File size: 3,758 Bytes
b331d80
 
 
 
 
 
 
 
 
 
 
 
010aa41
b331d80
 
 
 
 
 
010aa41
b331d80
 
 
 
 
010aa41
9955beb
 
 
 
b331d80
 
9955beb
 
 
 
 
b331d80
 
9955beb
 
 
 
 
 
b331d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f9456
 
 
 
 
b331d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a96703
010aa41
8a96703
 
b331d80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
    "rads",
    "age",
    "lesion_shape",
    "margin",
    "density",
    "is_severe"
]
_BASE_FEATURE_NAMES = [
    "age",
    "lesion_shape",
    "margin",
    "density",
    "is_severe"
]
_ENCODING_DICS = {
    "lesion_shape": {
        "1": "round",
        "2": "oval",
        "3": "lobular",
        "4": "irregular",
    },
    "margin": {
        "1": "circumbscribed",
        "2": "microlobulated",
        "3": "obscured",
        "4": "ill-defined",
        "5": "spiculated",
    },
    "density": {
        "1": "high",
        "2": "iso",
        "3": "low",
        "4": "fat-containing",
        "5": "spiculated",
    }
}

DESCRIPTION = "Mammography dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Mammography"
_URLS = ("https://huggingface.co/datasets/mstz/mammography/raw/mammography_masses.data")
_CITATION = """
@misc{misc_mammographic_mass_161,
  author       = {Elter,Matthias},
  title        = {{Mammographic Mass}},
  year         = {2007},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C53K6Z}}
}"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/mammography/raw/main/mammographic_masses.data"
}
features_types_per_config = {
    "mammography": {
        "age": datasets.Value("int8"),
        "lesion_shape": datasets.Value("string"),
        "margin": datasets.Value("string"),
        "density": datasets.Value("string"),
        "is_severe": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class MammographyConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(MammographyConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Mammography(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "mammography"
    BUILDER_CONFIGS = [       
        MammographyConfig(name="mammography",
                          description="Mammography for binary classification.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath, header=None)
        data.columns = _ORIGINAL_FEATURE_NAMES
        
        data.drop("rads", axis="columns", inplace=True)
        data = data[data.age != "?"]
        data = data[data.lesion_shape != "?"]
        data = data[data.margin != "?"]
        data = data[data.density != "?"]
        data = data.infer_objects()
        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row


    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")