File size: 4,755 Bytes
2334ed3 c693f0b eb8f7c4 2334ed3 9a96960 2334ed3 9a96960 2334ed3 680fb78 2334ed3 9d28e90 2334ed3 4b9c3a3 2554ac6 0acb356 2f2017c 0acb356 8b3e836 2f2017c 0acb356 8b3e836 2f2017c 8b3e836 2f2017c 0acb356 2f2017c d7c586c 60bf99f d7c586c 4fed6f6 d7c586c 2334ed3 680fb78 2334ed3 a9b40cc 2f2017c 2334ed3 680fb78 2334ed3 680fb78 6830819 2f2017c a9b40cc 87d37ae a9b40cc 87d37ae 4fed6f6 a9b40cc 6830819 599a4c4 4fed6f6 a9b40cc 87d37ae 6830819 a9b40cc 6830819 680fb78 2334ed3 a7bb4e7 680fb78 2334ed3 a7bb4e7 2334ed3 a7bb4e7 2334ed3 a7bb4e7 2334ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import re
import requests
import datasets
from bs4 import BeautifulSoup
_DBNAME = os.path.basename(__file__).split('.')[0]
_HOMEPAGE = "https://huggingface.co/datasets/monet-joe/" + _DBNAME
_URL = 'https://pytorch.org/vision/main/_modules/'
class cv_backbones(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"ver": datasets.Value("string"),
"type": datasets.Value("string"),
"input_size": datasets.Value("int16"),
"url": datasets.Value("string"),
}
),
supervised_keys=("ver", "type"),
homepage=_HOMEPAGE,
license="mit"
)
def _parse_url(self, url):
response = requests.get(url)
html = response.text
return BeautifulSoup(html, 'html.parser')
def _special_type(self, m_ver):
m_type = re.search('[a-zA-Z]+', m_ver).group(0)
if m_type == 'wide' or m_type == 'resnext':
return 'resnet'
elif m_type == 'swin':
return 'swin_transformer'
elif m_type == 'inception':
return 'googlenet'
return m_type
def _info_on_dataset(self, m_ver, m_type, in1k_span):
url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
size_span = url_span.find_next_sibling('span', {'class': 'mi'})
m_url = str(url_span.text[1:-1])
input_size = int(size_span.text)
m_dict = {
'ver': m_ver,
'type': m_type,
'input_size': input_size,
'url': m_url
}
return m_dict, size_span
def _generate_dataset(self, url):
torch_page = self._parse_url(url)
article = torch_page.find('article', {'id': 'pytorch-article'})
ul = article.find('ul').find('ul')
in1k_v1, in1k_v2 = [], []
for li in ul.find_all('li'):
name = str(li.text)
if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
if name.__contains__('_api') or \
name.__contains__('feature_extraction') or \
name.__contains__('maxvit'):
continue
href = li.find('a').get('href')
model_page = self._parse_url(url + href)
divs = model_page.select('div.viewcode-block')
for div in divs:
div_id = str(div['id'])
if div_id.__contains__('_Weights'):
m_ver = div_id.split('_Weight')[0].lower()
if m_ver.__contains__('swin_v2_'):
continue
m_type = self._special_type(m_ver)
in1k_v1_span = div.find(
name='span',
attrs={'class': 'n'},
string='IMAGENET1K_V1'
)
if in1k_v1_span == None:
continue
m_dict, size_span = self._info_on_dataset(
m_ver,
m_type,
in1k_v1_span
)
in1k_v1.append(m_dict)
in1k_v2_span = size_span.find_next_sibling(
name='span',
attrs={'class': 'n'},
string='IMAGENET1K_V2'
)
if in1k_v2_span != None:
m_dict, _ = self._info_on_dataset(
m_ver,
m_type,
in1k_v2_span
)
in1k_v2.append(m_dict)
return in1k_v1, in1k_v2
def _split_generators(self, _):
in1k_v1, in1k_v2 = self._generate_dataset(_URL)
return [
datasets.SplitGenerator(
name="IMAGENET1K_V1",
gen_kwargs={
"subset": in1k_v1,
},
),
datasets.SplitGenerator(
name="IMAGENET1K_V2",
gen_kwargs={
"subset": in1k_v2,
},
),
]
def _generate_examples(self, subset):
for i, model in enumerate(subset):
yield i, {
"ver": model['ver'],
"type": model['type'],
"input_size": model['input_size'],
"url": model['url'],
}
|