Upload xglue_mirror.py
Browse files- xglue_mirror.py +585 -0
xglue_mirror.py
ADDED
@@ -0,0 +1,585 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""The General Language Understanding Evaluation (GLUE) benchmark."""
|
18 |
+
|
19 |
+
|
20 |
+
import json
|
21 |
+
import textwrap
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
|
26 |
+
_XGLUE_CITATION = """\
|
27 |
+
@article{Liang2020XGLUEAN,
|
28 |
+
title={XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation},
|
29 |
+
author={Yaobo Liang and Nan Duan and Yeyun Gong and Ning Wu and Fenfei Guo and Weizhen Qi
|
30 |
+
and Ming Gong and Linjun Shou and Daxin Jiang and Guihong Cao and Xiaodong Fan and Ruofei
|
31 |
+
Zhang and Rahul Agrawal and Edward Cui and Sining Wei and Taroon Bharti and Ying Qiao
|
32 |
+
and Jiun-Hung Chen and Winnie Wu and Shuguang Liu and Fan Yang and Daniel Campos
|
33 |
+
and Rangan Majumder and Ming Zhou},
|
34 |
+
journal={arXiv},
|
35 |
+
year={2020},
|
36 |
+
volume={abs/2004.01401}
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_XGLUE_DESCRIPTION = """\
|
41 |
+
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained
|
42 |
+
models with respect to cross-lingual natural language understanding and generation.
|
43 |
+
The benchmark is composed of the following 11 tasks:
|
44 |
+
- NER
|
45 |
+
- POS Tagging (POS)
|
46 |
+
- News Classification (NC)
|
47 |
+
- MLQA
|
48 |
+
- XNLI
|
49 |
+
- PAWS-X
|
50 |
+
- Query-Ad Matching (QADSM)
|
51 |
+
- Web Page Ranking (WPR)
|
52 |
+
- QA Matching (QAM)
|
53 |
+
- Question Generation (QG)
|
54 |
+
- News Title Generation (NTG)
|
55 |
+
|
56 |
+
For more information, please take a look at https://microsoft.github.io/XGLUE/.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_XGLUE_ALL_DATA = "https://1drv.ms/u/s!Amt8n9AJEyxchJtmUXkNFaTXLCbVOQ?e=2jYlMZ"
|
60 |
+
|
61 |
+
_LANGUAGES = {
|
62 |
+
"ner": ["en", "de", "es", "nl"],
|
63 |
+
"pos": ["en", "de", "es", "nl", "bg", "el", "fr", "pl", "tr", "vi", "zh", "ur", "hi", "it", "ar", "ru", "th"],
|
64 |
+
"mlqa": ["en", "de", "ar", "es", "hi", "vi", "zh"],
|
65 |
+
"nc": ["en", "de", "es", "fr", "ru"],
|
66 |
+
"xnli": ["en", "ar", "bg", "de", "el", "es", "fr", "hi", "ru", "sw", "th", "tr", "ur", "vi", "zh"],
|
67 |
+
"paws-x": ["en", "de", "es", "fr"],
|
68 |
+
"qadsm": ["en", "de", "fr"],
|
69 |
+
"wpr": ["en", "de", "es", "fr", "it", "pt", "zh"],
|
70 |
+
"qam": ["en", "de", "fr"],
|
71 |
+
"qg": ["en", "de", "es", "fr", "it", "pt"],
|
72 |
+
"ntg": ["en", "de", "es", "fr", "ru"],
|
73 |
+
}
|
74 |
+
|
75 |
+
_PATHS = {
|
76 |
+
"mlqa": {
|
77 |
+
"train": "squad1.1/train-v1.1.json",
|
78 |
+
"dev": "MLQA_V1/dev/dev-context-{0}-question-{0}.json",
|
79 |
+
"test": "MLQA_V1/test/test-context-{0}-question-{0}.json",
|
80 |
+
},
|
81 |
+
"xnli": {"train": "multinli.train.en.tsv", "dev": "{}.dev", "test": "{}.test"},
|
82 |
+
"paws-x": {
|
83 |
+
"train": "en/train.tsv",
|
84 |
+
"dev": "{}/dev_2k.tsv",
|
85 |
+
"test": "{}/test_2k.tsv",
|
86 |
+
},
|
87 |
+
}
|
88 |
+
for name in ["ner", "pos"]:
|
89 |
+
_PATHS[name] = {"train": "en.train", "dev": "{}.dev", "test": "{}.test"}
|
90 |
+
for name in ["nc", "qadsm", "wpr", "qam"]:
|
91 |
+
_PATHS[name] = {
|
92 |
+
"train": "xglue." + name + ".en.train",
