parquet-converter commited on
Commit
242c8a0
·
1 Parent(s): a7f9456

Update parquet files

Browse files
README.md DELETED
@@ -1,30 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- tags:
5
- - mammography
6
- - tabular_classification
7
- - binary_classification
8
- pretty_name: Mammography
9
- size_categories:
10
- - 100<n<1K
11
- task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
- - tabular-classification
13
- configs:
14
- - mammography
15
- ---
16
- # Mammography
17
- The [Mammography dataset](https://archive.ics.uci.edu/ml/datasets/Mammography) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
18
-
19
- # Configurations and tasks
20
- | **Configuration** | **Task** | **Description** |
21
- |-------------------|---------------------------|------------------------|
22
- | mammography | Binary classification | Is the lesion benign? |
23
-
24
-
25
- # Usage
26
- ```python
27
- from datasets import load_dataset
28
-
29
- dataset = load_dataset("mstz/mammography", "mammography")["train"]
30
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mammographic_masses.data DELETED
@@ -1,961 +0,0 @@
1
- 5,67,3,5,3,1
2
- 4,43,1,1,?,1
3
- 5,58,4,5,3,1
4
- 4,28,1,1,3,0
5
- 5,74,1,5,?,1
6
- 4,65,1,?,3,0
7
- 4,70,?,?,3,0
8
- 5,42,1,?,3,0
9
- 5,57,1,5,3,1
10
- 5,60,?,5,1,1
11
- 5,76,1,4,3,1
12
- 3,42,2,1,3,1
13
- 4,64,1,?,3,0
14
- 4,36,3,1,2,0
15
- 4,60,2,1,2,0
16
- 4,54,1,1,3,0
17
- 3,52,3,4,3,0
18
- 4,59,2,1,3,1
19
- 4,54,1,1,3,1
20
- 4,40,1,?,?,0
21
- ?,66,?,?,1,1
22
- 5,56,4,3,1,1
23
- 4,43,1,?,?,0
24
- 5,42,4,4,3,1
25
- 4,59,2,4,3,1
26
- 5,75,4,5,3,1
27
- 2,66,1,1,?,0
28
- 5,63,3,?,3,0
29
- 5,45,4,5,3,1
30
- 5,55,4,4,3,0
31
- 4,46,1,5,2,0
32
- 5,54,4,4,3,1
33
- 5,57,4,4,3,1
34
- 4,39,1,1,2,0
35
- 4,81,1,1,3,0
36
- 4,77,3,?,?,0
37
- 4,60,2,1,3,0
38
- 5,67,3,4,2,1
39
- 4,48,4,5,?,1
40
- 4,55,3,4,2,0
41
- 4,59,2,1,?,0
42
- 4,78,1,1,1,0
43
- 4,50,1,1,3,0
44
- 4,61,2,1,?,0
45
- 5,62,3,5,2,1
46
- 5,44,2,4,?,1
47
- 5,64,4,5,3,1
48
- 4,23,1,1,?,0
49
- 2,42,?,?,4,0
50
- 5,67,4,5,3,1
51
- 4,74,2,1,2,0
52
- 5,80,3,5,3,1
53
- 4,23,1,1,?,0
54
- 4,63,2,1,?,0
55
