms.InputTag('simDtTriggerPrimitiveDigis') # OMTF process.simOmtfDigis.srcRPC = cms.InputTag('muonRPCDigis') process.simOmtfDigis.srcCSC = cms.InputTag('simCscTriggerPrimitiveDigis') process.simOmtfDigis.srcDTPh = cms.InputTag('simDtTriggerPrimitiveDigis') process.simOmtfDigis.srcDTTh = cms.InputTag('simDtTriggerPrimitiveDigis') # EMTF process.simEmtfDigis.CSCInput = cms.InputTag('simCscTriggerPrimitiveDigis') process.simEmtfDigis.RPCInput = cms.InputTag('muonRPCDigis') # Layer1 process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag("simEcalTriggerPrimitiveDigis") process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('simHcalTriggerPrimitiveDigis') return process def L1TReEmulFromRAWLegacyMuon(process): process.load('L1Trigger.Configuration.SimL1Emulator_cff') process.load('L1Trigger.Configuration.CaloTriggerPrimitives_cff') process.simEcalTriggerPrimitiveDigis.Label = 'ecalDigis' process.simHcalTriggerPrimitiveDigis.inputLabel = cms.VInputTag( cms.InputTag('hcalDigis'), cms.InputTag('hcalDigis') ) ## - Legacy to upgrade format muon converter process.load('L1Trigger.L1TCommon.muonLegacyInStage2FormatDigis_cfi') process.muonLegacyInStage2FormatDigis.muonSource = cms.InputTag('simGmtDigis') ## - DT TP emulator from L1Trigger.DTTrigger.dtTriggerPrimitiveDigis_cfi import dtTriggerPrimitiveDigis process.simDtTriggerPrimitiveDigis = dtTriggerPrimitiveDigis.clone() process.simDtTriggerPrimitiveDigis.digiTag = cms.InputTag('muonDTDigis') ## - TwinMux from L1Trigger.L1TTwinMux.simTwinMuxDigis_cfi import simTwinMuxDigis process.simTwinMuxDigisForDttf = simTwinMuxDigis.clone() process.simTwinMuxDigisForDttf.RPC_Source = cms.InputTag('muonRPCDigis') process.simTwinMuxDigisForDttf.DTDigi_Source = cms.InputTag('bmtfDigis') process.simTwinMuxDigisForDttf.DTThetaDigi_Source = cms.InputTag('bmtfDigis') ## - CSC TP emulator from L1Trigger.CSCTriggerPrimitives.cscTriggerPrimitiveDigis_cfi import cscTriggerPrimitiveDigis process.simCscTriggerPrimitiveDigis = cscTriggerPrimitiveDigis.clone() process.simCscTriggerPrimitiveDigis.CSCComparatorDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCComparatorDigi' ) process.simCscTriggerPrimitiveDigis.CSCWireDigiProducer = cms.InputTag( 'muonCSCDigis', 'MuonCSCWireDigi' ) # # - CSC Track Finder emulator # from L1Trigger.CSCTrackFinder.csctfTrackDigis_cfi import csctfTrackDigis process.simCsctfTrackDigis = csctfTrackDigis.clone() process.simCsctfTrackDigis.SectorReceiverInput = cms.untracked.InputTag( 'csctfDigis' ) process.simCsctfTrackDigis.DTproducer = 'simDtTriggerPrimitiveDigis' from L1Trigger.CSCTrackFinder.csctfDigis_cfi import csctfDigis process.simCsctfDigis = csctfDigis.clone() process.simCsctfDigis.CSCTrackProducer = 'simCsctfTrackDigis' ## ## - DT Track Finder emulator ## from L1Trigger.DTTrackFinder.dttfDigis_cfi import dttfDigis process.simDttfDigis = dttfDigis.clone() process.simDttfDigis.DTDigi_Source = 'simTwinMuxDigisForDttf' process.simDttfDigis.CSCStub_Source = 'simCsctfTrackDigis' ## ## - RPC PAC Trigger emulator ## from L1Trigger.RPCTrigger.rpcTriggerDigis_cff import rpcTriggerDigis process.load('L1Trigger.RPCTrigger.RPCConeConfig_cff') process.simRpcTriggerDigis = rpcTriggerDigis.clone() process.simRpcTriggerDigis.label = 'muonRPCDigis' process.simRpcTriggerDigis.RPCTriggerDebug = cms.untracked.int32(1) ## ## - Legacy Global Muon Trigger emulator ## from L1Trigger.GlobalMuonTrigger.gmtDigis_cfi import gmtDigis process.simGmtDigis = gmtDigis.clone() process.simGmtDigis.DTCandidates = cms.InputTag( 'simDttfDigis', 'DT' ) process.simGmtDigis.CSCCandidates = cms.InputTag( 'simCsctfDigis', 'CSC' ) process.simGmtDigis.RPCbCandidates = cms.InputTag( 'simRpcTriggerDigis', 'RPCb' ) process.simGmtDigis.RPCfCandidates = cms.InputTag( 'simRpcTriggerDigis', 'RPCf' ) # This is for the upgrade # BMTF process.simBmtfDigis.DTDigi_Source = cms.InputTag('bmtfDigis') process.simBmtfDigis.DTDigi_Theta_Source = cms.InputTag('bmtfDigis') # TwinMux process.simTwinMuxDigis.RPC_Source = cms.InputTag('muonRPCDigis') process.simTwinMuxDigis.DTDigi_Source = cms.InputTag('bmtfDigis') process.simTwinMuxDigis.DTThetaDigi_Source = cms.InputTag('bmtfDigis') # OMTF process.simOmtfDigis.srcRPC = cms.InputTag('muonRPCDigis') process.simOmtfDigis.srcCSC = cms.InputTag('csctfDigis') process.simOmtfDigis.srcDTPh = cms.InputTag('bmtfDigis') process.simOmtfDigis.srcDTTh = cms.InputTag('bmtfDigis') # EMTF process.simEmtfDigis.CSCInput = cms.InputTag('emtfStage2Digis') process.simEmtfDigis.RPCInput = cms.InputTag('muonRPCDigis') # Calo Layer1 process.simCaloStage2Layer1Digis.ecalToken = cms.InputTag('ecalDigis:EcalTriggerPrimitives') process.simCaloStage2Layer1Digis.hcalToken = cms.InputTag('hcalDigis:') # - Sequences process.L1TMuonTriggerPrimitives = cms.Sequence(process.simCscTriggerPrimitiveDigis + process.simDtTriggerPrimitiveDigis + process.simTwinMuxDigisForDttf) process.L1TReEmul = cms.Sequence(process.L1TMuonTriggerPrimitives + process.simCsctfTrackDigis + process.simCsctfDigis + process.simDttfDigis + process.simRpcTriggerDigis + process.simGmtDigis + process.muonLegacyInStage2FormatDigis) process.load('L1Trigger.L1TMuon.simMuonQualityAdjusterDigis_cfi') process.L1TReEmul = cms.Sequence( process.L1TReEmul + process.simTwinMuxDigis + process.simBmtfDigis + process.simEmtfDigis + process.simOmtfDigis + process.simGmtCaloSumDigis + process.simMuonQualityAdjusterDigis + process.simGmtStage2Digis) process.L1TReEmul = cms.Sequence( process.L1TReEmul + process.SimL1TechnicalTriggers + process.SimL1TGlobal ) process.L1TReEmulPath = cms.Path(process.L1TReEmul) process.schedule.append(process.L1TReEmulPath) print "# L1TReEmul sequence: " print "# {0}".format(process.L1TReEmul) print "# {0}".format(process.schedule) return process
52.863388
246
0.733151
[ "Apache-2.0" ]
nistefan/cmssw
L1Trigger/Configuration/python/customiseReEmul.py
19,348
Python
################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## from os import path as osp from typing import List, Text import torch __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \ 'obtain_model', 'obtain_search_model', 'load_net_from_checkpoint', \ 'CellStructure', 'CellArchitectures' ] # useful modules from config_utils import dict2config from models.SharedUtils import change_key from models.cell_searchs import CellStructure, CellArchitectures # Cell-based NAS Models def get_cell_based_tiny_net(config): if isinstance(config, dict): config = dict2config(config, None) # to support the argument being a dict super_type = getattr(config, 'super_type', 'basic') group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM', 'generic'] if super_type == 'basic' and config.name in group_names: from .cell_searchs import nas201_super_nets as nas_super_nets try: return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) except: return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space) elif super_type == 'search-shape': from .shape_searchs import GenericNAS301Model genotype = CellStructure.str2structure(config.genotype) return GenericNAS301Model(config.candidate_Cs, config.max_num_Cs, genotype, config.num_classes, config.affine, config.track_running_stats) elif super_type == 'nasnet-super': from .cell_searchs import nasnet_super_nets as nas_super_nets return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \ config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats) elif config.name == 'infer.tiny': from .cell_infers import TinyNetwork if hasattr(config, 'genotype'): genotype = config.genotype elif hasattr(config, 'arch_str'): genotype = CellStructure.str2structure(config.arch_str) else: raise ValueError('Can not find genotype from this config : {:}'.format(config)) return TinyNetwork(config.C, config.N, genotype, config.num_classes) elif config.name == 'infer.shape.tiny': from .shape_infers import DynamicShapeTinyNet if isinstance(config.channels, str): channels = tuple([int(x) for x in config.channels.split(':')]) else: channels = config.channels genotype = CellStructure.str2structure(config.genotype) return DynamicShapeTinyNet(channels, genotype, config.num_classes) elif config.name == 'infer.nasnet-cifar': from .cell_infers import NASNetonCIFAR raise NotImplementedError else: raise ValueError('invalid network name : {:}'.format(config.name)) # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op def get_search_spaces(xtype, name) -> List[Text]: if xtype == 'cell' or xtype == 'tss': # The topology search space. from .cell_operations import SearchSpaceNames assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) return SearchSpaceNames[name] elif xtype == 'sss': # The size search space. if name == 'nas-bench-301' or name == 'nats-bench' or name == 'nats-bench-size': return {'candidates': [8, 16, 24, 32, 40, 48, 56, 64], 'numbers': 5} else: raise ValueError('Invalid name : {:}'.format(name)) else: raise ValueError('invalid search-space type is {:}'.format(xtype)) def get_cifar_models(config, extra_path=None): super_type = getattr(config, 'super_type', 'basic') if super_type == 'basic': from .CifarResNet import CifarResNet from .CifarDenseNet import DenseNet from .CifarWideResNet import CifarWideResNet if config.arch == 'resnet': return CifarResNet(config.module, config.depth, config.class_num, config.zero_init_residual) elif config.arch == 'densenet': return DenseNet(config.growthRate, config.depth, config.reduction, config.class_num, config.bottleneck) elif config.arch == 'wideresnet': return CifarWideResNet(config.depth, config.wide_factor, config.class_num, config.dropout) else: raise ValueError('invalid module type : {:}'.format(config.arch)) elif super_type.startswith('infer'): from .shape_infers import InferWidthCifarResNet from .shape_infers import InferDepthCifarResNet from .shape_infers import InferCifarResNet from .cell_infers import NASNetonCIFAR assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) infer_mode = super_type.split('-')[1] if infer_mode == 'width': return InferWidthCifarResNet(config.module, config.depth, config.xchannels, config.class_num, config.zero_init_residual) elif infer_mode == 'depth': return InferDepthCifarResNet(config.module, config.depth, config.xblocks, config.class_num, config.zero_init_residual) elif infer_mode == 'shape': return InferCifarResNet(config.module, config.depth, config.xblocks, config.xchannels, config.class_num, config.zero_init_residual) elif infer_mode == 'nasnet.cifar': genotype = config.genotype if extra_path is not None: # reload genotype by extra_path if not osp.isfile(extra_path): raise ValueError('invalid extra_path : {:}'.format(extra_path)) xdata = torch.load(extra_path) current_epoch = xdata['epoch'] genotype = xdata['genotypes'][current_epoch-1] C = config.C if hasattr(config, 'C') else config.ichannel N = config.N if hasattr(config, 'N') else config.layers return NASNetonCIFAR(C, N, config.stem_multi, config.class_num, genotype, config.auxiliary) else: raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) else: raise ValueError('invalid super-type : {:}'.format(super_type)) def get_imagenet_models(config): super_type = getattr(config, 'super_type', 'basic') if super_type == 'basic': from .ImageNet_ResNet import ResNet from .ImageNet_MobileNetV2 import MobileNetV2 if config.arch == 'resnet': return ResNet(config.block_name, config.layers, config.deep_stem, config.class_num, config.zero_init_residual, config.groups, config.width_per_group) elif config.arch == 'mobilenet_v2': return MobileNetV2(config.class_num, config.width_multi, config.input_channel, config.last_channel, 'InvertedResidual', config.dropout) else: raise ValueError('invalid arch : {:}'.format( config.arch )) elif super_type.startswith('infer'): # NAS searched architecture assert len(super_type.split('-')) == 2, 'invalid super_type : {:}'.format(super_type) infer_mode = super_type.split('-')[1] if infer_mode == 'shape': from .shape_infers import InferImagenetResNet from .shape_infers import InferMobileNetV2 if config.arch == 'resnet': return InferImagenetResNet(config.block_name, config.layers, config.xblocks, config.xchannels, config.deep_stem, config.class_num, config.zero_init_residual) elif config.arch == "MobileNetV2": return InferMobileNetV2(config.class_num, config.xchannels, config.xblocks, config.dropout) else: raise ValueError('invalid arch-mode : {:}'.format(config.arch)) else: raise ValueError('invalid infer-mode : {:}'.format(infer_mode)) else: raise ValueError('invalid super-type : {:}'.format(super_type)) # Try to obtain the network by config. def obtain_model(config, extra_path=None): if config.dataset == 'cifar': return get_cifar_models(config, extra_path) elif config.dataset == 'imagenet': return get_imagenet_models(config) else: raise ValueError('invalid dataset in the model config : {:}'.format(config)) def obtain_search_model(config): if config.dataset == 'cifar': if config.arch == 'resnet': from .shape_searchs import SearchWidthCifarResNet from .shape_searchs import SearchDepthCifarResNet from .shape_searchs import SearchShapeCifarResNet if config.search_mode == 'width': return SearchWidthCifarResNet(config.module, config.depth, config.class_num) elif config.search_mode == 'depth': return SearchDepthCifarResNet(config.module, config.depth, config.class_num) elif config.search_mode == 'shape': return SearchShapeCifarResNet(config.module, config.depth, config.class_num) else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) elif config.arch == 'simres': from .shape_searchs import SearchWidthSimResNet if config.search_mode == 'width': return SearchWidthSimResNet(config.depth, config.class_num) else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) else: raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) elif config.dataset == 'imagenet': from .shape_searchs import SearchShapeImagenetResNet assert config.search_mode == 'shape', 'invalid search-mode : {:}'.format( config.search_mode ) if config.arch == 'resnet': return SearchShapeImagenetResNet(config.block_name, config.layers, config.deep_stem, config.class_num) else: raise ValueError('invalid model config : {:}'.format(config)) else: raise ValueError('invalid dataset in the model config : {:}'.format(config)) def load_net_from_checkpoint(checkpoint): assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint) checkpoint = torch.load(checkpoint) model_config = dict2config(checkpoint['model-config'], None) model = obtain_model(model_config) model.load_state_dict(checkpoint['base-model']) return model
