Datasets:
Upload car.py
Browse files
car.py
CHANGED
@@ -24,30 +24,30 @@ _BASE_FEATURE_NAMES = [
|
|
24 |
"class"
|
25 |
]
|
26 |
urls_per_split = {
|
27 |
-
|
28 |
}
|
29 |
features_types_per_config = {
|
30 |
-
|
31 |
-
|
32 |
"maint": datasets.Value("int8"),
|
33 |
"doors": datasets.Value("int8"),
|
34 |
"persons": datasets.Value("int8"),
|
35 |
"lug_boot": datasets.Value("int8"),
|
36 |
"safety": datasets.Value("int8"),
|
37 |
-
|
38 |
names=("unacceptable", "acceptable", "good", "very good"))
|
39 |
-
|
40 |
"car_binary": {
|
41 |
-
|
42 |
"maint": datasets.Value("int8"),
|
43 |
"doors": datasets.Value("int8"),
|
44 |
"persons": datasets.Value("int8"),
|
45 |
"lug_boot": datasets.Value("int8"),
|
46 |
"safety": datasets.Value("int8"),
|
47 |
-
|
48 |
names=("unacceptable", "acceptable"))
|
49 |
-
|
50 |
-
|
51 |
}
|
52 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
53 |
|
@@ -92,58 +92,58 @@ _ENCODING_DICS = {
|
|
92 |
}
|
93 |
|
94 |
class CarConfig(datasets.BuilderConfig):
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
|
99 |
|
100 |
class Car(datasets.GeneratorBasedBuilder):
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
CarConfig(name="car_binary",
|
107 |
-
|
108 |
-
|
109 |
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
data = self.preprocess(data)
|
127 |
|
128 |
-
|
129 |
-
|
130 |
|
131 |
-
|
132 |
|
133 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
134 |
-
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
|
141 |
data.loc[:, "class"] = data["class"].apply(lambda x: if x == 0 else 1)
|
142 |
|
143 |
|
144 |
return data
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
24 |
"class"
|
25 |
]
|
26 |
urls_per_split = {
|
27 |
+
"train": "https://huggingface.co/datasets/mstz/car/raw/main/car.data"
|
28 |
}
|
29 |
features_types_per_config = {
|
30 |
+
"car": {
|
31 |
+
"buying": datasets.Value("int8"),
|
32 |
"maint": datasets.Value("int8"),
|
33 |
"doors": datasets.Value("int8"),
|
34 |
"persons": datasets.Value("int8"),
|
35 |
"lug_boot": datasets.Value("int8"),
|
36 |
"safety": datasets.Value("int8"),
|
37 |
+
"class": datasets.ClassLabel(num_classes=4,
|
38 |
names=("unacceptable", "acceptable", "good", "very good"))
|
39 |
+
},
|
40 |
"car_binary": {
|
41 |
+
"buying": datasets.Value("int8"),
|
42 |
"maint": datasets.Value("int8"),
|
43 |
"doors": datasets.Value("int8"),
|
44 |
"persons": datasets.Value("int8"),
|
45 |
"lug_boot": datasets.Value("int8"),
|
46 |
"safety": datasets.Value("int8"),
|
47 |
+
"class": datasets.ClassLabel(num_classes=2,
|
48 |
names=("unacceptable", "acceptable"))
|
49 |
+
},
|
50 |
+
|
51 |
}
|
52 |
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
53 |
|
|
|
92 |
}
|
93 |
|
94 |
class CarConfig(datasets.BuilderConfig):
|
95 |
+
def __init__(self, **kwargs):
|
96 |
+
super(CarConfig, self).__init__(version=VERSION, **kwargs)
|
97 |
+
self.features = features_per_config[kwargs["name"]]
|
98 |
|
99 |
|
100 |
class Car(datasets.GeneratorBasedBuilder):
|
101 |
+
# dataset versions
|
102 |
+
DEFAULT_CONFIG = "car"
|
103 |
+
BUILDER_CONFIGS = [
|
104 |
+
CarConfig(name="car",
|
105 |
+
description="Car for 4-ary classification."),
|
106 |
CarConfig(name="car_binary",
|
107 |
+
description="Car for binary classification."),
|
108 |
+
]
|
109 |
|
110 |
|
111 |
+
def _info(self):
|
112 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
113 |
+
features=features_per_config[self.config.name])
|
114 |
|
115 |
+
return info
|
116 |
+
|
117 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
118 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
119 |
|
120 |
+
return [
|
121 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
|
122 |
+
]
|
123 |
+
|
124 |
+
def _generate_examples(self, filepath: str):
|
125 |
+
data = pandas.read_csv(filepath, header=None)
|
126 |
data = self.preprocess(data)
|
127 |
|
128 |
+
for row_id, row in data.iterrows():
|
129 |
+
data_row = dict(row)
|
130 |
|
131 |
+
yield row_id, data_row
|
132 |
|
133 |
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
|
134 |
+
data.columns = _BASE_FEATURE_NAMES
|
135 |
|
136 |
+
for feature in _ENCODING_DICS:
|
137 |
+
encoding_function = partial(self.encode, feature)
|
138 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
139 |
|
140 |
+
if config == "car_binary":
|
141 |
data.loc[:, "class"] = data["class"].apply(lambda x: if x == 0 else 1)
|
142 |
|
143 |
|
144 |
return data
|
145 |
+
|
146 |
+
def encode(self, feature, value):
|
147 |
+
if feature in _ENCODING_DICS:
|
148 |
+
return _ENCODING_DICS[feature][value]
|
149 |
+
raise ValueError(f"Unknown feature: {feature}")
|