|
93 |
+
"dev": "xglue." + name + ".{}.dev",
|
94 |
+
"test": "xglue." + name + ".{}.test",
|
95 |
+
}
|
96 |
+
for name in ["qg", "ntg"]:
|
97 |
+
_PATHS[name] = {"train": "xglue." + name + ".en", "dev": "xglue." + name + ".{}", "test": "xglue." + name + ".{}"}
|
98 |
+
|
99 |
+
|
100 |
+
class XGlueConfig(datasets.BuilderConfig):
|
101 |
+
"""BuilderConfig for XGLUE."""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
data_dir,
|
106 |
+
citation,
|
107 |
+
url,
|
108 |
+
**kwargs,
|
109 |
+
):
|
110 |
+
"""BuilderConfig for XGLUE.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
data_dir: `string`, the path to the folder containing the files in the
|
114 |
+
downloaded .tar
|
115 |
+
citation: `string`, citation for the data set
|
116 |
+
url: `string`, url for information about the data set
|
117 |
+
**kwargs: keyword arguments forwarded to super.
|
118 |
+
"""
|
119 |
+
super(XGlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
120 |
+
self.data_dir = data_dir
|
121 |
+
self.citation = citation
|
122 |
+
self.url = url
|
123 |
+
|
124 |
+
|
125 |
+
class XGlue(datasets.GeneratorBasedBuilder):
|
126 |
+
"""The Cross-lingual Pre-training, Understanding and Generation (XGlue) Benchmark."""
|
127 |
+
|
128 |
+
BUILDER_CONFIGS = [
|
129 |
+
XGlueConfig(
|
130 |
+
name="ner",
|
131 |
+
description=textwrap.dedent(
|
132 |
+
"""\
|
133 |
+
The shared task of CoNLL-2003 concerns language-independent named entity recognition.
|
134 |
+
We will concentrate on four types of named entities:
|
135 |
+
persons, locations, organizations and names of miscellaneous entities
|
136 |
+
that do not belong to the previous three groups.
|
137 |
+
"""
|
138 |
+
),
|
139 |
+
data_dir="NER",
|
140 |
+
citation=textwrap.dedent(
|
141 |
+
"""\
|
142 |
+
@article{Sang2003IntroductionTT,
|
143 |
+
title={Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition},
|
144 |
+
author={Erik F. Tjong Kim Sang and Fien De Meulder},
|
145 |
+
journal={ArXiv},
|
146 |
+
year={2003},
|
147 |
+
volume={cs.CL/0306050}
|
148 |
+
},
|
149 |
+
@article{Sang2002IntroductionTT,
|
150 |
+
title={Introduction to the CoNLL-2002 Shared Task: Language-Independent Named Entity Recognition},
|
151 |
+
author={Erik F. Tjong Kim Sang},
|
152 |
+
journal={ArXiv},
|
153 |
+
year={2002},
|
154 |
+
volume={cs.CL/0209010}
|
155 |
+
}"""
|
156 |
+
),
|
157 |
+
url="https://www.clips.uantwerpen.be/conll2003/ner/",
|
158 |
+
),
|
159 |
+
XGlueConfig(
|
160 |
+
name="pos",
|
161 |
+
description=textwrap.dedent(
|
162 |
+
"""\
|
163 |
+
Universal Dependencies (UD) is a project that is developing cross-linguistically consistent treebank
|
164 |
+
annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual
|
165 |
+
learning, and parsing research from a language typology perspective. The annotation scheme is based on an
|
166 |
+
evolution of (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal
|
167 |
+
part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets
|
168 |
+
(Zeman, 2008). The general philosophy is to provide a universal inventory of categories and guidelines
|
169 |
+
to facilitate consistent annotation of similar constructions across languages, while
|
170 |
+
allowing language-specific extensions when necessary.