50.790816
165
0.714917
[ "MIT" ]
hyunghunny/AutoDL-Projects
nas201bench/models/__init__.py
9,955
Python
# Tai Sakuma <[email protected]> from __future__ import print_function import os import errno import logging import pytest try: import unittest.mock as mock except ImportError: import mock from alphatwirl import mkdir_p ##__________________________________________________________________|| @pytest.fixture() def mock_makedirs(monkeypatch): ret = mock.Mock() monkeypatch.setattr(os, 'makedirs', ret) return ret @pytest.fixture() def mock_isdir(monkeypatch): ret = mock.Mock() monkeypatch.setattr(os.path, 'isdir', ret) return ret ##__________________________________________________________________|| def test_emtpy(mock_makedirs): mkdir_p('') assert [ ] == mock_makedirs.call_args_list def test_success(mock_makedirs): mkdir_p('a/b') assert [mock.call('a/b')] == mock_makedirs.call_args_list def test_already_exist(mock_makedirs, mock_isdir, caplog): mock_isdir.return_value = True mock_makedirs.side_effect = OSError(errno.EEXIST, 'already exist') with caplog.at_level(logging.DEBUG - 1): mkdir_p('a/b') assert [mock.call('a/b')] == mock_makedirs.call_args_list assert len(caplog.records) == 1 assert caplog.records[0].levelno == logging.DEBUG - 1 assert 'tried' in caplog.records[0].msg def test_raise(mock_makedirs, mock_isdir, caplog): mock_isdir.return_value = False mock_makedirs.side_effect = OSError with pytest.raises(OSError): mkdir_p('a/b') assert [mock.call('a/b')] == mock_makedirs.call_args_list ##__________________________________________________________________||
28.140351
70
0.741895
[ "BSD-3-Clause" ]
shane-breeze/AlphaTwirl
tests/unit/misc/test_mkdir_p.py
1,604
Python
import os, sys, re import importlib try: from PySide.QtGui import * from PySide.QtCore import * except: from PySide2.QtGui import * from PySide2.QtCore import * from PySide2.QtWidgets import * from multi_script_editor import scriptEditor importlib.reload(scriptEditor) import MaxPlus q3dsmax = QApplication.instance() class MaxDialogEvents(QObject): def eventFilter(self, obj, event): import MaxPlus if event.type() == QEvent.WindowActivate: MaxPlus.CUI.DisableAccelerators() elif event.type() == QEvent.WindowDeactivate: MaxPlus.CUI.EnableAccelerators() return False def show(): try: qtwindow = MaxPlus.GetQMaxWindow() except: qtwindow = MaxPlus.GetQMaxMainWindow() se = scriptEditor.scriptEditorClass(parent=qtwindow) #se.installEventFilter(MaxDialogEvents()) se.runCommand('import MaxPlus') #se.MaxEventFilter = MaxDialogEvents() #se.installEventFilter(se.MaxEventFilter) se.show()
27.486486
56
0.701082
[ "MIT" ]
ReimuSG/NukeToolSet
python/pw_multiScriptEditor/managers/_3dsmax.py
1,017
Python
# Copyright 2015, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Test code for the Face layer of RPC Framework.""" from __future__ import division import abc import contextlib import itertools import threading import unittest from concurrent import futures import six # test_interfaces is referenced from specification in this module. from grpc.framework.foundation import logging_pool from grpc.framework.interfaces.face import face from tests.unit.framework.common import test_constants from tests.unit.framework.common import test_control from tests.unit.framework.common import test_coverage from tests.unit.framework.interfaces.face import _3069_test_constant from tests.unit.framework.interfaces.face import _digest from tests.unit.framework.interfaces.face import _stock_service from tests.unit.framework.interfaces.face import test_interfaces # pylint: disable=unused-import class _PauseableIterator(object): def __init__(self, upstream): self._upstream = upstream self._condition = threading.Condition() self._paused = False @contextlib.contextmanager def pause(self): with self._condition: self._paused = True yield with self._condition: self._paused = False self._condition.notify_all() def __iter__(self): return self def __next__(self): return self.next() def next(self): with self._condition: while self._paused: self._condition.wait() return next(self._upstream) class _Callback(object): def __init__(self): self._condition = threading.Condition() self._called = False self._passed_future = None self._passed_other_stuff = None def __call__(self, *args, **kwargs): with self._condition: self._called = True if args: self._passed_future = args[0] if 1 < len(args) or kwargs: self._passed_other_stuff = tuple(args[1:]), dict(kwargs) self._condition.notify_all() def future(self): with self._condition: while True: if self._passed_other_stuff is not None: raise ValueError( 'Test callback passed unexpected values: %s', self._passed_other_stuff) elif self._called: return self._passed_future else: self._condition.wait() class TestCase(six.with_metaclass(abc.ABCMeta, test_coverage.Coverage, unittest.TestCase)): """A test of the Face layer of RPC Framework. Concrete subclasses must have an "implementation" attribute of type test_interfaces.Implementation and an "invoker_constructor" attribute of type _invocation.InvokerConstructor. """ NAME = 'FutureInvocationAsynchronousEventServiceTest' def setUp(self): """See unittest.TestCase.setUp for full specification. Overriding implementations must call this implementation. """ self._control = test_control.PauseFailControl() self._digest_pool = logging_pool.pool(test_constants.POOL_SIZE) self._digest = _digest.digest( _stock_service.STOCK_TEST_SERVICE, self._control, self._digest_pool) generic_stub, dynamic_stubs, self._memo = self.implementation.instantiate( self._digest.methods, self._digest.event_method_implementations, None) self._invoker = self.invoker_constructor.construct_invoker( generic_stub, dynamic_stubs, self._digest.methods) def tearDown(self): """See unittest.TestCase.tearDown for full specification. Overriding implementations must call this implementation. """ self._invoker = None self.implementation.destantiate(self._memo) self._digest_pool.shutdown(wait=True) def testSuccessfulUnaryRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() callback = _Callback() response_future = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) response_future.add_done_callback(callback) response = response_future.result() test_messages.verify(request, response, self) self.assertIs(callback.future(), response_future) def testSuccessfulUnaryRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_stream_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() response_iterator = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) responses = list(response_iterator) test_messages.verify(request, responses, self) def testSuccessfulStreamRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() request_iterator = _PauseableIterator(iter(requests)) callback = _Callback() # Use of a paused iterator of requests allows us to test that control is # returned to calling code before the iterator yields any requests. with request_iterator.pause(): response_future = self._invoker.future(group, method)( request_iterator, test_constants.LONG_TIMEOUT) response_future.add_done_callback(callback) future_passed_to_callback = callback.future() response = future_passed_to_callback.result() test_messages.verify(requests, response, self) self.assertIs(future_passed_to_callback, response_future) def testSuccessfulStreamRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_stream_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() request_iterator = _PauseableIterator(iter(requests)) # Use of a paused iterator of requests allows us to test that control is # returned to calling code before the iterator yields any requests. with request_iterator.pause(): response_iterator = self._invoker.future(group, method)( request_iterator, test_constants.LONG_TIMEOUT) responses = list(response_iterator) test_messages.verify(requests, responses, self) def testSequentialInvocations(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: first_request = test_messages.request() second_request = test_messages.request() first_response_future = self._invoker.future(group, method)( first_request, test_constants.LONG_TIMEOUT) first_response = first_response_future.result() test_messages.verify(first_request, first_response, self) second_response_future = self._invoker.future(group, method)( second_request, test_constants.LONG_TIMEOUT) second_response = second_response_future.result() test_messages.verify(second_request, second_response, self) def testParallelInvocations(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: first_request = test_messages.request() second_request = test_messages.request() first_response_future = self._invoker.future(group, method)( first_request, test_constants.LONG_TIMEOUT) second_response_future = self._invoker.future(group, method)( second_request, test_constants.LONG_TIMEOUT) first_response = first_response_future.result() second_response = second_response_future.result() test_messages.verify(first_request, first_response, self) test_messages.verify(second_request, second_response, self) for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = [] response_futures = [] for _ in range(test_constants.THREAD_CONCURRENCY): request = test_messages.request() response_future = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) requests.append(request) response_futures.append(response_future) responses = [ response_future.result() for response_future in response_futures] for request, response in zip(requests, responses): test_messages.verify(request, response, self) def testWaitingForSomeButNotAllParallelInvocations(self): pool = logging_pool.pool(test_constants.THREAD_CONCURRENCY) for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = [] response_futures_to_indices = {} for index in range(test_constants.THREAD_CONCURRENCY): request = test_messages.request() inner_response_future = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) outer_response_future = pool.submit(inner_response_future.result) requests.append(request) response_futures_to_indices[outer_response_future] = index some_completed_response_futures_iterator = itertools.islice( futures.as_completed(response_futures_to_indices), test_constants.THREAD_CONCURRENCY // 2) for response_future in some_completed_response_futures_iterator: index = response_futures_to_indices[response_future] test_messages.verify(requests[index], response_future.result(), self) pool.shutdown(wait=True) def testCancelledUnaryRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() callback = _Callback() with self._control.pause(): response_future = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) response_future.add_done_callback(callback) cancel_method_return_value = response_future.cancel() self.assertIs(callback.future(), response_future) self.assertFalse(cancel_method_return_value) self.assertTrue(response_future.cancelled()) def testCancelledUnaryRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_stream_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() with self._control.pause(): response_iterator = self._invoker.future(group, method)( request, test_constants.LONG_TIMEOUT) response_iterator.cancel() with self.assertRaises(face.CancellationError): next(response_iterator) def testCancelledStreamRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() callback = _Callback() with self._control.pause(): response_future = self._invoker.future(group, method)( iter(requests), test_constants.LONG_TIMEOUT) response_future.add_done_callback(callback) cancel_method_return_value = response_future.cancel() self.assertIs(callback.future(), response_future) self.assertFalse(cancel_method_return_value) self.assertTrue(response_future.cancelled()) def testCancelledStreamRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_stream_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() with self._control.pause(): response_iterator = self._invoker.future(group, method)( iter(requests), test_constants.LONG_TIMEOUT) response_iterator.cancel() with self.assertRaises(face.CancellationError): next(response_iterator) def testExpiredUnaryRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() callback = _Callback() with self._control.pause(): response_future = self._invoker.future( group, method)(request, _3069_test_constant.REALLY_SHORT_TIMEOUT) response_future.add_done_callback(callback) self.assertIs(callback.future(), response_future) self.assertIsInstance( response_future.exception(), face.ExpirationError) with self.assertRaises(face.ExpirationError): response_future.result() def testExpiredUnaryRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_stream_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() with self._control.pause(): response_iterator = self._invoker.future(group, method)( request, _3069_test_constant.REALLY_SHORT_TIMEOUT) with self.assertRaises(face.ExpirationError): list(response_iterator) def testExpiredStreamRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() callback = _Callback() with self._control.pause(): response_future = self._invoker.future(group, method)( iter(requests), _3069_test_constant.REALLY_SHORT_TIMEOUT) response_future.add_done_callback(callback) self.assertIs(callback.future(), response_future) self.assertIsInstance( response_future.exception(), face.ExpirationError) with self.assertRaises(face.ExpirationError): response_future.result() def testExpiredStreamRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_stream_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() with self._control.pause(): response_iterator = self._invoker.future(group, method)( iter(requests), _3069_test_constant.REALLY_SHORT_TIMEOUT) with self.assertRaises(face.ExpirationError): list(response_iterator) def testFailedUnaryRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_unary_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() callback = _Callback() with self._control.fail(): response_future = self._invoker.future(group, method)( request, _3069_test_constant.REALLY_SHORT_TIMEOUT) response_future.add_done_callback(callback) self.assertIs(callback.future(), response_future) # Because the servicer fails outside of the thread from which the # servicer-side runtime called into it its failure is # indistinguishable from simply not having called its # response_callback before the expiration of the RPC. self.assertIsInstance( response_future.exception(), face.ExpirationError) with self.assertRaises(face.ExpirationError): response_future.result() def testFailedUnaryRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.unary_stream_messages_sequences)): for test_messages in test_messages_sequence: request = test_messages.request() # Because the servicer fails outside of the thread from which the # servicer-side runtime called into it its failure is indistinguishable # from simply not having called its response_consumer before the # expiration of the RPC. with self._control.fail(), self.assertRaises(face.ExpirationError): response_iterator = self._invoker.future(group, method)( request, _3069_test_constant.REALLY_SHORT_TIMEOUT) list(response_iterator) def testFailedStreamRequestUnaryResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_unary_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() callback = _Callback() with self._control.fail(): response_future = self._invoker.future(group, method)( iter(requests), _3069_test_constant.REALLY_SHORT_TIMEOUT) response_future.add_done_callback(callback) self.assertIs(callback.future(), response_future) # Because the servicer fails outside of the thread from which the # servicer-side runtime called into it its failure is # indistinguishable from simply not having called its # response_callback before the expiration of the RPC. self.assertIsInstance( response_future.exception(), face.ExpirationError) with self.assertRaises(face.ExpirationError): response_future.result() def testFailedStreamRequestStreamResponse(self): for (group, method), test_messages_sequence in ( six.iteritems(self._digest.stream_stream_messages_sequences)): for test_messages in test_messages_sequence: requests = test_messages.requests() # Because the servicer fails outside of the thread from which the # servicer-side runtime called into it its failure is indistinguishable # from simply not having called its response_consumer before the # expiration of the RPC. with self._control.fail(), self.assertRaises(face.ExpirationError): response_iterator = self._invoker.future(group, method)( iter(requests), _3069_test_constant.REALLY_SHORT_TIMEOUT) list(response_iterator)
42.324324
97
0.721485
[ "BSD-3-Clause" ]
DiracResearch/grpc
src/python/grpcio/tests/unit/framework/interfaces/face/_future_invocation_asynchronous_event_service.py
20,358
Python
""" =========================================== Comparison of F-test and mutual information =========================================== This example illustrates the differences between univariate F-test statistics and mutual information. We consider 3 features x_1, x_2, x_3 distributed uniformly over [0, 1], the target depends on them as follows: y = x_1 + sin(6 * pi * x_2) + 0.1 * N(0, 1), that is the third features is completely irrelevant. The code below plots the dependency of y against individual x_i and normalized values of univariate F-tests statistics and mutual information. As F-test captures only linear dependency, it rates x_1 as the most discriminative feature. On the other hand, mutual information can capture any kind of dependency between variables and it rates x_2 as the most discriminative feature, which probably agrees better with our intuitive perception for this example. Both methods correctly marks x_3 as irrelevant. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.feature_selection import f_regression, mutual_info_regression np.random.seed(0) X = np.random.rand(1000, 3) y = X[:, 0] + np.sin(6 * np.pi * X[:, 1]) + 0.1 * np.random.randn(1000) f_test, _ = f_regression(X, y) f_test /= np.max(f_test) mi = mutual_info_regression(X, y) mi /= np.max(mi) plt.figure(figsize=(15, 5)) for i in range(3): plt.subplot(1, 3, i + 1) plt.scatter(X[:, i], y) plt.xlabel("$x_{}$".format(i + 1), fontsize=14) if i == 0: plt.ylabel("$y$", fontsize=14) plt.title("F-test={:.2f}, MI={:.2f}".format(f_test[i], mi[i]), fontsize=16) plt.show()
32.94
97
0.676381
[ "BSD-3-Clause" ]
NickVeld/scikit-learn-proj
examples/feature_selection/plot_f_test_vs_mi.py
1,647
Python
""" Tests utils for tagging. """ from django.template import Origin from django.template.loaders.base import Loader class VoidLoader(Loader): """ Template loader which is always returning an empty template. """ is_usable = True _accepts_engine_in_init = True def get_template_sources(self, template_name): yield Origin( name='voidloader', template_name=template_name, loader=self) def get_contents(self, origin): return '' def load_template_source(self, template_name, template_dirs=None): return ('', 'voidloader:%s' % template_name)
23.555556
70
0.663522
[ "BSD-3-Clause" ]
Fantomas42/django-tagging
tagging/tests/utils.py
636
Python
from imdbclassifier.train_nn import KTrain from imdbclassifier.parser_utils_nn import KParseArgs from time import time import sys import os # Hide warning messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' if __name__ == '__main__': parser = KParseArgs() args = parser.parse_args() start_time = time() flag = len(sys.argv) == 1 if flag: print("Using Default Baseline parameters") else: print("Using Experimental parameters") print("hidden_layers:", args.hidden_layers) print("output:", args.output) print("epochs:", args.epochs) print("loss:", args.loss) print("experiment_name:", args.experiment_name) train_models_cls = KTrain().train_models(args, flag) timed = time() - start_time print("This model took", timed, " seconds to train and test.")
24.323529
66
0.688029
[ "MIT" ]
mmm84766/ai-platform
tasks/natural-language-processing/sentiment-analysis/keras/imdbclassifier/main_nn.py
827
Python
"""Unit tests for Tangent PCA.""" import geomstats.backend as gs import geomstats.tests from geomstats.geometry.spd_matrices import SPDMatrices, SPDMetricAffine from geomstats.geometry.special_euclidean import SpecialEuclidean from geomstats.geometry.special_orthogonal import SpecialOrthogonal from geomstats.learning.exponential_barycenter import ExponentialBarycenter from geomstats.learning.pca import TangentPCA class TestTangentPCA(geomstats.tests.TestCase): _multiprocess_can_split_ = True def setUp(self): self.so3 = SpecialOrthogonal(n=3, point_type='vector') self.spd = SPDMatrices(3) self.spd_metric = SPDMetricAffine(3) self.n_samples = 10 self.X = self.so3.random_uniform(n_samples=self.n_samples) self.metric = self.so3.bi_invariant_metric self.n_components = 2 @geomstats.tests.np_and_autograd_only def test_tangent_pca_error(self): X = self.X tpca = TangentPCA(self.metric, n_components=self.n_components) tpca.fit(X) X_diff_size = gs.ones((self.n_samples, gs.shape(X)[1] + 1)) self.assertRaises(ValueError, tpca.transform, X_diff_size) @geomstats.tests.np_and_autograd_only def test_tangent_pca(self): X = self.X tpca = TangentPCA(self.metric, n_components=gs.shape(X)[1]) tpca.fit(X) self.assertEqual(tpca.n_features_, gs.shape(X)[1]) @geomstats.tests.np_and_autograd_only def test_fit_mle(self): X = self.X tpca = TangentPCA(self.metric, n_components='mle') tpca.fit(X) self.assertEqual(tpca.n_features_, gs.shape(X)[1]) @geomstats.tests.np_and_autograd_only def test_fit_to_target_explained_variance(self): X = self.spd.random_point(n_samples=5) target = 0.90 tpca = TangentPCA( self.spd_metric, n_components=target) tpca.fit(X) result = gs.cumsum(tpca.explained_variance_ratio_)[-1] > target expected = True self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_matrix(self): expected = 2 X = self.spd.random_point(n_samples=5) tpca = TangentPCA( metric=self.spd_metric, n_components=expected) tpca.fit(X) result = tpca.n_components_ self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_transform_matrix(self): expected = 2 X = self.spd.random_point(n_samples=5) tpca = TangentPCA( metric=self.spd_metric, n_components=expected) tangent_projected_data = tpca.fit_transform(X) result = tangent_projected_data.shape[-1] self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_inverse_transform_matrix(self): X = self.spd.random_point(n_samples=5) tpca = TangentPCA( metric=self.spd_metric) tangent_projected_data = tpca.fit_transform(X) result = tpca.inverse_transform(tangent_projected_data) expected = X self.assertAllClose(result, expected, atol=1e-6) @geomstats.tests.np_and_autograd_only def test_fit_transform_vector(self): expected = 2 tpca = TangentPCA( metric=self.metric, n_components=expected) tangent_projected_data = tpca.fit_transform(self.X) result = tangent_projected_data.shape[-1] self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_inverse_transform_vector(self): tpca = TangentPCA(metric=self.metric) tangent_projected_data = tpca.fit_transform(self.X) result = tpca.inverse_transform(tangent_projected_data) expected = self.X self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_fit_transform_matrix(self): X = self.spd.random_point(n_samples=5) tpca = TangentPCA( metric=self.spd_metric) expected = tpca.fit_transform(X) result = tpca.fit(X).transform(X) self.assertAllClose(result, expected) @geomstats.tests.np_and_autograd_only def test_fit_matrix_se(self): se_mat = SpecialEuclidean(n=3) X = se_mat.random_point(self.n_samples) estimator = ExponentialBarycenter(se_mat) estimator.fit(X) mean = estimator.estimate_ tpca = TangentPCA(metric=se_mat) tangent_projected_data = tpca.fit_transform(X, base_point=mean) result = tpca.inverse_transform(tangent_projected_data) expected = X self.assertAllClose(result, expected)
36.889764
75
0.691142
[ "MIT" ]
SwastiKh/geomstats
tests/tests_geomstats/test_pca.py
4,685
Python
# Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import hashlib import logging import os import re import selectors import threading import time from contextlib import closing from pants.base.build_environment import get_buildroot from pants.java.executor import Executor, SubprocessExecutor from pants.java.nailgun_client import NailgunClient from pants.pantsd.process_manager import FingerprintedProcessManager, ProcessGroup from pants.util.collections import ensure_str_list from pants.util.dirutil import read_file, safe_file_dump, safe_open from pants.util.memo import memoized_classproperty logger = logging.getLogger(__name__) class NailgunProcessGroup(ProcessGroup): _NAILGUN_KILL_LOCK = threading.Lock() def __init__(self, metadata_base_dir=None): super().__init__(name="nailgun", metadata_base_dir=metadata_base_dir) # TODO: this should enumerate the .pids dir first, then fallback to ps enumeration (& warn). def _iter_nailgun_instances(self, everywhere=False): def predicate(proc): if proc.name() == NailgunExecutor._PROCESS_NAME: if not everywhere: return NailgunExecutor._PANTS_NG_BUILDROOT_ARG in proc.cmdline() else: return any( arg.startswith(NailgunExecutor._PANTS_NG_ARG_PREFIX) for arg in proc.cmdline() ) return self.iter_instances(predicate) def killall(self, everywhere=False): """Kills all nailgun servers started by pants. :param bool everywhere: If ``True``, kills all pants-started nailguns on this machine; otherwise restricts the nailguns killed to those started for the current build root. """ with self._NAILGUN_KILL_LOCK: for proc in self._iter_nailgun_instances(everywhere): logger.info("killing nailgun server pid={pid}".format(pid=proc.pid)) proc.terminate() # TODO: Once we integrate standard logging into our reporting framework, we can consider making # some of the log.debug() below into log.info(). Right now it just looks wrong on the console. class NailgunExecutor(Executor, FingerprintedProcessManager): """Executes java programs by launching them in nailgun server. If a nailgun is not available for a given set of jvm args and classpath, one is launched and re- used for the given jvm args and classpath on subsequent runs. """ # 'NGServer 0.9.1 started on 127.0.0.1, port 53785.' _NG_PORT_REGEX = re.compile(r".*\s+port\s+(\d+)\.$") # Used to identify if we own a given nailgun server. FINGERPRINT_CMD_KEY = "-Dpants.nailgun.fingerprint" _PANTS_NG_ARG_PREFIX = "-Dpants.buildroot" _PANTS_OWNER_ARG_PREFIX = "-Dpants.nailgun.owner" @memoized_classproperty def _PANTS_NG_BUILDROOT_ARG(cls): return "=".join((cls._PANTS_NG_ARG_PREFIX, get_buildroot())) _NAILGUN_SPAWN_LOCK = threading.Lock() _PROCESS_NAME = "java" def __init__( self, identity, workdir, nailgun_classpath, distribution, startup_timeout=10, connect_timeout=10, connect_attempts=5, metadata_base_dir=None, ): Executor.__init__(self, distribution=distribution) FingerprintedProcessManager.__init__( self, name=identity, process_name=self._PROCESS_NAME, metadata_base_dir=metadata_base_dir, ) if not isinstance(workdir, str): raise ValueError( "Workdir must be a path string, not: {workdir}".format(workdir=workdir) ) self._identity = identity self._workdir = workdir self._ng_stdout = os.path.join(workdir, "stdout") self._ng_stderr = os.path.join(workdir, "stderr") self._nailgun_classpath = ensure_str_list(nailgun_classpath) self._startup_timeout = startup_timeout self._connect_timeout = connect_timeout self._connect_attempts = connect_attempts def __str__(self): return "NailgunExecutor({identity}, dist={dist}, pid={pid} socket={socket})".format( identity=self._identity, dist=self._distribution, pid=self.pid, socket=self.socket ) def _create_owner_arg(self, workdir): # Currently the owner is identified via the full path to the workdir. return "=".join((self._PANTS_OWNER_ARG_PREFIX, workdir)) def _create_fingerprint_arg(self, fingerprint): return "=".join((self.FINGERPRINT_CMD_KEY, fingerprint)) @staticmethod def _fingerprint(jvm_options, classpath, java_version): """Compute a fingerprint for this invocation of a Java task. :param list jvm_options: JVM options passed to the java invocation :param list classpath: The -cp arguments passed to the java invocation :param Revision java_version: return value from Distribution.version() :return: a hexstring representing a fingerprint of the java invocation """ digest = hashlib.sha1() # TODO(John Sirois): hash classpath contents? encoded_jvm_options = [option.encode() for option in sorted(jvm_options)] encoded_classpath = [cp.encode() for cp in sorted(classpath)] encoded_java_version = repr(java_version).encode() for item in (encoded_jvm_options, encoded_classpath, encoded_java_version): digest.update(str(item).encode()) return digest.hexdigest() def _runner(self, classpath, main, jvm_options, args): """Runner factory. Called via Executor.execute(). """ command = self._create_command(classpath, main, jvm_options, args) class Runner(self.Runner): @property def executor(this): return self @property def command(self): return list(command) def run(this, stdout=None, stderr=None, stdin=None, cwd=None): nailgun = None try: nailgun = self._get_nailgun_client( jvm_options, classpath, stdout, stderr, stdin ) logger.debug( "Executing via {ng_desc}: {cmd}".format(ng_desc=nailgun, cmd=this.cmd) ) return nailgun.execute(main, cwd, *args) except (NailgunClient.NailgunError, self.InitialNailgunConnectTimedOut) as e: self.terminate() raise self.Error( "Problem launching via {ng_desc} command {main} {args}: {msg}".format( ng_desc=nailgun or "<no nailgun connection>", main=main, args=" ".join(args), msg=e, ) ) return Runner() def _check_nailgun_state(self, new_fingerprint): running = self.is_alive() updated = self.needs_restart(new_fingerprint) logging.debug( "Nailgun {nailgun} state: updated={up!s} running={run!s} fingerprint={old_fp} " "new_fingerprint={new_fp} distribution={old_dist} new_distribution={new_dist}".format( nailgun=self._identity, up=updated, run=running, old_fp=self.fingerprint, new_fp=new_fingerprint, old_dist=self.cmd, new_dist=self._distribution.java, ) ) return running, updated def _get_nailgun_client(self, jvm_options, classpath, stdout, stderr, stdin): """This (somewhat unfortunately) is the main entrypoint to this class via the Runner. It handles creation of the running nailgun server as well as creation of the client. """ classpath = self._nailgun_classpath + classpath new_fingerprint = self._fingerprint(jvm_options, classpath, self._distribution.version) with self._NAILGUN_SPAWN_LOCK: running, updated = self._check_nailgun_state(new_fingerprint) if running and updated: logger.debug( "Found running nailgun server that needs updating, killing {server}".format( server=self._identity ) ) self.terminate() if (not running) or (running and updated): return self._spawn_nailgun_server( new_fingerprint, jvm_options, classpath, stdout, stderr, stdin ) return self._create_ngclient(port=self.socket, stdout=stdout, stderr=stderr, stdin=stdin) class InitialNailgunConnectTimedOut(Exception): _msg_fmt = """Failed to read nailgun output after {timeout} seconds! Stdout: {stdout} Stderr: {stderr}""" def __init__(self, timeout, stdout, stderr): msg = self._msg_fmt.format(timeout=timeout, stdout=stdout, stderr=stderr) super(NailgunExecutor.InitialNailgunConnectTimedOut, self).__init__(msg) def _await_socket(self, timeout): """Blocks for the nailgun subprocess to bind and emit a listening port in the nailgun stdout.""" start_time = time.time() accumulated_stdout = "" def calculate_remaining_time(): return time.time() - (start_time + timeout) def possibly_raise_timeout(remaining_time): if remaining_time > 0: stderr = read_file(self._ng_stderr, binary_mode=True) raise self.InitialNailgunConnectTimedOut( timeout=timeout, stdout=accumulated_stdout, stderr=stderr, ) # NB: We use PollSelector, rather than the more efficient DefaultSelector, because # DefaultSelector results in using the epoll() syscall on Linux, which does not work with # regular text files like ng_stdout. See https://stackoverflow.com/a/8645770. with selectors.PollSelector() as selector, safe_open(self._ng_stdout, "r") as ng_stdout: selector.register(ng_stdout, selectors.EVENT_READ) while 1: remaining_time = calculate_remaining_time() possibly_raise_timeout(remaining_time) events = selector.select(timeout=-1 * remaining_time) if events: line = ng_stdout.readline() # TODO: address deadlock risk here. try: return self._NG_PORT_REGEX.match(line).group(1) except AttributeError: pass accumulated_stdout += line def _create_ngclient(self, port, stdout, stderr, stdin): return NailgunClient(port=port, ins=stdin, out=stdout, err=stderr) def ensure_connectable(self, nailgun): """Ensures that a nailgun client is connectable or raises NailgunError.""" attempt_count = 1 while 1: try: with closing(nailgun.try_connect()) as sock: logger.debug( "Verified new ng server is connectable at {}".format(sock.getpeername()) ) return except nailgun.NailgunConnectionError: if attempt_count >= self._connect_attempts: logger.debug( "Failed to connect to ng after {} attempts".format(self._connect_attempts) ) raise # Re-raise the NailgunConnectionError which provides more context to the user. attempt_count += 1 time.sleep(self.WAIT_INTERVAL_SEC) def _spawn_nailgun_server(self, fingerprint, jvm_options, classpath, stdout, stderr, stdin): """Synchronously spawn a new nailgun server.""" # Truncate the nailguns stdout & stderr. safe_file_dump(self._ng_stdout, b"", mode="wb") safe_file_dump(self._ng_stderr, b"", mode="wb") jvm_options = jvm_options + [ self._PANTS_NG_BUILDROOT_ARG, self._create_owner_arg(self._workdir), self._create_fingerprint_arg(fingerprint), ] post_fork_child_opts = dict( fingerprint=fingerprint, jvm_options=jvm_options, classpath=classpath, stdout=stdout, stderr=stderr, ) logger.debug( "Spawning nailgun server {i} with fingerprint={f}, jvm_options={j}, classpath={cp}".format( i=self._identity, f=fingerprint, j=jvm_options, cp=classpath ) ) self.daemon_spawn(post_fork_child_opts=post_fork_child_opts) # Wait for and write the port information in the parent so we can bail on exception/timeout. self.await_pid(self._startup_timeout) self.write_socket(self._await_socket(self._connect_timeout)) logger.debug( "Spawned nailgun server {i} with fingerprint={f}, pid={pid} port={port}".format( i=self._identity, f=fingerprint, pid=self.pid, port=self.socket ) ) client = self._create_ngclient(port=self.socket, stdout=stdout, stderr=stderr, stdin=stdin) self.ensure_connectable(client) return client def _check_process_buildroot(self, process): """Matches only processes started from the current buildroot.""" return self._PANTS_NG_BUILDROOT_ARG in process.cmdline() def is_alive(self): """A ProcessManager.is_alive() override that ensures buildroot flags are present in the process command line arguments.""" return super().is_alive(self._check_process_buildroot) def post_fork_child(self, fingerprint, jvm_options, classpath, stdout, stderr): """Post-fork() child callback for ProcessManager.daemon_spawn().""" java = SubprocessExecutor(self._distribution) subproc = java.spawn( classpath=classpath, main="com.martiansoftware.nailgun.NGServer", jvm_options=jvm_options, args=[":0"], stdin=safe_open("/dev/null", "r"), stdout=safe_open(self._ng_stdout, "w"), stderr=safe_open(self._ng_stderr, "w"), close_fds=True, ) self.write_pid(subproc.pid)
40.470914
105
0.624298
[ "Apache-2.0" ]
revl/pants
src/python/pants/java/nailgun_executor.py
14,610
Python
import abc import configparser import json import os from typing import Any, Dict, Optional from pystratum_backend.RoutineWrapperGeneratorWorker import RoutineWrapperGeneratorWorker from pystratum_backend.StratumStyle import StratumStyle from pystratum_common.Util import Util class CommonRoutineWrapperGeneratorWorker(RoutineWrapperGeneratorWorker): """ Class for generating a class with wrapper methods for calling stored routines in a MySQL database. """ # ------------------------------------------------------------------------------------------------------------------ def __init__(self, io: StratumStyle, config: configparser.ConfigParser): """ Object constructor. :param PyStratumStyle io: The output decorator. """ self._code: str = '' """ The generated Python code buffer. """ self._lob_as_string_flag: bool = False """ If true BLOBs and CLOBs must be treated as strings. """ self._metadata_filename: Optional[str] = None """ The filename of the file with the metadata of all stored procedures. """ self._parent_class_name: Optional[str] = None """ The class name of the parent class of the routine wrapper. """ self._parent_class_namespace: Optional[str] = None """ The namespace of the parent class of the routine wrapper. """ self._wrapper_class_name: Optional[str] = None """ The class name of the routine wrapper. """ self._wrapper_filename: Optional[str] = None """ The filename where the generated wrapper class must be stored. """ self._io: StratumStyle = io """ The output decorator. """ self._config = config """ The configuration object. :type: ConfigParser """ # ------------------------------------------------------------------------------------------------------------------ def execute(self) -> int: """ The "main" of the wrapper generator. Returns 0 on success, 1 if one or more errors occurred. :rtype: int """ self._read_configuration_file() if self._wrapper_class_name: self._io.title('Wrapper') self.