- 4,53,?,5,3,1
56
- 4,43,3,4,?,0
57
- 4,49,2,1,1,0
58
- 5,51,2,4,?,0
59
- 4,45,2,1,?,0
60
- 5,59,2,?,?,1
61
- 5,52,4,3,3,1
62
- 5,60,4,3,3,1
63
- 4,57,2,5,3,0
64
- 3,57,2,1,?,0
65
- 5,74,4,4,3,1
66
- 4,25,2,1,?,0
67
- 4,49,1,1,3,0
68
- 5,72,4,3,?,1
69
- 4,45,2,1,3,0
70
- 4,64,2,1,3,0
71
- 4,73,2,1,2,0
72
- 5,68,4,3,3,1
73
- 5,52,4,5,3,0
74
- 5,66,4,4,3,1
75
- 5,70,?,4,?,1
76
- 4,25,1,1,3,0
77
- 5,74,1,1,2,1
78
- 4,64,1,1,3,0
79
- 5,60,4,3,2,1
80
- 5,67,2,4,1,0
81
- 4,67,4,5,3,0
82
- 5,44,4,4,2,1
83
- 3,68,1,1,3,1
84
- 4,57,?,4,1,0
85
- 5,51,4,?,?,1
86
- 4,33,1,?,?,0
87
- 5,58,4,4,3,1
88
- 5,36,1,?,?,0
89
- 4,63,1,1,?,0
90
- 5,62,1,5,3,1
91
- 4,73,3,4,3,1
92
- 4,80,4,4,3,1
93
- 4,67,1,1,?,0
94
- 5,59,2,1,3,1
95
- 5,60,1,?,3,0
96
- 5,54,4,4,3,1
97
- 4,40,1,1,?,0
98
- 4,47,2,1,?,0
99
- 5,62,4,4,3,0
100
- 4,33,2,1,3,0
101
- 5,59,2,?,?,0
102
- 4,65,2,?,?,0
103
- 4,58,4,4,?,0
104
- 4,29,2,?,?,0
105
- 4,58,1,1,?,0
106
- 4,54,1,1,?,0
107
- 4,44,1,1,?,1
108
- 3,34,2,1,?,0
109
- 4,57,1,1,3,0
110
- 5,33,4,4,?,1
111
- 4,45,4,4,3,0
112
- 5,71,4,4,3,1
113
- 5,59,4,4,2,0
114
- 4,56,2,1,?,0
115
- 4,40,3,4,?,0
116
- 4,56,1,1,3,0
117
- 4,45,2,1,?,0
118
- 4,57,2,1,2,0
119
- 5,55,3,4,3,1
120
- 5,84,4,5,3,0
121
- 5,51,4,4,3,1
122
- 4,43,1,1,?,0
123
- 4,24,2,1,2,0
124
- 4,66,1,1,3,0
125
- 5,33,4,4,3,0
126
- 4,59,4,3,2,0
127
- 4,76,2,3,?,0
128
- 4,40,1,1,?,0
129
- 4,52,?,4,?,0
130
- 5,40,4,5,3,1
131
- 5,67,4,4,3,1
132
- 5,75,4,3,3,1
133
- 5,86,4,4,3,0
134
- 4,60,2,?,?,0
135
- 5,66,4,4,3,1
136
- 5,46,4,5,3,1
137
- 4,59,4,4,3,1
138
- 5,65,4,4,3,1
139
- 4,53,1,1,3,0
140
- 5,67,3,5,3,1
141
- 5,80,4,5,3,1
142
- 4,55,2,1,3,0
143
- 4,48,1,1,?,0
144
- 4,47,1,1,2,0
145
- 4,50,2,1,?,0
146
- 5,62,4,5,3,1
147
- 5,63,4,4,3,1
148
- 4,63,4,?,3,1
149
- 4,71,4,4,3,1
150
- 4,41,1,1,3,0
151
- 5,57,4,4,4,1
152
- 5,71,4,4,4,1
153
- 4,66,1,1,3,0
154
- 4,47,2,4,2,0
155
- 3,34,4,4,3,0
156
- 4,59,3,4,3,0
157
- 5,55,2,?,?,1
158
- 4,51,?,?,3,0
159
- 4,62,2,1,?,0
160
- 4,58,4,?,3,1
161
- 5,67,4,4,3,1
162
- 4,41,2,1,3,0
163
- 4,23,3,1,3,0
164
- 4,53,?,4,3,0
165
- 4,42,2,1,3,0
166
- 5,87,4,5,3,1
167