|
171 |
+
"""
|
172 |
+
),
|
173 |
+
data_dir="POS",
|
174 |
+
citation=textwrap.dedent(
|
175 |
+
"""\
|
176 |
+
@misc{11234/1-3105,
|
177 |
+
title={Universal Dependencies 2.5},
|
178 |
+
author={Zeman, Daniel and Nivre, Joakim and Abrams, Mitchell and Aepli, et al.},
|
179 |
+
url={http://hdl.handle.net/11234/1-3105},
|
180 |
+
note={{LINDAT}/{CLARIAH}-{CZ} digital library at the Institute of Formal and Applied Linguistics ({{\'U}FAL}), Faculty of Mathematics and Physics, Charles University},
|
181 |
+
copyright={Licence Universal Dependencies v2.5},
|
182 |
+
year={2019}
|
183 |
+
}"""
|
184 |
+
),
|
185 |
+
url="https://universaldependencies.org/",
|
186 |
+
),
|
187 |
+
XGlueConfig(
|
188 |
+
name="mlqa",
|
189 |
+
description=textwrap.dedent(
|
190 |
+
"""\
|
191 |
+
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering
|
192 |
+
performance. MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages
|
193 |
+
- English, Arabic, German, Spanish, Hindi, Vietnamese and Simplified Chinese.
|
194 |
+
MLQA is highly parallel, with QA instances parallel between 4 different languages on average.
|
195 |
+
"""
|
196 |
+
),
|
197 |
+
data_dir="MLQA",
|
198 |
+
citation=textwrap.dedent(
|
199 |
+
"""\
|
200 |
+
@article{Lewis2019MLQAEC,
|
201 |
+
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
|
202 |
+
author={Patrick Lewis and Barlas Oguz and Ruty Rinott and Sebastian Riedel and Holger Schwenk},
|
203 |
+
journal={ArXiv},
|
204 |
+
year={2019},
|
205 |
+
volume={abs/1910.07475}
|
206 |
+
}"""
|
207 |
+
),
|
208 |
+
url="https://github.com/facebookresearch/MLQA",
|
209 |
+
),
|
210 |
+
XGlueConfig(
|
211 |
+
name="nc",
|
212 |
+
description=textwrap.dedent(
|
213 |
+
"""\
|
214 |
+
This task aims to predict the category given a news article. It covers
|
215 |
+
5 languages, including English, Spanish, French,
|
216 |
+
German and Russian. Each labeled instance is a
|
217 |
+
3-tuple: <news title, news body, category>. The
|
218 |
+
category number is 10. We crawl this dataset from
|
219 |
+
a commercial news website. Accuracy (ACC) of
|
220 |
+
the multi-class classification is used as the metric.
|
221 |
+
"""
|
222 |
+
),
|
223 |
+
data_dir="NC",
|
224 |
+
citation="",
|
225 |
+
url="",
|
226 |
+
),
|
227 |
+
XGlueConfig(
|
228 |
+
name="xnli",
|
229 |
+
description=textwrap.dedent(
|
230 |
+
"""\
|
231 |
+
XNLI is a subset of a few thousand examples from MNLI which has been translated
|
232 |
+
into a 14 different languages (some low-ish resource). As with MNLI, the goal is
|
233 |
+
to predict textual entailment (does sentence A imply/contradict/neither sentence
|
234 |
+
B) and is a classification task (given two sentences, predict one of three
|
235 |
+
labels).