__generate_wrapper_class() self._io.writeln('') else: self._io.log_verbose('Wrapper not enabled') return 0 # ------------------------------------------------------------------------------------------------------------------ def __generate_wrapper_class(self) -> None: """ Generates the wrapper class. """ routines = self._read_routine_metadata() self._write_class_header() if routines: for routine_name in sorted(routines): if routines[routine_name]['designation'] != 'hidden': self._write_routine_function(routines[routine_name]) else: self._io.error('No files with stored routines found') self._write_class_trailer() Util.write_two_phases(self._wrapper_filename, self._code, self._io) # ------------------------------------------------------------------------------------------------------------------ def _read_configuration_file(self) -> None: """ Reads parameters from the configuration file. """ self._parent_class_name = self._config.get('wrapper', 'parent_class') self._parent_class_namespace = self._config.get('wrapper', 'parent_class_namespace') self._wrapper_class_name = self._config.get('wrapper', 'wrapper_class') self._wrapper_filename = self._config.get('wrapper', 'wrapper_file') self._metadata_filename = self._config.get('wrapper', 'metadata') self._lob_as_string_flag = bool(self._config.get('wrapper', 'lob_as_string')) # ------------------------------------------------------------------------------------------------------------------ def _read_routine_metadata(self) -> Dict: """ Returns the metadata of stored routines. :rtype: dict """ metadata = {} if os.path.isfile(self._metadata_filename): with open(self._metadata_filename, 'r') as file: metadata = json.load(file) return metadata # ------------------------------------------------------------------------------------------------------------------ def _write_class_header(self) -> None: """ Generate a class header for stored routine wrapper. """ self._write_line('from typing import Any, Dict, List, Optional, Union') self._write_line() self._write_line('from {0!s} import {1!s}'.format(self._parent_class_namespace, self._parent_class_name)) self._write_line() self._write_line() self._write_line('class {0!s}({1!s}):'.format(self._wrapper_class_name, self._parent_class_name)) self._write_line(' """') self._write_line(' The stored routines wrappers.') self._write_line(' """') # ------------------------------------------------------------------------------------------------------------------ def _write_line(self, text: str = '') -> None: """ Writes a line with Python code to the generate code buffer. :param str text: The line with Python code. """ if text: self._code += str(text) + "\n" else: self._code += "\n" # ------------------------------------------------------------------------------------------------------------------ def _write_class_trailer(self) -> None: """ Generate a class trailer for stored routine wrapper. """ self._write_line() self._write_line() self._write_line('# ' + ('-' * 118)) # ------------------------------------------------------------------------------------------------------------------ @abc.abstractmethod def _write_routine_function(self, routine: Dict[str, Any]) -> None: """ Generates a complete wrapper method for a stored routine. :param dict routine: The metadata of the stored routine. """ raise NotImplementedError() # ----------------------------------------------------------------------------------------------------------------------
35.451087
120
0.496397
[ "MIT" ]
DatabaseStratum/py-stratum-common
pystratum_common/backend/CommonRoutineWrapperGeneratorWorker.py
6,523
Python
import sys import psycopg2 import os # Inicialização de parâmetros database = os.environ['DATABASE_URL'] # Cria um banco de dados Postgres para armazenar informações, caso não exista. def carregar_bd(): # Conecta ao banco de dados na URL especificada connection = psycopg2.connect(database) # Cria um cursor do banco de dados, que é um iterador que permite navegar # e manipular os registros do bd, e o atribui a uma variável. cursor = connection.cursor() # Carrega os comandos a partir do script sql script = open('create.sql', 'r').read() # Executa os comandos do script SQL diretamente no banco de dados. cursor.execute(script) # Salva as alterações. connection.commit() # Encerra a conexão. connection.close() """-------------------------------------------------------------------------""" # Confere se o usuário já tem uma ficha criada. def confere_usuário(id_usuário, id_grupo): # Conecta ao banco de dados no arquivo Atrix. connection = psycopg2.connect(database) # Cria um cursor do banco de dados, que é um iterador que permite navegar # e manipular os registros do bd, e o atribui a uma variável. cursor = connection.cursor() cursor.execute(''' SELECT Id_Grupo, Id_Jogador FROM FICHAS WHERE Id_Grupo = %s AND Id_Jogador = %s;''', [id_grupo, id_usuário]) result = cursor.fetchall() if len(result) > 0: connection.close() return True else: connection.close() return False """-------------------------------------------------------------------------""" # Confere se um grupo já tem uma entrada na base de dados def confere_grupo(id_grupo): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute(''' SELECT Id_Grupo FROM GRUPOS WHERE Id_Grupo = %s;''', [id_grupo]) result = cursor.fetchall() if len(result) > 0: connection.close() return True else: connection.close() return False """-------------------------------------------------------------------------""" # Cria uma entrada para um grupo no banco de dados. def cria_grupo(id_grupo, id_mestre, edição_livre=True): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('INSERT INTO GRUPOS VALUES(%s, %s, %s);', [id_grupo, id_mestre, edição_livre]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Cria uma entrada para um personagem no banco de dados. def cria_ficha(id_grupo, id_jogador, nome='', identidade_civil='', identidade_secreta = True, sexo = '', idade = 0, altura = 0.0, peso = 0.0, tamanho = 0, olhos = '', cabelo = '', pele = '', base = '', nivel = 0, ataques = 0, defesa = 0): pontos = 15*nivel connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO FICHAS VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, nome, identidade_civil, identidade_secreta, sexo, idade, altura, peso, tamanho, olhos, pele, cabelo, base, nivel, pontos, ataques, defesa]) # Insere os valores das informações básicas do personagem cursor.execute('''INSERT INTO HABILIDADES VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, 10, 10, 10, 10, 10, 10, 0, 0, 0, 0, 0, 0]) # Insere os valores de habilidades do personagem cursor.execute('''INSERT INTO SALVAMENTOS VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, 0, 0, 0, 0, 0, 0, 0]) # Insere os valores de salvamentos do personagem connection.commit() connection.close() """-------------------------------------------------------------------------""" # Adiciona um feito a uma ficha def add_feito(id_grupo, id_jogador, nome, bonus=''): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO FEITOS VALUES(%s, %s %s, %s);''', [id_grupo, id_jogador, nome, bonus]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Adiciona uma perícia a uma ficha def add_perícia(id_grupo, id_jogador, nome, habilidade, grad, bonus): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO PERICIAS VALUES(%s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, nome, habilidade, grad, bonus]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Adiciona uma desvantagem a uma ficha def add_desvantagem(id_grupo, id_jogador, desc, freq, intensidade): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO DESVANTAGENS VALUES(%s, %s, %s, %s, %s);''', [id_grupo, id_jogador, desc, freq, intensidade]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Adiciona um poder na ficha do personagem def add_poder(id_grupo, id_jogador, nome, descrição, ativa, área_efeito, tempo_ativação, tempo_recarga, duração, custo_base, grad, feitos, extras, falhas): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO PODERES_E_DISPOSITIVOS VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, nome, descrição, "PODER", ativa, área_efeito, tempo_ativação, tempo_recarga, duração, custo_base, grad, feitos, extras, falhas]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Adiciona um dispositivo na ficha do personagem def add_dispositivo(id_grupo, id_jogador, nome, descrição, ativa, área_efeito, tempo_ativação, tempo_recarga, duração, custo_base, grad, feitos, extras, falhas): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''INSERT INTO PODERES_E_DISPOSITIVOS VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s);''', [id_grupo, id_jogador, nome, descrição, "DISPOSITIVO", ativa, área_efeito, tempo_ativação, tempo_recarga, duração, custo_base, grad, feitos, extras, falhas]) connection.commit() connection.close() """-------------------------------------------------------------------------""" # Retorna uma lista de informações básicas de uma ficha de personagem. def get_informação_básica(id_grupo, id_jogador): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''SELECT Nome, Nivel_de_Poder, Identidade_Civil, Sexo, Idade FROM FICHAS WHERE Id_grupo = %s AND Id_jogador = %s;''', id_grupo, id_jogador) result["nome"], result["nivel"], result["ident"], result["sexo"], result["idade"] = cursor.fetchone() for index, value in result.iteritems(): if value == "": result[index] = "[NÃO INFORMADO]" if index == "sexo": if result[index] == 'M': result[index] = '♂' else: result[index] = '♀' connection.close() return result """-------------------------------------------------------------------------""" # Exclui uma entrada da tabela FICHAS def del_ficha(id_grupo, id_jogador): connection = psycopg2.connect(database) cursor = connection.cursor() cursor.execute('''DELETE FROM FICHAS WHERE Id_grupo = %s AND Id_Jogador = %s;''', id_grupo, id_jogador)
41.59009
105
0.490307
[ "MIT" ]
felipedeoliveirarios/Atrix
database.py
9,300
Python
""" neuropredict : easy and comprehensive predictive analysis. """ from __future__ import print_function __all__ = ['run', 'cli', 'get_parser'] import argparse import os import sys import textwrap import traceback import warnings import matplotlib import matplotlib.pyplot as plt from sys import version_info from os.path import join as pjoin, exists as pexists, abspath, realpath, basename import numpy as np from pyradigm import MLDataset if version_info.major > 2: # the order of import is very important to avoid circular imports from neuropredict import __version__ from neuropredict import config_neuropredict as cfg from neuropredict import rhst, visualize from neuropredict.freesurfer import aseg_stats_subcortical, aseg_stats_whole_brain from neuropredict.io import get_metadata, get_features, get_metadata_in_pyradigm, \ get_data_matrix, get_dir_of_dirs, get_pyradigm, get_arff, saved_dataset_matches from neuropredict.utils import check_paths, uniq_combined_name, check_num_procs, sub_group_identifier, \ save_options, load_options, validate_feature_selection_size, make_dataset_filename, not_unspecified else: raise NotImplementedError('neuropredict requires Python 3+.') def get_parser(): "Parser to specify arguments and their defaults." parser = argparse.ArgumentParser(prog="neuropredict", formatter_class=argparse.RawTextHelpFormatter, description='Easy, standardized and comprehensive predictive analysis.') help_text_fs_dir = textwrap.dedent(""" Absolute path to ``SUBJECTS_DIR`` containing the finished runs of Freesurfer parcellation Each subject will be queried after its ID in the metadata file. E.g. ``--fs_subject_dir /project/freesurfer_v5.3`` \n \n """) help_text_user_defined_folder = textwrap.dedent(""" List of absolute paths to user's own features. Format: Each of these folders contains a separate folder for each subject (named after its ID in the metadata file) containing a file called features.txt with one number per line. All the subjects (in a given folder) must have the number of features (#lines in file). Different parent folders (describing one feature set) can have different number of features for each subject, but they must all have the same number of subjects (folders) within them. Names of each folder is used to annotate the results in visualizations. Hence name them uniquely and meaningfully, keeping in mind these figures will be included in your papers. For example, .. parsed-literal:: --user_feature_paths /project/fmri/ /project/dti/ /project/t1_volumes/ Only one of ``--pyradigm_paths``, ``user_feature_paths``, ``data_matrix_path`` or ``arff_paths`` options can be specified. \n \n """) help_text_pyradigm_paths = textwrap.dedent(""" Path(s) to pyradigm datasets. Each path is self-contained dataset identifying each sample, its class and features. \n \n """) help_text_data_matrix = textwrap.dedent(""" List of absolute paths to text files containing one matrix of size N x p (num_samples x num_features). Each row in