File size: 4,923 Bytes
2334ed3 d24adcc 2334ed3 f903536 2334ed3 680fb78 2334ed3 d24adcc 2334ed3 d24adcc 2334ed3 d7c586c 2acae79 60bf99f d7c586c 4fed6f6 d7c586c 2334ed3 680fb78 2334ed3 680fb78 2334ed3 680fb78 6830819 87d37ae 4fed6f6 6830819 599a4c4 4fed6f6 87d37ae 6830819 680fb78 2334ed3 a7bb4e7 680fb78 2334ed3 a7bb4e7 2334ed3 a7bb4e7 2334ed3 a7bb4e7 2334ed3 d24adcc 2334ed3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import os
import re
import hashlib
import requests
import datasets
from bs4 import BeautifulSoup
_DBNAME = os.path.basename(__file__).split('.')[0]
_HOMEPAGE = "https://huggingface.co/datasets/george-chou/" + _DBNAME
_URL = 'https://pytorch.org/vision/main/_modules/'
class vi_backbones(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"ver": datasets.Value("string"),
"type": datasets.Value("string"),
"input_size": datasets.Value("int16"),
"url": datasets.Value("string"),
"md5": datasets.Value("string"),
}
),
supervised_keys=("ver", "type"),
homepage=_HOMEPAGE,
license="mit"
)
def _get_file_md5(self, url):
"""
通过 URL 计算文件的 MD5 值
:param url: 文件 URL 地址
:return: 文件的 MD5 值
"""
try:
response = requests.get(url, stream=True)
if response.status_code == 200:
md5obj = hashlib.md5()
for chunk in response.iter_content(chunk_size=1024*1024): # 分块读取文件流,每次读取1MB数据
md5obj.update(chunk) # 更新哈希值
return md5obj.hexdigest() # 返回MD5值
else:
raise ValueError(f"Error downloading file from {url}. Status code: {response.status_code}")
except Exception as e:
raise ValueError(f"Error calculating MD5 of file at {url}: {str(e)}")
def _parse_url(self, url):
response = requests.get(url)
html = response.text
return BeautifulSoup(html, 'html.parser')
def _info_on_dataset(self, m_ver, m_type, in1k_span):
url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
size_span = url_span.find_next_sibling('span', {'class': 'mi'})
if m_type == 'wide' or m_type == 'resnext':
m_type = 'resnet'
m_url = str(url_span.text[1:-1])
input_size = int(size_span.text)
m_dict = {
'ver': m_ver,
'type': m_type,
'input_size': input_size,
'url': m_url
}
return m_dict, size_span
def _generate_dataset(self, url):
torch_page = self._parse_url(url)
article = torch_page.find('article', {'id': 'pytorch-article'})
ul = article.find('ul').find('ul')
in1k_v1, in1k_v2 = [], []
for li in ul.find_all('li'):
name = str(li.text)
if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
if name.__contains__('_api') or name.__contains__('feature_extraction'):
continue
href = li.find('a').get('href')
model_page = self._parse_url(url + href)
divs = model_page.select('div.viewcode-block')
for div in divs:
div_id = str(div['id'])
if div_id.__contains__('_Weights'):
m_ver = div_id.split('_Weight')[0].lower()
m_type = re.search('[a-zA-Z]+', m_ver).group(0)
in1k_v1_span = div.find(
'span', {'class': 'n'}, string='IMAGENET1K_V1')
if in1k_v1_span == None:
continue
m_dict, size_span = self._info_on_dataset(
m_ver, m_type, in1k_v1_span)
in1k_v1.append(m_dict)
in1k_v2_span = size_span.find_next_sibling(
'span', {'class': 'n'}, string='IMAGENET1K_V2')
if in1k_v2_span != None:
m_dict, _ = self._info_on_dataset(
m_ver, m_type, in1k_v2_span)
in1k_v2.append(m_dict)
return in1k_v1, in1k_v2
def _split_generators(self, _):
in1k_v1, in1k_v2 = self._generate_dataset(_URL)
return [
datasets.SplitGenerator(
name="IMAGENET1K_V1",
gen_kwargs={
"subset": in1k_v1,
},
),
datasets.SplitGenerator(
name="IMAGENET1K_V2",
gen_kwargs={
"subset": in1k_v2,
},
),
]
def _generate_examples(self, subset):
for i, model in enumerate(subset):
yield i, {
"ver": model['ver'],
"type": model['type'],
"input_size": model['input_size'],
"url": model['url'],
"md5": self._get_file_md5(model['url']),
}
|