|
236 |
+
"""
|
237 |
+
),
|
238 |
+
data_dir="XNLI",
|
239 |
+
citation=textwrap.dedent(
|
240 |
+
"""\
|
241 |
+
@inproceedings{Conneau2018XNLIEC,
|
242 |
+
title={XNLI: Evaluating Cross-lingual Sentence Representations},
|
243 |
+
author={Alexis Conneau and Guillaume Lample and Ruty Rinott and Adina Williams and Samuel R. Bowman and Holger Schwenk and Veselin Stoyanov},
|
244 |
+
booktitle={EMNLP},
|
245 |
+
year={2018}
|
246 |
+
}"""
|
247 |
+
),
|
248 |
+
url="https://github.com/facebookresearch/XNLI",
|
249 |
+
),
|
250 |
+
XGlueConfig(
|
251 |
+
name="paws-x",
|
252 |
+
description=textwrap.dedent(
|
253 |
+
"""\
|
254 |
+
PAWS-X contains 23,659 human translated PAWS (Paraphrase Adversaries from Word Scrambling) evaluation pairs and 296,406 machine translated training pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All translated pairs are sourced from examples in PAWS-Wiki.
|
255 |
+
"""
|
256 |
+
),
|
257 |
+
data_dir="PAWSX",
|
258 |
+
citation=textwrap.dedent(
|
259 |
+
"""\
|
260 |
+
@article{Yang2019PAWSXAC,
|
261 |
+
title={PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification},
|
262 |
+
author={Yinfei Yang and Yuan Zhang and Chris Tar and Jason Baldridge},
|
263 |
+
journal={ArXiv},
|
264 |
+
year={2019},
|
265 |
+
volume={abs/1908.11828}
|
266 |
+
}"""
|
267 |
+
),
|
268 |
+
url="https://github.com/google-research-datasets/paws/tree/master/pawsx",
|
269 |
+
),
|
270 |
+
XGlueConfig(
|
271 |
+
name="qadsm",
|
272 |
+
description=textwrap.dedent(
|
273 |
+
"""\
|
274 |
+
Query-Ad Matching (QADSM) task aims
|
275 |
+
to predict whether an advertisement (ad) is relevant to an input query. It covers 3 languages, including English, French and German. Each labeled instance is a 4-tuple: <query, ad title, ad description, label>. The label indicates whether the
|
276 |
+
ad is relevant to the query (Good), or not (Bad).
|
277 |
+
This dataset was constructed based on a commercial search engine. Accuracy (ACC) of the binary classification should be used as the metric.
|
278 |
+
"""
|
279 |
+
),
|
280 |
+
data_dir="QADSM",
|
281 |
+
citation="",
|
282 |
+
url="",
|
283 |
+
),
|
284 |
+
XGlueConfig(
|
285 |
+
name="wpr",
|
286 |
+
description=textwrap.dedent(
|
287 |
+
"""\
|
288 |
+
Tthe Web Page Ranking (WPR) task aims to
|
289 |
+
predict whether a web page is relevant to an input query. It covers 7 languages, including English, German, French, Spanish, Italian, Portuguese and Chinese. Each labeled instance is a
|
290 |
+
4-tuple: <query, web page title, web page snippet, label>. The relevance label contains 5 ratings: Perfect (4), Excellent (3), Good (2), Fair (1)
|
291 |
+
and Bad (0). The dataset is constructed based on a
|
292 |
+
commercial search engine. Normalize Discounted
|
293 |
+
Cumulative Gain (nDCG) should be used as the metric.
|
294 |
+
"""
|
295 |
+
),
|
296 |
+
data_dir="WPR",
|
297 |
+
citation="",
|
298 |
+
url="",
|
299 |
+
),
|
300 |
+
XGlueConfig(
|
301 |
+
name="qam",
|
302 |
+
description=textwrap.dedent(
|
303 |
+
"""\
|
304 |
+
The QA Matching (QAM) task aims to predict whether a <question, passage> pair is a QA pair.
|
305 |
+
It covers 3 languages, including English, French
|
306 |
+
and German. Each labeled instance is a 3-tuple:
|
307 |
+
<question, passage, label>. The label indicates
|
308 |
+
whether the passage is the answer of the question
|
309 |
+
(1), or not (0). This dataset is constructed based on
|
310 |
+
a commercial search engine. Accuracy (ACC) of
|
311 |
+
the binary classification should be used as the metric.