the data matrix file must represent data corresponding to sample in the same row of the meta data file (meta data file and data matrix must be in row-wise correspondence). Name of this file will be used to annotate the results and visualizations. E.g. ``--data_matrix_paths /project/fmri.csv /project/dti.csv /project/t1_volumes.csv `` Only one of ``--pyradigm_paths``, ``user_feature_paths``, ``data_matrix_path`` or ``arff_paths`` options can be specified. File format could be - a simple comma-separated text file (with extension .csv or .txt): which can easily be read back with numpy.loadtxt(filepath, delimiter=',') or - a numpy array saved to disk (with extension .npy or .numpy) that can read in with numpy.load(filepath). One could use ``numpy.savetxt(data_array, delimiter=',')`` or ``numpy.save(data_array)`` to save features. File format is inferred from its extension. \n \n """) help_text_arff_paths = textwrap.dedent(""" List of paths to files saved in Weka's ARFF dataset format. Note: - this format does NOT allow IDs for each subject. - given feature values are saved in text format, this can lead to large files with high-dimensional data, compared to numpy arrays saved to disk in binary format. More info: https://www.cs.waikato.ac.nz/ml/weka/arff.html \n \n """) help_text_positive_class = textwrap.dedent(""" Name of the positive class (e.g. Alzheimers, MCI etc) to be used in calculation of area under the ROC curve. Applicable only for binary classification experiments. Default: class appearing last in order specified in metadata file. \n \n """) help_text_train_perc = textwrap.dedent(""" Percentage of the smallest class to be reserved for training. Must be in the interval [0.01 0.99]. If sample size is sufficiently big, we recommend 0.5. If sample size is small, or class imbalance is high, choose 0.8. \n \n """) help_text_num_rep_cv = textwrap.dedent(""" Number of repetitions of the repeated-holdout cross-validation. The larger the number, more stable the estimates will be. \n \n """) help_text_sub_groups = textwrap.dedent(""" This option allows the user to study different combinations of classes in a multi-class (N>2) dataset. For example, in a dataset with 3 classes CN, FTD and AD, two studies of pair-wise combinations can be studied separately with the following flag ``--sub_groups CN,FTD CN,AD``. This allows the user to focus on few interesting subgroups depending on their dataset/goal. Format: Different subgroups must be separated by space, and each sub-group must be a comma-separated list of class names defined in the meta data file. Hence it is strongly recommended to use class names without any spaces, commas, hyphens and special characters, and ideally just alphanumeric characters separated by underscores. Any number of subgroups can be specified, but each subgroup must have atleast two distinct classes. Default: ``'all'``, leading to inclusion of all available classes in a all-vs-all multi-class setting. \n \n """) help_text_metadata_file = textwrap.dedent(""" Abs path to file containing metadata for subjects to be included for analysis. At the minimum, each subject should have an id per row followed by the class it belongs to. E.g. .. parsed-literal:: sub001,control sub002,control sub003,disease sub004,disease \n \n """) help_text_feature_selection = textwrap.dedent("""Number of features to select as part of feature selection. Options: - 'tenth' - 'sqrt' - 'log2' - 'all' Default: \'tenth\' of the number of samples in the training set. For example, if your dataset has 90 samples, you chose 50 percent for training (default), then Y will have 90*.5=45 samples in training set, leading to 5 features to be selected for taining. If you choose a fixed integer, ensure all the feature sets under evaluation have atleast that many features. \n \n """) help_text_gs_level = textwrap.dedent(""" Flag to specify the level of grid search during hyper-parameter optimization on the training set. Allowed options are : 'none', 'light' and 'exhaustive', in the order of how many values/values will be optimized. More parameters and more values demand more resources and much longer time for optimization. The 'light' option tries to "folk wisdom" to try least number of values (no more than one or two), for the parameters for the given classifier. (e.g. a lage number say 500 trees for a random forest optimization). The 'light' will be the fastest and should give a "rough idea" of predictive performance. The 'exhaustive' option will try to most parameter values for the most parameters that can be optimized. """) help_text_make_vis = textwrap.dedent(""" Option to make visualizations from existing results in the given path. This is helpful when neuropredict failed to generate result figures automatically e.g. on a HPC cluster, or another environment when DISPLAY is either not available. """) help_text_atlas = textwrap.dedent(""" Name of the atlas to use for visualization. Default: fsaverage, if available. \n \n """) help_text_num_cpus = textwrap.dedent(""" Number of CPUs to use to parallelize CV repetitions. Default : 4. Number of CPUs will be capped at the number available on the machine if higher is requested. \n \n """) help_text_out_dir = textwrap.dedent(""" Output folder to store gathered features & results. \n \n """) help_classifier = textwrap.dedent(""" String specifying one of the implemented classifiers. (Classifiers are carefully chosen to allow for the comprehensive report provided by neuropredict). Default: 'RandomForestClassifier' """) help_feat_select_method = textwrap.dedent(""" Feature selection method to apply prior to training the classifier. Default: 'VarianceThreshold', removing features with 0.001 percent of lowest variance (zeros etc). """) parser.add_argument("-m", "--meta_file", action="store", dest="meta_file", default=None, required=False, help=help_text_metadata_file) parser.add_argument("-o", "--out_dir", action="store", dest="out_dir", required=False, help=help_text_out_dir, default=None ) parser.add_argument("-f", "--fs_subject_dir", action="store", dest="fs_subject_dir", default=None, help=help_text_fs_dir) user_defined = parser.add_argument_group(title='Input data and formats', description='Only one of the following types can be specified.') user_defined.add_argument("-y", "--pyradigm_paths", action="store", dest="pyradigm_paths", nargs='+', # to allow for multiple features default=None, help=help_text_pyradigm_paths) user_defined.add_argument("-u", "--user_feature_paths", action="store", dest="user_feature_paths", nargs='+', # to allow for multiple features default=None, help=help_text_user_defined_folder) user_defined.add_argument("-d", "--data_matrix_paths", action="store", dest="data_matrix_paths", nargs='+', default=None, help=help_text_data_matrix) user_defined.add_argument("-a", "--arff_paths", action="store", dest="arff_paths", nargs='+', default=None, help=help_text_arff_paths) cv_args_group = parser.add_argument_group(title='Cross-validation', description='Parameters related to training and optimization during cross-validation') cv_args_group.add_argument("-p", "--positive_class", action="store", dest="positive_class", default=None, help=help_text_positive_class) cv_args_group.add_argument("-t", "--train_perc", action="store", dest="train_perc", default=cfg.default_train_perc, help=help_text_train_perc) cv_args_group.add_argument("-n", "--num_rep_cv", action="store", dest="num_rep_cv", default=cfg.default_num_repetitions, help=help_text_num_rep_cv) cv_args_group.add_argument("-k", "--num_features_to_select", dest="num_features_to_select", action="store", default=cfg.default_num_features_to_select, help=help_text_feature_selection) cv_args_group.add_argument("-sg", "--sub_groups", action="store", dest="sub_groups", nargs="*", default="all", help=help_text_sub_groups) cv_args_group.add_argument("-g", "--gs_level", action="store", dest="gs_level", default="light", help=help_text_gs_level, choices=cfg.GRIDSEARCH_LEVELS) pipeline_group = parser.add_argument_group(title='Predictive Model', description='Parameters related to pipeline comprising the predictive model') pipeline_group.add_argument("-fs", "--feat_select_method", action="store", dest="feat_select_method", default=cfg.default_feat_select_method, help=help_feat_select_method, choices=cfg.feature_selection_choices) pipeline_group.add_argument("-e", "--classifier", action="store", dest="classifier", default=cfg.default_classifier, help=help_classifier, choices=cfg.classifier_choices) vis_args = parser.add_argument_group(title='Visualization', description='Parameters related to generating visualizations') vis_args.add_argument("-z", "--make_vis", action="store", dest="make_vis", default=None, help=help_text_make_vis) comp_args = parser.add_argument_group(title='Computing', description='Parameters related to computations/debugging') comp_args.add_argument("-c", "--num_procs", action="store", dest="num_procs", default=cfg.DEFAULT_NUM_PROCS, help=help_text_num_cpus) comp_args.add_argument('-v', '--version', action='version', version='%(prog)s {version}'.format(version=__version__)) return parser def organize_inputs(user_args): """ Validates the input features specified and returns organized list of paths and readers. Parameters ---------- user_args : ArgParse object Various options specified by the user. Returns ------- user_feature_paths : list List of paths to specified input features user_feature_type : str String identifying the type of user-defined input fs_subject_dir : str Path to freesurfer subject directory, if supplied. """ atleast_one_feature_specified = False # specifying pyradigm avoids the need for separate meta data file meta_data_supplied = False meta_data_format = None if not_unspecified(user_args.fs_subject_dir): fs_subject_dir = abspath(user_args.fs_subject_dir) if not pexists(fs_subject_dir): raise IOError("Given Freesurfer directory doesn't exist.") atleast_one_feature_specified = True else: fs_subject_dir = None # ensuring only one type is specified mutually_excl_formats = ['user_feature_paths', 'data_matrix_paths', 'pyradigm_paths', 'arff_paths'] not_none_count = 0 for format in mutually_excl_formats: if not_unspecified(getattr(user_args, format)): not_none_count = not_none_count + 1 if not_none_count > 1: raise ValueError('Only one of the following formats can be specified:\n{}'.format(mutually_excl_formats)) if not_unspecified(user_args.user_feature_paths): user_feature_paths = check_paths(user_args.user_feature_paths, path_type='user defined (dir_of_dirs)') atleast_one_feature_specified = True user_feature_type = 'dir_of_dirs' elif not_unspecified(user_args.data_matrix_paths): user_feature_paths = check_paths(user_args.data_matrix_paths, path_type='data matrix') atleast_one_feature_specified = True user_feature_type = 'data_matrix' elif not_unspecified(user_args.pyradigm_paths): user_feature_paths = check_paths(user_args.pyradigm_paths, path_type='pyradigm') atleast_one_feature_specified = True meta_data_supplied = user_feature_paths[0] meta_data_format = 'pyradigm' user_feature_type = 'pyradigm' elif not_unspecified(user_args.arff_paths): user_feature_paths = check_paths(user_args.arff_paths, path_type='ARFF') atleast_one_feature_specified = True user_feature_type = 'arff' meta_data_supplied = user_feature_paths[0] meta_data_format = 'arff' else: user_feature_paths = None user_feature_type = None # map in python 3 returns a generator, not a list, so len() wouldnt work if not isinstance(user_feature_paths, list): user_feature_paths = list(user_feature_paths) if not atleast_one_feature_specified: raise ValueError('Atleast one method specifying features must be specified. ' 'It can be a path(s) to pyradigm dataset, matrix file, user-defined folder or a Freesurfer subject directory.') return user_feature_paths, user_feature_type, fs_subject_dir, meta_data_supplied, meta_data_format def parse_args(): """Parser/validator for the cmd line args.""" parser = get_parser() if len(sys.argv) < 2: print('Too few arguments!') parser.print_help() parser.exit(1) # parsing try: user_args = parser.parse_args() except: parser.exit(1) if len(sys.argv) == 3 and not_unspecified(user_args.make_vis): out_dir = realpath(user_args.make_vis) res_path = pjoin(out_dir,cfg.file_name_results) if pexists(out_dir) and pexists(res_path): print('\n\nSaving the visualizations to \n{}'.format(out_dir)) make_visualizations(res_path, out_dir) sys.exit(0) else: raise ValueError('Given folder does not exist, or has no results!') user_feature_paths, user_feature_type, fs_subject_dir, meta_data_path, meta_data_format = organize_inputs(user_args) if not meta_data_path: if user_args.meta_file is not None: meta_file = abspath(user_args.meta_file) if not pexists(meta_file): raise IOError("Meta data file doesn't exist.") else: raise ValueError('Metadata file must be provided when not using pyradigm/ARFF inputs.') sample_ids, classes = get_metadata(meta_file) else: print('Using meta data from:\n{}'.format(meta_data_path)) sample_ids, classes = get_metadata_in_pyradigm(meta_data_path, meta_data_format) if user_args.out_dir is not None: out_dir = realpath(user_args.out_dir) else: out_dir = pjoin(realpath(os.getcwd()), cfg.output_dir_default) try: os.makedirs(out_dir, exist_ok=True) except: raise IOError('Output folder could not be created.') train_perc = np.float32(user_args.train_perc) if not ( 0.01 <= train_perc <= 0.99): raise ValueError("Training percentage {} out of bounds - must be >= 0.01 and <= 0.99".format(train_perc)) num_rep_cv = np.int64(user_args.num_rep_cv) if num_rep_cv < 10: raise ValueError("Atleast 10 repetitions of CV is recommened.") num_procs = check_num_procs(user_args.num_procs) class_set, subgroups, positive_class = validate_class_set(classes, user_args.sub_groups, user_args.positive_class) feature_selection_size = validate_feature_selection_size(user_args.num_features_to_select) grid_search_level = user_args.gs_level.lower() if grid_search_level not in cfg.GRIDSEARCH_LEVELS: raise ValueError('Unrecognized level of grid search. Valid choices: {}'.format(cfg.GRIDSEARCH_LEVELS)) classifier = user_args.classifier.lower() feat_select_method = user_args.feat_select_method.lower() # saving the validated and expanded values to disk for later use. options_to_save = [sample_ids, classes, out_dir, user_feature_paths, user_feature_type, fs_subject_dir, train_perc, num_rep_cv, positive_class, subgroups, feature_selection_size, num_procs, grid_search_level, classifier, feat_select_method] options_path = save_options(options_to_save, out_dir) return sample_ids, classes, out_dir, options_path, \ user_feature_paths, user_feature_type, fs_subject_dir, \ train_perc, num_rep_cv, \ positive_class, subgroups, \ feature_selection_size, num_procs, \ grid_search_level, classifier, feat_select_method def make_visualizations(results_file_path, out_dir, options_path=None): """ Produces the performance visualizations/comparisons from the cross-validation results. Parameters ---------- results_file_path : str Path to file containing results produced by `rhst` out_dir : str Path to a folder to store results. """ results_dict = rhst.load_results_dict(results_file_path) # using shorter names for readability accuracy_balanced = results_dict['accuracy_balanced'] method_names = results_dict['method_names'] num_classes = results_dict['num_classes'] class_sizes = results_dict['class_sizes'] confusion_matrix = results_dict['confusion_matrix'] class_order = results_dict['class_set'] feature_importances_rf = results_dict['feature_importances_rf'] feature_names = results_dict['feature_names'] num_times_misclfd = results_dict['num_times_misclfd'] num_times_tested = results_dict['num_times_tested'] feature_importances_available = True if options_path is not None: user_options = load_options(out_dir, options_path) if user_options['classifier_name'].lower() not in cfg.clfs_with_feature_importance: feature_importances_available = False else: # check if the all values are NaN unusable = [ np.all(np.isnan(method_fi.flatten())) for method_fi in feature_importances_rf ] feature_importances_available = not np.all(unusable) try: balacc_fig_path = pjoin(out_dir, 'balanced_accuracy') visualize.metric_distribution(accuracy_balanced, method_names, balacc_fig_path, class_sizes, num_classes, "Balanced Accuracy") confmat_fig_path = pjoin(out_dir, 'confusion_matrix') visualize.confusion_matrices(confusion_matrix, class_order, method_names, confmat_fig_path) cmp_misclf_fig_path = pjoin(out_dir, 'compare_misclf_rates') if num_classes > 2: visualize.compare_misclf_pairwise(confusion_matrix, class_order, method_names, cmp_misclf_fig_path) elif num_classes == 2: visualize.compare_misclf_pairwise_parallel_coord_plot(confusion_matrix, class_order, method_names, cmp_misclf_fig_path) if feature_importances_available: featimp_fig_path = pjoin(out_dir, 'feature_importance') visualize.feature_importance_map(feature_importances_rf, method_names, featimp_fig_path, feature_names) else: print('\nCurrent predictive model does not provide feature importance values. Skipping them.') misclf_out_path = pjoin(out_dir, 'misclassified_subjects') visualize.freq_hist_misclassifications(num_times_misclfd, num_times_tested, method_names, misclf_out_path) except: traceback.print_exc() warnings.warn('Error generating the visualizations! Skipping ..') # cleaning up plt.close('all') return def validate_class_set(classes, subgroups, positive_class=None): "Ensures class names are valid and sub-groups exist." class_set = list(set(classes.values())) sub_group_list = list() if subgroups != 'all': if isinstance(subgroups, str): subgroups = [ subgroups, ] for comb in subgroups: cls_list = comb.split(',') # ensuring each subgroup has atleast two classes if len(set(cls_list)) < 2: raise ValueError('This subgroup {} does not contain two unique classes.'.format(comb)) # verify each of them were defined in meta for cls in cls_list: if cls not in class_set: raise ValueError("Class {} in combination {} " "does not exist in meta data.".format(cls, comb)) sub_group_list.append(cls_list) else: # using all classes sub_group_list.append(class_set) # the following loop is required to preserve original order # this does not: class_order_in_meta = list(set(classes.values())) class_order_in_meta = list() for x in class_set: if x not in class_order_in_meta: class_order_in_meta.append(x) num_classes = len(class_order_in_meta) if num_classes < 2: raise ValueError("Atleast two classes are required for predictive analysis! " "Only one given ({})".format(set(classes.values()))) if num_classes == 2: if not_unspecified(positive_class): if positive_class not in class_order_in_meta: raise ValueError('Positive class specified does not exist in meta data.\n' 'Choose one of {}'.format(class_order_in_meta)) print('Positive class specified for AUC calculation: {}'.format(positive_class)) else: positive_class = class_order_in_meta[-1] print('Positive class inferred for AUC calculation: {}'.format(positive_class)) return class_set, sub_group_list, positive_class def import_datasets(method_list, out_dir, subjects, classes, feature_path, feature_type='dir_of_dirs'): """ Imports all the specified feature sets and organizes them into datasets. Parameters ---------- method_list : list of callables Set of predefined methods returning a vector of features for a given sample id and location out_dir : str Path to the output folder subjects : list of str List of sample ids classes : dict Dict identifying the class for each sample id in the dataset. feature_path : list of str List of paths to the root directory containing the features (pre- or user-defined). Must be of same length as method_list feature_type : str a string identifying the structure of feature set. Choices = ('dir_of_dirs', 'data_matrix') Returns ------- method_names : list of str List of method names used for annotation. dataset_paths_file : str Path to the file containing paths to imported feature sets. """ def clean_str(string): return ' '.join(string.strip().split(' _-:\n\r\t')) method_names = list() outpath_list = list() for mm, cur_method in enumerate(method_list): if cur_method in [get_dir_of_dirs]: method_name = basename(feature_path[mm]) elif cur_method in [get_data_matrix]: method_name = os.path.splitext(basename(feature_path[mm]))[0] elif cur_method in [get_pyradigm]: if feature_type in ['pyradigm']: loaded_dataset = MLDataset(filepath=feature_path[mm]) else: raise ValueError('Invalid state of the program!') if len(loaded_dataset.description) > 1: method_name = loaded_dataset.description else: method_name = basename(feature_path[mm]) method_names.append(clean_str(method_name)) if saved_dataset_matches(loaded_dataset, subjects, classes): outpath_list.append(feature_path[mm]) continue else: raise ValueError('supplied pyradigm dataset does not match samples in the meta data.') elif cur_method in [get_arff]: loaded_dataset = MLDataset(arff_path=feature_path[mm]) if len(loaded_dataset.description) > 1: method_name = loaded_dataset.description else: method_name = basename(feature_path[mm]) method_names.append(clean_str(method_name)) out_name = make_dataset_filename(method_name) outpath_dataset = pjoin(out_dir, out_name) loaded_dataset.save(outpath_dataset) outpath_list.append(outpath_dataset) continue else: # adding an index for an even more unique identification # method_name = '{}_{}'.format(cur_method.__name__,mm) method_name = cur_method.__name__ method_names.append(clean_str(method_name)) out_name = make_dataset_filename(method_name) outpath_dataset = pjoin(out_dir, out_name) if not saved_dataset_matches(outpath_dataset, subjects, classes): # noinspection PyTypeChecker outpath_dataset = get_features(subjects, classes, feature_path[mm], out_dir, out_name, cur_method, feature_type) outpath_list.append(outpath_dataset) combined_name = uniq_combined_name(method_names) dataset_paths_file = pjoin(out_dir, 'datasetlist.' + combined_name + '.txt') with open(dataset_paths_file, 'w') as dpf: dpf.writelines('\n'.join(outpath_list)) return method_names, dataset_paths_file def make_method_list(fs_subject_dir, user_feature_paths, user_feature_type='dir_of_dirs'): """ Returns an organized list of feature paths and methods to read in features. Parameters ---------- fs_subject_dir : str user_feature_paths : list of str user_feature_type : str Returns ------- feature_dir : list method_list : list """ freesurfer_readers = [aseg_stats_subcortical, aseg_stats_whole_brain] userdefined_readers = {'dir_of_dirs': get_dir_of_dirs, 'data_matrix': get_data_matrix, 'pyradigm': get_pyradigm, 'arff': get_arff} feature_dir = list() method_list = list() if not_unspecified(user_feature_paths): if user_feature_type not in userdefined_readers: raise NotImplementedError("Invalid feature type or its reader is not implemented yet!") for upath in user_feature_paths: feature_dir.append(upath) method_list.append(userdefined_readers[user_feature_type]) if not_unspecified(fs_subject_dir): for fsrdr in freesurfer_readers: feature_dir.append(fs_subject_dir) method_list.append(fsrdr) if len(method_list) != len(feature_dir): raise ValueError('Invalid specification for features!') if len(method_list) < 1: raise ValueError('Atleast one feature set must be specified.') print("\nRequested features for analysis:") for mm, method in enumerate(method_list): print("{} from {}".format(method.__name__, feature_dir[mm])) return feature_dir, method_list def prepare_and_run(subjects, classes, out_dir, options_path, user_feature_paths, user_feature_type, fs_subject_dir, train_perc, num_rep_cv, positive_class, sub_group_list, feature_selection_size, num_procs, grid_search_level, classifier, feat_select_method): "Organizes the inputs and prepares them for CV" feature_dir, method_list = make_method_list(fs_subject_dir, user_feature_paths, user_feature_type) method_names, dataset_paths_file = import_datasets(method_list, out_dir, subjects, classes, feature_dir, user_feature_type) # iterating through the given set of subgroups for sub_group in sub_group_list: print('{}\nProcessing subgroup : {}\n{}'.format('-'*80, sub_group, '-'*80)) out_dir_sg = pjoin(out_dir, sub_group_identifier(sub_group)) results_file_path = rhst.run(dataset_paths_file, method_names, out_dir_sg, train_perc=train_perc, num_repetitions=num_rep_cv, positive_class=positive_class, sub_group=sub_group, feat_sel_size=feature_selection_size, num_procs=num_procs, grid_search_level=grid_search_level, classifier_name=classifier, feat_select_method=feat_select_method, options_path=options_path) print('\n\nSaving the visualizations to \n{}'.format(out_dir)) make_visualizations(results_file_path, out_dir_sg, options_path) print('\n') return def cli(): """ Main entry point. """ subjects, classes, out_dir, options_path, user_feature_paths, user_feature_type, \ fs_subject_dir, train_perc, num_rep_cv, positive_class, sub_group_list, \ feature_selection_size, num_procs, grid_search_level, classifier, feat_select_method = parse_args() print('Running neuropredict {}'.format(__version__)) prepare_and_run(subjects, classes, out_dir, options_path, user_feature_paths, user_feature_type, fs_subject_dir, train_perc, num_rep_cv, positive_class, sub_group_list, feature_selection_size, num_procs, grid_search_level, classifier, feat_select_method) return def run(feature_sets, feature_type=cfg.default_feature_type, meta_data=None, output_dir=None, pipeline=None, train_perc=0.5, num_repetitions=200, positive_class=None, feat_sel_size=cfg.default_num_features_to_select, sub_groups='all', grid_search_level=cfg.GRIDSEARCH_LEVEL_DEFAULT, num_procs=2): """ Generate comprehensive report on the predictive performance for different feature sets and statistically compare them. Main entry point for API access. Parameters ---------- feature_sets : list The input can be specified in either of the following ways: - list of paths to pyradigm datasets saved on disk - path to a file containing list of paths (each line containing path to a valid MLDataset) - list of MLDatasets that are already loaded - list of tuples (to specify multiple features), each element containing (X, y) i.e. data and target labels - a single tuple containing (X, y) i.e. data and target labels - list of paths to CSV files, each containing one type of features. When specifying multiple sets of input features, ensure: - all of them contain the same number of samples - each sample belongs to same class across all feature sets. feature_type : str String identifying the type of features as described above. It could be: 'list_of_pyradigm_paths', 'pyradigm_list', 'list_of_tuples', 'tuple', 'list_of_csv_paths' meta_data : multiple The meta data can be specified in either of the following ways: - a path to a meta data file (see :doc:`features` page) - a dict keyed in by sample IDs with values representing their classes. - None, if meta data is already specified in ``feature_sets`` input (e.g. with pyradigms). pipeline : str or object If a string, it identifying one of the implemented classifiers e.g. 