File size: 2,650 Bytes
c7dc54c
 
 
 
 
 
 
 
ee71034
c7dc54c
8321854
 
c7dc54c
 
 
8321854
c7dc54c
 
ee71034
3d00fe0
ee71034
 
 
 
3d00fe0
 
 
 
ebf3e57
 
 
 
 
 
ee71034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
language:
- en
tags:
- heloc
- fico
- tabular_classification
- binary_classification
pretty_name: Heloc
size_categories:
- 10K<n<100K
task_categories:
- tabular-classification
configs:
- risk
license: cc
---
# HELOC
The [HELOC dataset](https://community.fico.com/s/explainable-machine-learning-challenge?tabset-158d9=d157e) from FICO.
Each entry in the dataset is a line of credit, typically offered by a bank as a percentage of home equity (the difference between the current market value of a home and its purchase price).
The customers in this dataset have requested a credit line in the range of $5,000 - $150,000.
The fundamental task is to use the information about the applicant in their credit report to predict whether they will repay their HELOC account within 2 years.

# Configurations and tasks
| **Configuration** | **Task**                  | **Description**                                                 |
|-------------------|---------------------------|-----------------------------------------------------------------|
| risk              | Binary classification     | Will the customer default?                                      |

# Usage
```python
from datasets import load_dataset

dataset = load_dataset("mstz/heloc")["train"]
```

# Features
|**Feature**                                |**Type**|
|-------------------------------------------|--------|
|`estimate_of_risk`                         |`int8`  |
|`months_since_first_trade`                 |`int32` |
|`months_since_last_trade`                  |`int32` |
|`average_duration_of_resolution`           |`int32` |
|`number_of_satisfactory_trades`            |`int16` |
|`nr_trades_insolvent_for_over_60_days`     |`int16` |
|`nr_trades_insolvent_for_over_90_days`     |`int16` |
|`percentage_of_legal_trades`               |`int16` |
|`months_since_last_illegal_trade`          |`int32` |
|`maximum_illegal_trades_over_last_year`    |`int8`  |
|`maximum_illegal_trades`                   |`int16` |
|`nr_total_trades`                          |`int16` |
|`nr_trades_initiated_in_last_year`         |`int16` |
|`percentage_of_installment_trades`         |`int16` |
|`months_since_last_inquiry_not_recent`     |`int16` |
|`nr_inquiries_in_last_6_months`            |`int16` |
|`nr_inquiries_in_last_6_months_not_recent` |`int16` |
|`net_fraction_of_revolving_burden`         |`int32` |
|`net_fraction_of_installment_burden`       |`int32` |
|`nr_revolving_trades_with_balance`         |`int16` |
|`nr_installment_trades_with_balance`       |`int16` |
|`nr_banks_with_high_ratio`                 |`int16` |
|`percentage_trades_with_balance`           |`int16` |