|
312 |
+
"""
|
313 |
+
),
|
314 |
+
data_dir="QAM",
|
315 |
+
citation="",
|
316 |
+
url="",
|
317 |
+
),
|
318 |
+
XGlueConfig(
|
319 |
+
name="qg",
|
320 |
+
description=textwrap.dedent(
|
321 |
+
"""\
|
322 |
+
The Question Generation (QG) task aims to
|
323 |
+
generate a question for a given passage. <passage, question> pairs were collected from a commercial search engine. It covers 6 languages, including English, French, German, Spanish, Italian and
|
324 |
+
Portuguese. BLEU-4 score should be used as the metric.
|
325 |
+
"""
|
326 |
+
),
|
327 |
+
data_dir="QG",
|
328 |
+
citation="",
|
329 |
+
url="",
|
330 |
+
),
|
331 |
+
XGlueConfig(
|
332 |
+
name="ntg",
|
333 |
+
description=textwrap.dedent(
|
334 |
+
"""\
|
335 |
+
News Title Generation (NTG) task aims
|
336 |
+
to generate a proper title for a given news body.
|
337 |
+
We collect <news body, news title> pairs from a
|
338 |
+
commercial news website. It covers 5 languages,
|
339 |
+
including German, English, French, Spanish and
|
340 |
+
Russian. BLEU-4 score should be used as the metric.
|
341 |
+
"""
|
342 |
+
),
|
343 |
+
data_dir="NTG",
|
344 |
+
citation="",
|
345 |
+
url="",
|
346 |
+
),
|
347 |
+
]
|
348 |
+
|
349 |
+
def _info(self):
|
350 |
+
if self.config.name == "ner":
|
351 |
+
features = {
|
352 |
+
"words": datasets.Sequence(datasets.Value("string")),
|
353 |
+
"ner": datasets.Sequence(
|
354 |
+
datasets.features.ClassLabel(
|
355 |
+
names=[
|
356 |
+
"O",
|
357 |
+
"B-PER",
|
358 |
+
"I-PER",
|
359 |
+
"B-ORG",
|
360 |
+
"I-ORG",
|
361 |
+
"B-LOC",
|
362 |
+
"I-LOC",
|
363 |
+
"B-MISC",
|
364 |
+
"I-MISC",
|
365 |
+
]
|
366 |
+
)
|
367 |
+
),
|
368 |
+
}
|
369 |
+
elif self.config.name == "pos":
|
370 |
+
features = {
|
371 |
+
"words": datasets.Sequence(datasets.Value("string")),
|
372 |
+
"pos": datasets.Sequence(
|
373 |
+
datasets.features.ClassLabel(
|
374 |
+
names=[
|
375 |
+
"ADJ",
|
376 |
+
"ADP",
|
377 |
+
"ADV",
|
378 |
+
"AUX",
|
379 |
+
"CCONJ",
|
380 |
+
"DET",
|
381 |
+
"INTJ",
|
382 |
+
"NOUN",
|
383 |
+
"NUM",
|
384 |
+
"PART",
|
385 |
+
"PRON",
|
386 |
+
"PROPN",
|
387 |
+
"PUNCT",
|
388 |
+
"SCONJ",
|
389 |
+
"SYM",
|
390 |
+
"VERB",
|
391 |
+
"X",
|
392 |
+
]
|
393 |
+
)
|
394 |
+
),
|
395 |
+
}
|
396 |
+
elif self.config.name == "mlqa":