- 4,68,1,1,3,1
168
- 4,64,1,1,3,0
169
- 5,54,3,5,3,1
170
- 5,86,4,5,3,1
171
- 4,21,2,1,3,0
172
- 4,39,1,1,?,0
173
- 4,53,4,4,3,0
174
- 4,44,4,4,3,0
175
- 4,54,1,1,3,0
176
- 5,63,4,5,3,1
177
- 4,62,2,1,?,0
178
- 4,45,2,1,2,0
179
- 5,71,4,5,3,0
180
- 5,49,4,4,3,1
181
- 4,49,4,4,3,0
182
- 5,66,4,4,4,0
183
- 4,19,1,1,3,0
184
- 4,35,1,1,2,0
185
- 4,71,3,3,?,1
186
- 5,74,4,5,3,1
187
- 5,37,4,4,3,1
188
- 4,67,1,?,3,0
189
- 5,81,3,4,3,1
190
- 5,59,4,4,3,1
191
- 4,34,1,1,3,0
192
- 5,79,4,3,3,1
193
- 5,60,3,1,3,0
194
- 4,41,1,1,3,1
195
- 4,50,1,1,3,0
196
- 5,85,4,4,3,1
197
- 4,46,1,1,3,0
198
- 5,66,4,4,3,1
199
- 4,73,3,1,2,0
200
- 4,55,1,1,3,0
201
- 4,49,2,1,3,0
202
- 3,49,4,4,3,0
203
- 4,51,4,5,3,1
204
- 2,48,4,4,3,0
205
- 4,58,4,5,3,0
206
- 5,72,4,5,3,1
207
- 4,46,2,3,3,0
208
- 4,43,4,3,3,1
209
- ?,52,4,4,3,0
210
- 4,66,2,1,?,0
211
- 4,46,1,1,1,0
212
- 4,69,3,1,3,0
213
- 2,59,1,1,?,1
214
- 5,43,2,1,3,1
215
- 5,76,4,5,3,1
216
- 4,46,1,1,3,0
217
- 4,59,2,4,3,0
218
- 4,57,1,1,3,0
219
- 5,43,4,5,?,0
220
- 3,45,2,1,3,0
221
- 3,43,2,1,3,0
222
- 4,45,2,1,3,0
223
- 5,57,4,5,3,1
224
- 5,79,4,4,3,1
225
- 5,54,2,1,3,1
226
- 4,40,3,4,3,0
227
- 5,63,4,4,3,1
228
- 2,55,1,?,1,0
229
- 4,52,2,1,3,0
230
- 4,38,1,1,3,0
231
- 3,72,4,3,3,0
232
- 5,80,4,3,3,1
233
- 5,76,4,3,3,1
234
- 4,62,3,1,3,0
235
- 5,64,4,5,3,1
236
- 5,42,4,5,3,0
237
- 3,60,?,3,1,0
238
- 4,64,4,5,3,0
239
- 4,63,4,4,3,1
240
- 4,24,2,1,2,0
241
- 5,72,4,4,3,1
242
- 4,63,2,1,3,0
243
- 4,46,1,1,3,0
244
- 3,33,1,1,3,0
245
- 5,76,4,4,3,1
246
- 4,36,2,3,3,0
247
- 4,40,2,1,3,0
248
- 5,58,1,5,3,1
249
- 4,43,2,1,3,0
250
- 3,42,1,1,3,0
251
- 4,32,1,1,3,0
252
- 5,57,4,4,2,1
253
- 4,37,1,1,3,0
254
- 4,70,4,4,3,1
255
- 5,56,4,2,3,1
256
- 3,76,?,3,2,0
257
- 5,73,4,4,3,1
258
- 5,77,4,5,3,1
259
- 5,67,4,4,1,1
260
- 5,71,4,3,3,1
261
- 5,65,4,4,3,1
262
- 4,43,1,1,3,0
263
- 4,40,2,1,?,0
264
- 4,49,2,1,3,0
265
- 5,76,4,2,3,1
266
- 4,55,4,4,3,0
267
- 5,72,4,5,3,1
268
- 3,53,4,3,3,0
269
- 5,75,4,4,3,1
270
- 5,61,4,5,3,1
271
- 5,67,4,4,3,1
272
- 5,55,4,2,3,1
273
- 5,66,4,4,3,1
274
- 2,76,1,1,2,0
275
- 4,57,4,4,3,1
276
- 5,71,3,1,3,0
277