'RandomForestClassifier' or 'ExtraTreesClassifier' If an object, it must be a sciki-learn pipeline describing the sequence of steps. This is typically a set of feature selections or dimensionality reduction steps followed by an estimator (classifier). See http://scikit-learn.org/stable/modules/pipeline.html#pipeline for more details. Default: None, which leads to the selection of a Random Forest classifier, with robust scaling, followed by removal of low variance features. method_names : list A list of names to denote the different feature sets out_results_dir : str Path to output directory to save the cross validation results to. If not specified, a new directory named 'neuropredict' will be created in the current directory. train_perc : float, optional Percetange of subjects to train the classifier on. The percentage is applied to the size of the smallest class to estimate the number of subjects from each class to be reserved for training. The smallest class is chosen to avoid class-imbalance in the training set. Default: 0.8 (80%). positive_class : str Name of the class to be treated as positive in calculation of AUC feat_sel_size : str or int Number of features to select as part of feature selection. Options: - 'tenth' - 'sqrt' - 'log2' - 'all' Default: \'tenth\' of the number of samples in the training set. For example, if your dataset has 90 samples, you chose 50 percent for training (default), then Y will have 90*.5=45 samples in training set, leading to 5 features to be selected for taining. If you choose a fixed integer, ensure all the feature sets under evaluation have atleast that many features. num_repetitions : int, optional Number of repetitions of cross-validation estimation. Default: 200. num_procs : int, optional Number of CPUs to use to parallelize CV repetitions. Default : 4. Number of CPUs will be capped at the number available on the machine if higher is requested. sub_groups : list This option allows the user to study different combinations of classes in a multi-class (N>2) dataset. For example, in a dataset with 3 classes CN, FTD and AD, two studies of pair-wise combinations can be studied separately with the following flag ``--sub_groups CN,FTD CN,AD``. This allows the user to focus on few interesting subgroups depending on their dataset/goal. Format: Different subgroups must be separated by space, and each sub-group must be a comma-separated list of class names defined in the meta data file. Hence it is strongly recommended to use class names without any spaces, commas, hyphens and special characters, and ideally just alphanumeric characters separated by underscores. Any number of subgroups can be specified, but each subgroup must have atleast two distinct classes. Default: ``'all'``, leading to inclusion of all available classes in a all-vs-all multi-class setting. grid_search_level : str Flag to specify the level of grid search during hyper-parameter optimization on the training set. Allowed options are : 'none', 'light' and 'exhaustive', in the order of how many values/values will be optimized. More parameters and more values demand more resources and much longer time for optimization. The 'light' option tries to "folk wisdom" to try least number of values (no more than one or two), for the parameters for the given classifier. (e.g. a lage number say 500 trees for a random forest optimization). The 'light' will be the fastest and should give a "rough idea" of predictive performance. The 'exhaustive' option will try to most parameter values for the most parameters that can be optimized. Returns ------- results_path : str Path to pickle file containing full set of CV results. """ raise NotImplementedError return if __name__ == '__main__': cli()
43.069742
438
0.673227
[ "MIT" ]
dinga92/neuropredict
neuropredict/run_workflow.py
40,141
Python
from typing import Any, Callable, List, Optional, Tuple import gym import numpy as np from tianshou.env.worker import EnvWorker try: import ray except ImportError: pass class _SetAttrWrapper(gym.Wrapper): def set_env_attr(self, key: str, value: Any) -> None: setattr(self.env, key, value) def get_env_attr(self, key: str) -> Any: return getattr(self.env, key) class RayEnvWorker(EnvWorker): """Ray worker used in RayVectorEnv.""" def __init__(self, env_fn: Callable[[], gym.Env]) -> None: self.env = ray.remote(_SetAttrWrapper).options(num_cpus=0).remote(env_fn()) super().__init__(env_fn) def get_env_attr(self, key: str) -> Any: return ray.get(self.env.get_env_attr.remote(key)) def set_env_attr(self, key: str, value: Any) -> None: ray.get(self.env.set_env_attr.remote(key, value)) def reset(self) -> Any: return ray.get(self.env.reset.remote()) @staticmethod def wait( # type: ignore workers: List["RayEnvWorker"], wait_num: int, timeout: Optional[float] = None ) -> List["RayEnvWorker"]: results = [x.result for x in workers] ready_results, _ = ray.wait(results, num_returns=wait_num, timeout=timeout) return [workers[results.index(result)] for result in ready_results] def send_action(self, action: np.ndarray) -> None: # self.action is actually a handle self.result = self.env.step.remote(action) def get_result(self) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: return ray.get(self.result) def seed(self, seed: Optional[int] = None) -> List[int]: super().seed(seed) return ray.get(self.env.seed.remote(seed)) def render(self, **kwargs: Any) -> Any: return ray.get(self.env.render.remote(**kwargs)) def close_env(self) -> None: ray.get(self.env.close.remote())
30.365079
85
0.652378
[ "MIT" ]
BIT-UAV-JJJ/tianshou
tianshou/env/worker/ray.py
1,913
Python
""" Base settings for jackergram project. For more information on this file, see https://docs.djangoproject.com/en/dev/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/dev/ref/settings/ """ import environ ROOT_DIR = environ.Path(__file__) - 3 # (jackergram/config/settings/base.py - 3 = jackergram/) APPS_DIR = ROOT_DIR.path('jackergram') # Load operating system environment variables and then prepare to use them env = environ.Env() # .env file, should load only in development environment READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) if READ_DOT_ENV_FILE: # Operating System Environment variables have precedence over variables defined in the .env file, # that is to say variables from the .env files will only be used if not defined # as environment variables. env_file = str(ROOT_DIR.path('.env')) print('Loading : {}'.format(env_file)) env.read_env(env_file) print('The .env file has been loaded. See base.py for more information') # APP CONFIGURATION # ------------------------------------------------------------------------------ DJANGO_APPS = [ # Default Django apps: 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', # Useful template tags: # 'django.contrib.humanize', # Admin 'django.contrib.admin', ] THIRD_PARTY_APPS = [ 'crispy_forms', # Form layouts 'allauth', # registration 'allauth.account', # registration 'allauth.socialaccount', # registration ] # Apps specific for this project go here. LOCAL_APPS = [ # custom users app 'jackergram.users.apps.UsersConfig', # Your stuff: custom apps go here ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#installed-apps INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIDDLEWARE CONFIGURATION # ------------------------------------------------------------------------------ MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # MIGRATIONS CONFIGURATION # ------------------------------------------------------------------------------ MIGRATION_MODULES = { 'sites': 'jackergram.contrib.sites.migrations' } # DEBUG # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = env.bool('DJANGO_DEBUG', False) # FIXTURE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-FIXTURE_DIRS FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) # EMAIL CONFIGURATION # ------------------------------------------------------------------------------ EMAIL_BACKEND = env('DJANGO_EMAIL_BACKEND', default='django.core.mail.backends.smtp.EmailBackend') # MANAGER CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = [ ("""jacker""", '[email protected]'), ] # See: https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS # DATABASE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#databases # Uses django-environ to accept uri format # See: https://django-environ.readthedocs.io/en/latest/#supported-types DATABASES = { 'default': env.db('DATABASE_URL', default='postgres:///jackergram'), } DATABASES['default']['ATOMIC_REQUESTS'] = True # GENERAL CONFIGURATION # ------------------------------------------------------------------------------ # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. TIME_ZONE = 'Asia/Seoul' # See: https://docs.djangoproject.com/en/dev/ref/settings/#language-code LANGUAGE_CODE = 'en-us' # See: https://docs.djangoproject.com/en/dev/ref/settings/#site-id SITE_ID = 1 # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-i18n USE_I18N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-l10n USE_L10N = True # See: https://docs.djangoproject.com/en/dev/ref/settings/#use-tz USE_TZ = True # TEMPLATE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND 'BACKEND': 'django.template.backends.django.DjangoTemplates', # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug 'debug': DEBUG, # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', # Your stuff: custom template context processors go here ], }, }, ] # See: http://django-crispy-forms.readthedocs.io/en/latest/install.html#template-packs CRISPY_TEMPLATE_PACK = 'bootstrap4' # STATIC FILE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(ROOT_DIR('staticfiles')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # MEDIA CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR('media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' # URL Configuration # ------------------------------------------------------------------------------ ROOT_URLCONF = 'config.urls' # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'config.wsgi.application' # PASSWORD STORAGE SETTINGS # ------------------------------------------------------------------------------ # See https://docs.djangoproject.com/en/dev/topics/auth/passwords/#using-argon2-with-django PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', 'django.contrib.auth.hashers.BCryptPasswordHasher', ] # PASSWORD VALIDATION # https://docs.djangoproject.com/en/dev/ref/settings/#auth-password-validators # ------------------------------------------------------------------------------ AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # AUTHENTICATION CONFIGURATION # ------------------------------------------------------------------------------ AUTHENTICATION_BACKENDS = [ 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend', ] # Some really nice defaults ACCOUNT_AUTHENTICATION_METHOD = 'username' ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_EMAIL_VERIFICATION = 'mandatory' ACCOUNT_ALLOW_REGISTRATION = env.bool('DJANGO_ACCOUNT_ALLOW_REGISTRATION', True) ACCOUNT_ADAPTER = 'jackergram.users.adapters.AccountAdapter' SOCIALACCOUNT_ADAPTER = 'jackergram.users.adapters.SocialAccountAdapter' # Custom user app defaults # Select the correct user model AUTH_USER_MODEL = 'users.User' LOGIN_REDIRECT_URL = 'users:redirect' LOGIN_URL = 'account_login' # SLUGLIFIER AUTOSLUG_SLUGIFY_FUNCTION = 'slugify.slugify' # Location of root django.contrib.admin URL, use {% url 'admin:index' %} ADMIN_URL = r'^admin/' # Your common stuff: Below this line define 3rd party library settings # ------------------------------------------------------------------------------
36.956522
101
0.627255
[ "MIT" ]
jmk2729/jackergram
config/settings/base.py
10,200
Python