|
397 |
+
features = {
|
398 |
+
"context": datasets.Value("string"),
|
399 |
+
"question": datasets.Value("string"),
|
400 |
+
"answers": datasets.features.Sequence(
|
401 |
+
{"answer_start": datasets.Value("int32"), "text": datasets.Value("string")}
|
402 |
+
),
|
403 |
+
# These are the features of your dataset like images, labels ...
|
404 |
+
}
|
405 |
+
elif self.config.name == "nc":
|
406 |
+
features = {
|
407 |
+
"news_title": datasets.Value("string"),
|
408 |
+
"news_body": datasets.Value("string"),
|
409 |
+
"news_category": datasets.ClassLabel(
|
410 |
+
names=[
|
411 |
+
"foodanddrink",
|
412 |
+
"sports",
|
413 |
+
"travel",
|
414 |
+
"finance",
|
415 |
+
"lifestyle",
|
416 |
+
"news",
|
417 |
+
"entertainment",
|
418 |
+
"health",
|
419 |
+
"video",
|
420 |
+
"autos",
|
421 |
+
]
|
422 |
+
),
|
423 |
+
}
|
424 |
+
elif self.config.name == "xnli":
|
425 |
+
features = {
|
426 |
+
"premise": datasets.Value("string"),
|
427 |
+
"hypothesis": datasets.Value("string"),
|
428 |
+
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
429 |
+
}
|
430 |
+
elif self.config.name == "paws-x":
|
431 |
+
features = {
|
432 |
+
"sentence1": datasets.Value("string"),
|
433 |
+
"sentence2": datasets.Value("string"),
|
434 |
+
"label": datasets.features.ClassLabel(names=["different", "same"]),
|
435 |
+
}
|
436 |
+
elif self.config.name == "qadsm":
|
437 |
+
features = {
|
438 |
+
"query": datasets.Value("string"),
|
439 |
+
"ad_title": datasets.Value("string"),
|
440 |
+
"ad_description": datasets.Value("string"),
|
441 |
+
"relevance_label": datasets.features.ClassLabel(names=["Bad", "Good"]),
|
442 |
+
}
|
443 |
+
elif self.config.name == "wpr":
|
444 |
+
features = {
|
445 |
+
"query": datasets.Value("string"),
|
446 |
+
"web_page_title": datasets.Value("string"),
|
447 |
+
"web_page_snippet": datasets.Value("string"),
|
448 |
+
"relavance_label": datasets.features.ClassLabel(names=["Bad", "Fair", "Good", "Excellent", "Perfect"]),
|
449 |
+
}
|
450 |
+
elif self.config.name == "qam":
|
451 |
+
features = {
|
452 |
+
"question": datasets.Value("string"),
|
453 |
+
"answer": datasets.Value("string"),
|
454 |
+
"label": datasets.features.ClassLabel(names=["False", "True"]),
|
455 |
+
}
|
456 |
+
elif self.config.name == "qg":
|
457 |
+
features = {
|
458 |
+
"answer_passage": datasets.Value("string"),
|
459 |
+
"question": datasets.Value("string"),
|
460 |
+
}
|
461 |
+
elif self.config.name == "ntg":
|
462 |
+
features = {
|
463 |
+
"news_body": datasets.Value("string"),
|
464 |
+
"news_title": datasets.Value("string"),
|
465 |
+
}
|
466 |
+
|
467 |
+
return datasets.DatasetInfo(
|
468 |
+
description=_XGLUE_DESCRIPTION,
|
469 |
+
features=datasets.Features(features),
|
470 |
+
homepage=self.config.url,
|
471 |
+
citation=self.config.citation + "\n" + _XGLUE_CITATION,
|
472 |
+
)
|
473 |
+
|
474 |
+
def _split_generators(self, dl_manager):
|
475 |
+
archive = dl_manager.download(_XGLUE_ALL_DATA)
|
476 |
+
data_folder = f"xglue_full_dataset/{self.config.data_dir}"
|
477 |
+
name = self.config.name
|
478 |
+
|
479 |
+
languages = _LANGUAGES[name]
|
480 |
+
return (
|
481 |
+
[
|
482 |
+
datasets.SplitGenerator(
|
483 |
+
name=datasets.Split.TRAIN,
|
484 |
+
gen_kwargs={
|
485 |
+
"archive": dl_manager.iter_archive(archive),
|
486 |
+
"data_path": f"{data_folder}/{_PATHS[name]['train']}",
|
487 |
+
"split": "train",
|
488 |
+
},
|
489 |
+
),
|
490 |
+
]
|
491 |
+
+ [
|
492 |
+
datasets.SplitGenerator(
