admin commited on
Commit
ce78729
·
1 Parent(s): 9aab7d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md CHANGED
@@ -30,5 +30,127 @@ for weights in backbones["IMAGENET1K_V2"]:
30
  print(weights)
31
  ```
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  ## Reference
34
  <https://pytorch.org/vision/main/_modules>
 
30
  print(weights)
31
  ```
32
 
33
+ ## Param count
34
+ | Backbone | Params(M) |
35
+ | :--: | :--: |
36
+ | SqueezeNet1_0_Weights.IMAGENET1K_V1 | 1.2 |
37
+ | SqueezeNet1_1_Weights.IMAGENET1K_V1 | 1.2 |
38
+ | ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1 | 1.4 |
39
+ | MNASNet0_5_Weights.IMAGENET1K_V1 | 2.2 |
40
+ | ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1 | 2.3 |
41
+ | MobileNet_V3_Small_Weights.IMAGENET1K_V1 | 2.5 |
42
+ | MNASNet0_75_Weights.IMAGENET1K_V1 | 3.2 |
43
+ | MobileNet_V2_Weights.IMAGENET1K_V1 | 3.5 |
44
+ | MobileNet_V2_Weights.IMAGENET1K_V2 | 3.5 |
45
+ | ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1 | 3.5 |
46
+ | RegNet_Y_400MF_Weights.IMAGENET1K_V1 | 4.3 |
47
+ | RegNet_Y_400MF_Weights.IMAGENET1K_V2 | 4.3 |
48
+ | MNASNet1_0_Weights.IMAGENET1K_V1 | 4.4 |
49
+ | EfficientNet_B0_Weights.IMAGENET1K_V1 | 5.3 |
50
+ | MobileNet_V3_Large_Weights.IMAGENET1K_V1 | 5.5 |
51
+ | MobileNet_V3_Large_Weights.IMAGENET1K_V2 | 5.5 |
52
+ | RegNet_X_400MF_Weights.IMAGENET1K_V1 | 5.5 |
53
+ | RegNet_X_400MF_Weights.IMAGENET1K_V2 | 5.5 |
54
+ | MNASNet1_3_Weights.IMAGENET1K_V1 | 6.3 |
55
+ | RegNet_Y_800MF_Weights.IMAGENET1K_V1 | 6.4 |
56
+ | RegNet_Y_800MF_Weights.IMAGENET1K_V2 | 6.4 |
57
+ | GoogLeNet_Weights.IMAGENET1K_V1 | 6.6 |
58
+ | RegNet_X_800MF_Weights.IMAGENET1K_V1 | 7.3 |
59
+ | RegNet_X_800MF_Weights.IMAGENET1K_V2 | 7.3 |
60
+ | ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1 | 7.4 |
61
+ | EfficientNet_B1_Weights.IMAGENET1K_V1 | 7.8 |
62
+ | EfficientNet_B1_Weights.IMAGENET1K_V2 | 7.8 |
63
+ | DenseNet121_Weights.IMAGENET1K_V1 | 8 |
64
+ | EfficientNet_B2_Weights.IMAGENET1K_V1 | 9.1 |
65
+ | RegNet_X_1_6GF_Weights.IMAGENET1K_V1 | 9.2 |
66
+ | RegNet_X_1_6GF_Weights.IMAGENET1K_V2 | 9.2 |
67
+ | RegNet_Y_1_6GF_Weights.IMAGENET1K_V1 | 11.2 |
68
+ | RegNet_Y_1_6GF_Weights.IMAGENET1K_V2 | 11.2 |
69
+ | ResNet18_Weights.IMAGENET1K_V1 | 11.7 |
70
+ | EfficientNet_B3_Weights.IMAGENET1K_V1 | 12.2 |
71
+ | DenseNet169_Weights.IMAGENET1K_V1 | 14.1 |
72
+ | RegNet_X_3_2GF_Weights.IMAGENET1K_V1 | 15.3 |
73
+ | RegNet_X_3_2GF_Weights.IMAGENET1K_V2 | 15.3 |
74
+ | EfficientNet_B4_Weights.IMAGENET1K_V1 | 19.3 |
75
+ | RegNet_Y_3_2GF_Weights.IMAGENET1K_V1 | 19.4 |
76
+ | RegNet_Y_3_2GF_Weights.IMAGENET1K_V2 | 19.4 |
77
+ | DenseNet201_Weights.IMAGENET1K_V1 | 20 |
78
+ | EfficientNet_V2_S_Weights.IMAGENET1K_V1 | 21.5 |
79
+ | ResNet34_Weights.IMAGENET1K_V1 | 21.8 |
80
+ | ResNeXt50_32X4D_Weights.IMAGENET1K_V1 | 25 |
81
+ | ResNeXt50_32X4D_Weights.IMAGENET1K_V2 | 25 |
82
+ | ResNet50_Weights.IMAGENET1K_V1 | 25.6 |
83
+ | ResNet50_Weights.IMAGENET1K_V2 | 25.6 |
84
+ | Inception_V3_Weights.IMAGENET1K_V1 | 27.2 |
85
+ | Swin_T_Weights.IMAGENET1K_V1 | 28.3 |
86
+ | Swin_V2_T_Weights.IMAGENET1K_V1 | 28.4 |
87
+ | ConvNeXt_Tiny_Weights.IMAGENET1K_V1 | 28.6 |
88
+ | DenseNet161_Weights.IMAGENET1K_V1 | 28.7 |
89
+ | EfficientNet_B5_Weights.IMAGENET1K_V1 | 30.4 |
90
+ | MaxVit_T_Weights.IMAGENET1K_V1 | 30.9 |
91
+ | RegNet_Y_8GF_Weights.IMAGENET1K_V1 | 39.4 |
92