- 5,70,4,5,3,1
278
- 4,35,4,2,?,0
279
- 5,79,1,?,3,1
280
- 4,63,2,1,3,0
281
- 5,40,1,4,3,1
282
- 4,41,1,1,3,0
283
- 4,47,2,1,2,0
284
- 4,68,1,1,3,1
285
- 4,64,4,3,3,1
286
- 4,65,4,4,?,1
287
- 4,73,4,3,3,0
288
- 4,39,4,3,3,0
289
- 5,55,4,5,4,1
290
- 5,53,3,4,4,0
291
- 5,66,4,4,3,1
292
- 4,43,3,1,2,0
293
- 5,44,4,5,3,1
294
- 4,77,4,4,3,1
295
- 4,62,2,4,3,0
296
- 5,80,4,4,3,1
297
- 4,33,4,4,3,0
298
- 4,50,4,5,3,1
299
- 4,71,1,?,3,0
300
- 5,46,4,4,3,1
301
- 5,49,4,5,3,1
302
- 4,53,1,1,3,0
303
- 3,46,2,1,2,0
304
- 4,57,1,1,3,0
305
- 4,54,3,1,3,0
306
- 4,54,1,?,?,0
307
- 2,49,2,1,2,0
308
- 4,47,3,1,3,0
309
- 4,40,1,1,3,0
310
- 4,45,1,1,3,0
311
- 4,50,4,5,3,1
312
- 5,54,4,4,3,1
313
- 4,67,4,1,3,1
314
- 4,77,4,4,3,1
315
- 4,66,4,3,3,0
316
- 4,71,2,?,3,1
317
- 4,36,2,3,3,0
318
- 4,69,4,4,3,0
319
- 4,48,1,1,3,0
320
- 4,64,4,4,3,1
321
- 4,71,4,2,3,1
322
- 5,60,4,3,3,1
323
- 4,24,1,1,3,0
324
- 5,34,4,5,2,1
325
- 4,79,1,1,2,0
326
- 4,45,1,1,3,0
327
- 4,37,2,1,2,0
328
- 4,42,1,1,2,0
329
- 4,72,4,4,3,1
330
- 5,60,4,5,3,1
331
- 5,85,3,5,3,1
332
- 4,51,1,1,3,0
333
- 5,54,4,5,3,1
334
- 5,55,4,3,3,1
335
- 4,64,4,4,3,0
336
- 5,67,4,5,3,1
337
- 5,75,4,3,3,1
338
- 5,87,4,4,3,1
339
- 4,46,4,4,3,1
340
- 4,59,2,1,?,0
341
- 55,46,4,3,3,1
342
- 5,61,1,1,3,1
343
- 4,44,1,4,3,0
344
- 4,32,1,1,3,0
345
- 4,62,1,1,3,0
346
- 5,59,4,5,3,1
347
- 4,61,4,1,3,0
348
- 5,78,4,4,3,1
349
- 5,42,4,5,3,0
350
- 4,45,1,2,3,0
351
- 5,34,2,1,3,1
352
- 5,39,4,3,?,1
353
- 4,27,3,1,3,0
354
- 4,43,1,1,3,0
355
- 5,83,4,4,3,1
356
- 4,36,2,1,3,0
357
- 4,37,2,1,3,0
358
- 4,56,3,1,3,1
359
- 5,55,4,4,3,1
360
- 5,46,3,?,3,0
361
- 4,88,4,4,3,1
362
- 5,71,4,4,3,1
363
- 4,41,2,1,3,0
364
- 5,49,4,4,3,1
365
- 3,51,1,1,4,0
366
- 4,39,1,3,3,0
367
- 4,46,2,1,3,0
368
- 5,52,4,4,3,1
369
- 5,58,4,4,3,1
370
- 4,67,4,5,3,1
371
- 5,80,4,4,3,1
372
- 3,46,1,?,?,0
373
- 3,43,1,?,?,0
374
- 4,45,1,1,3,0
375
- 5,68,4,4,3,1
376
- 4,54,4,4,?,1
377
- 4,44,2,3,3,0
378
- 5,74,4,3,3,1
379
- 5,55,4,5,3,0
380
- 4,49,4,4,3,1
381
- 4,49,1,1,3,0
382
- 5,50,4,3,3,1
383
- 5,52,3,5,3,1
384
- 4,45,1,1,3,0
385
- 4,66,1,1,3,0
386
- 4,68,4,4,3,1
387