|
493 |
+
name=datasets.Split(f"validation.{lang}"),
|
494 |
+
gen_kwargs={
|
495 |
+
"archive": dl_manager.iter_archive(archive),
|
496 |
+
"data_path": f"{data_folder}/{_PATHS[name]['dev'].format(lang)}",
|
497 |
+
"split": "dev",
|
498 |
+
},
|
499 |
+
)
|
500 |
+
for lang in languages
|
501 |
+
]
|
502 |
+
+ [
|
503 |
+
datasets.SplitGenerator(
|
504 |
+
name=datasets.Split(f"test.{lang}"),
|
505 |
+
gen_kwargs={
|
506 |
+
"archive": dl_manager.iter_archive(archive),
|
507 |
+
"data_path": f"{data_folder}/{_PATHS[name]['test'].format(lang)}",
|
508 |
+
"split": "test",
|
509 |
+
},
|
510 |
+
)
|
511 |
+
for lang in languages
|
512 |
+
]
|
513 |
+
)
|
514 |
+
|
515 |
+
def _generate_examples(self, archive, data_path, split=None):
|
516 |
+
keys = list(self._info().features.keys())
|
517 |
+
src_f = tgt_f = None
|
518 |
+
for path, file in archive:
|
519 |
+
if self.config.name == "mlqa":
|
520 |
+
if path == data_path:
|
521 |
+
data = json.load(file)
|
522 |
+
for examples in data["data"]:
|
523 |
+
for example in examples["paragraphs"]:
|
524 |
+
context = example["context"]
|
525 |
+
for qa in example["qas"]:
|
526 |
+
question = qa["question"]
|
527 |
+
id_ = qa["id"]
|
528 |
+
answers = qa["answers"]
|
529 |
+
answers_start = [answer["answer_start"] for answer in answers]
|
530 |
+
answers_text = [answer["text"] for answer in answers]
|
531 |
+
yield id_, {
|
532 |
+
"context": context,
|
533 |
+
"question": question,
|
534 |
+
"answers": {"answer_start": answers_start, "text": answers_text},
|
535 |
+
}
|
536 |
+
elif self.config.name in ["ner", "pos"]:
|
537 |
+
if path == data_path:
|
538 |
+
words = []
|
539 |
+
result = []
|
540 |
+
idx = -1
|
541 |
+
for line in file:
|
542 |
+
line = line.decode("utf-8")
|
543 |
+
if line.strip() == "":
|
544 |
+
if len(words) > 0:
|
545 |
+
out_dict = {keys[0]: words, keys[1]: result}
|
546 |
+
words = []
|
547 |
+
result = []
|
548 |
+
idx += 1
|
549 |
+
yield idx, out_dict
|
550 |
+
else:
|
551 |
+
splits = line.strip().split(" ")
|
552 |
+
words.append(splits[0])
|
553 |
+
result.append(splits[1])
|
554 |
+
elif self.config.name in ["ntg", "qg"]:
|
555 |
+
if path == data_path + ".src." + split:
|
556 |
+
src_f = [line.decode("utf-8") for line in file]
|
557 |
+
elif path == data_path + ".tgt." + split:
|
558 |
+
tgt_f = [line.decode("utf-8") for line in file]
|
559 |
+
if src_f and tgt_f:
|
560 |
+
for idx, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)):
|
561 |
+
yield idx, {keys[0]: src_line.strip(), keys[1]: tgt_line.strip()}
|
562 |
+
else:
|
563 |
+
_process_dict = {
|
564 |
+
"paws-x": {"0": "different", "1": "same"},
|
565 |
+
"xnli": {"contradictory": "contradiction"},
|
566 |
+
"qam": {"0": "False", "1": "True"},
|
567 |
+
"wpr": {"0": "Bad", "1": "Fair", "2": "Good", "3": "Excellent", "4": "Perfect"},
|
568 |
+
}
|
569 |
+
|
570 |
+
def _process(value):
|
571 |
+
if self.config.name in _process_dict and value in _process_dict[self.config.name]:
|
572 |
+
return _process_dict[self.config.name][value]
|
573 |
+
return value
|
574 |
+
|
575 |
+
if path == data_path:
|
576 |
+
for idx, line in enumerate(file):
|
577 |
+
line = line.decode("utf-8")
|
578 |
+
if data_path.split(".")[-1] == "tsv" and idx == 0:
|
579 |
+
continue
|
580 |
+
items = line.strip().split("\t")
|
581 |
+
yield idx, {
|
582 |
+
key: _process(value)
|
583 |
+
for key, value in zip(keys, items[1:] if self.config.name == "paws-x" else items)
|
584 |
+
}
|
585 |
+
|