+ | RegNet_Y_8GF_Weights.IMAGENET1K_V2 | 39.4 |
93
+ | RegNet_X_8GF_Weights.IMAGENET1K_V1 | 39.6 |
94
+ | RegNet_X_8GF_Weights.IMAGENET1K_V2 | 39.6 |
95
+ | EfficientNet_B6_Weights.IMAGENET1K_V1 | 43 |
96
+ | ResNet101_Weights.IMAGENET1K_V1 | 44.5 |
97
+ | ResNet101_Weights.IMAGENET1K_V2 | 44.5 |
98
+ | Swin_S_Weights.IMAGENET1K_V1 | 49.6 |
99
+ | Swin_V2_S_Weights.IMAGENET1K_V1 | 49.7 |
100
+ | ConvNeXt_Small_Weights.IMAGENET1K_V1 | 50.2 |
101
+ | EfficientNet_V2_M_Weights.IMAGENET1K_V1 | 54.1 |
102
+ | RegNet_X_16GF_Weights.IMAGENET1K_V1 | 54.3 |
103
+ | RegNet_X_16GF_Weights.IMAGENET1K_V2 | 54.3 |
104
+ | ResNet152_Weights.IMAGENET1K_V1 | 60.2 |
105
+ | ResNet152_Weights.IMAGENET1K_V2 | 60.2 |
106
+ | AlexNet_Weights.IMAGENET1K_V1 | 61.1 |
107
+ | EfficientNet_B7_Weights.IMAGENET1K_V1 | 66.3 |
108
+ | Wide_ResNet50_2_Weights.IMAGENET1K_V1 | 68.9 |
109
+ | Wide_ResNet50_2_Weights.IMAGENET1K_V2 | 68.9 |
110
+ | ResNeXt101_64X4D_Weights.IMAGENET1K_V1 | 83.5 |
111
+ | RegNet_Y_16GF_Weights.IMAGENET1K_V1 | 83.6 |
112
+ | RegNet_Y_16GF_Weights.IMAGENET1K_V2 | 83.6 |
113
+ | RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 83.6 |
114
+ | RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 83.6 |
115
+ | ViT_B_16_Weights.IMAGENET1K_V1 | 86.6 |
116
+ | ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 86.6 |
117
+ | ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 86.9 |
118
+ | Swin_B_Weights.IMAGENET1K_V1 | 87.8 |
119
+ | Swin_V2_B_Weights.IMAGENET1K_V1 | 87.9 |
120
+ | ViT_B_32_Weights.IMAGENET1K_V1 | 88.2 |
121
+ | ConvNeXt_Base_Weights.IMAGENET1K_V1 | 88.6 |
122
+ | ResNeXt101_32X8D_Weights.IMAGENET1K_V1 | 88.8 |
123
+ | ResNeXt101_32X8D_Weights.IMAGENET1K_V2 | 88.8 |
124
+ | RegNet_X_32GF_Weights.IMAGENET1K_V1 | 107.8 |
125
+ | RegNet_X_32GF_Weights.IMAGENET1K_V2 | 107.8 |
126
+ | EfficientNet_V2_L_Weights.IMAGENET1K_V1 | 118.5 |
127
+ | Wide_ResNet101_2_Weights.IMAGENET1K_V1 | 126.9 |
128
+ | Wide_ResNet101_2_Weights.IMAGENET1K_V2 | 126.9 |
129
+ | VGG11_BN_Weights.IMAGENET1K_V1 | 132.9 |
130
+ | VGG11_Weights.IMAGENET1K_V1 | 132.9 |
131
+ | VGG13_Weights.IMAGENET1K_V1 | 133 |
132
+ | VGG13_BN_Weights.IMAGENET1K_V1 | 133.1 |
133
+ | VGG16_BN_Weights.IMAGENET1K_V1 | 138.4 |
134
+ | VGG16_Weights.IMAGENET1K_V1 | 138.4 |
135
+ | VGG16_Weights.IMAGENET1K_FEATURES | 138.4 |
136
+ | VGG19_BN_Weights.IMAGENET1K_V1 | 143.7 |
137
+ | VGG19_Weights.IMAGENET1K_V1 | 143.7 |
138
+ | RegNet_Y_32GF_Weights.IMAGENET1K_V1 | 145 |
139
+ | RegNet_Y_32GF_Weights.IMAGENET1K_V2 | 145 |
140
+ | RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 145 |
141
+ | RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 145 |
142
+ | ConvNeXt_Large_Weights.IMAGENET1K_V1 | 197.8 |
143
+ | ViT_L_16_Weights.IMAGENET1K_V1 | 304.3 |
144
+ | ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 304.3 |
145
+ | ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 305.2 |
146
+ | ViT_L_32_Weights.IMAGENET1K_V1 | 306.5 |
147
+ | ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 632 |
148
+ | ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1 | 633.5 |
149
+ | RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 644.8 |
150
+ | RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 |
151
+
152
+ ## Mirror
153
+ <https://www.modelscope.cn/datasets/monetjoe/cv_backbones>
154
+
155
  ## Reference
156
  <https://pytorch.org/vision/main/_modules>