File size: 3,807 Bytes
5f3e34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05978a
 
 
 
 
5f3e34e
 
4680d65
5f3e34e
 
 
c05978a
 
 
 
 
5f3e34e
c05978a
 
 
 
 
 
5f3e34e
c05978a
 
 
 
 
 
5f3e34e
c05978a
 
 
 
 
 
5f3e34e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05978a
5f3e34e
 
 
c05978a
5f3e34e
c05978a
5f3e34e
1e6ab91
 
 
5f3e34e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")


DESCRIPTION = "Hayes efficiency dataset from the UCI repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/242/hayes+efficiency"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/30/hayes+method+choice")
_CITATION = """
@misc{misc_hayes_efficiency_242,
  author       = {Tsanas,Athanasios & Xifara,Angeliki},
  title        = {{Hayes efficiency}},
  year         = {2012},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C51307}}
}"""

# Dataset info
_BASE_FEATURE_NAMES = [
	"name",
	"hobby",
	"age",
	"educational_level",
	"marital_level",
	"class"
]
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/hayes_roth/raw/main/hayes.data"
}
features_types_per_config = {
	"hayes": {
		"hobby": datasets.Value("string"),
		"age": datasets.Value("int8"),
		"educational_level": datasets.Value("int8"),
		"marital_level": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=3)
	},
	"hayes_1": {
		"hobby": datasets.Value("string"),
		"age": datasets.Value("int8"),
		"educational_level": datasets.Value("int8"),
		"marital_level": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=2)
	},
	"hayes_2": {
		"hobby": datasets.Value("string"),
		"age": datasets.Value("int8"),
		"educational_level": datasets.Value("int8"),
		"marital_level": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=2)
	},
	"hayes_3": {
		"hobby": datasets.Value("string"),
		"age": datasets.Value("int8"),
		"educational_level": datasets.Value("int8"),
		"marital_level": datasets.Value("string"),
		"class": datasets.ClassLabel(num_classes=2)
	}	
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class HayesConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(HayesConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class Hayes(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "hayes"
	BUILDER_CONFIGS = [
		HayesConfig(name="hayes", description="Hayes dataset."),
		HayesConfig(name="hayes_1", description="Hayes for binary classification (is example of class 1?)."),
		HayesConfig(name="hayes_2", description="Hayes for binary classification (is example of class 2?)."),
		HayesConfig(name="hayes_3", description="Hayes for binary classification (is example of class 3?).")
	]


	def _info(self):       
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath, header=None)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row
	
	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data.columns = _BASE_FEATURE_NAMES
		data.drop("name", axis="columns", inplace=True)

		if self.config.name == "hayes_1":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
		elif self.config.name == "hayes_2":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
		elif self.config.name == "hayes_3":
			data.loc[:, "class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
		else:
			data.loc[:, "class"] = data["class"].apply(lambda x: x - 1)


		return data