- 4,72,2,1,3,0
388
- 5,64,?,?,3,0
389
- 2,49,?,3,3,0
390
- 3,44,?,4,3,0
391
- 5,74,4,4,3,1
392
- 5,58,4,4,3,1
393
- 4,77,2,3,3,0
394
- 4,49,3,1,3,0
395
- 4,34,?,?,4,0
396
- 5,60,4,3,3,1
397
- 5,69,4,3,3,1
398
- 4,53,2,1,3,0
399
- 3,46,3,4,3,0
400
- 5,74,4,4,3,1
401
- 4,58,1,1,3,0
402
- 5,68,4,4,3,1
403
- 5,46,4,3,3,0
404
- 5,61,2,4,3,1
405
- 5,70,4,3,3,1
406
- 5,37,4,4,3,1
407
- 3,65,4,5,3,1
408
- 4,67,4,4,3,0
409
- 5,69,3,4,3,0
410
- 5,76,4,4,3,1
411
- 4,65,4,3,3,0
412
- 5,72,4,2,3,1
413
- 4,62,4,2,3,0
414
- 5,42,4,4,3,1
415
- 5,66,4,3,3,1
416
- 5,48,4,4,3,1
417
- 4,35,1,1,3,0
418
- 5,60,4,4,3,1
419
- 5,67,4,2,3,1
420
- 5,78,4,4,3,1
421
- 4,66,1,1,3,1
422
- 4,26,1,1,?,0
423
- 4,48,1,1,3,0
424
- 4,31,1,1,3,0
425
- 5,43,4,3,3,1
426
- 5,72,2,4,3,0
427
- 5,66,1,1,3,1
428
- 4,56,4,4,3,0
429
- 5,58,4,5,3,1
430
- 5,33,2,4,3,1
431
- 4,37,1,1,3,0
432
- 5,36,4,3,3,1
433
- 4,39,2,3,3,0
434
- 4,39,4,4,3,1
435
- 5,83,4,4,3,1
436
- 4,68,4,5,3,1
437
- 5,63,3,4,3,1
438
- 5,78,4,4,3,1
439
- 4,38,2,3,3,0
440
- 5,46,4,3,3,1
441
- 5,60,4,4,3,1
442
- 5,56,2,3,3,1
443
- 4,33,1,1,3,0
444
- 4,?,4,5,3,1
445
- 4,69,1,5,3,1
446
- 5,66,1,4,3,1
447
- 4,72,1,3,3,0
448
- 4,29,1,1,3,0
449
- 5,54,4,5,3,1
450
- 5,80,4,4,3,1
451
- 5,68,4,3,3,1
452
- 4,35,2,1,3,0
453
- 4,57,3,?,3,0
454
- 5,?,4,4,3,1
455
- 4,50,1,1,3,0
456
- 4,32,4,3,3,0
457
- 0,69,4,5,3,1
458
- 4,71,4,5,3,1
459
- 5,87,4,5,3,1
460
- 3,40,2,?,3,0
461
- 4,31,1,1,?,0
462
- 4,64,1,1,3,0
463
- 5,55,4,5,3,1
464
- 4,18,1,1,3,0
465
- 3,50,2,1,?,0
466
- 4,53,1,1,3,0
467
- 5,84,4,5,3,1
468
- 5,80,4,3,3,1
469
- 4,32,1,1,3,0
470
- 5,77,3,4,3,1
471
- 4,38,1,1,3,0
472
- 5,54,4,5,3,1
473
- 4,63,1,1,3,0
474
- 4,61,1,1,3,0
475
- 4,52,1,1,3,0
476
- 4,36,1,1,3,0
477
- 4,41,?,?,3,0
478
- 4,59,1,1,3,0
479
- 5,51,4,4,2,1
480
- 4,36,1,1,3,0
481
- 5,40,4,3,3,1
482
- 4,49,1,1,3,0
483
- 4,37,2,3,3,0
484
- 4,46,1,1,3,0
485
- 4,63,1,1,3,0
486
- 4,28,2,1,3,0
487
- 4,47,2,1,3,0
488
- 4,42,2,1,3,1
489
- 5,44,4,5,3,1
490
- 4,49,4,4,3,0
491
- 5,47,4,5,3,1
492
- 5,52,4,5,3,1
493
- 4,53,1,1,3,1
494
- 5,83,3,3,3,1
495
- 4,50,4,4,?,1
496
- 5,63,4,4,3,1
497
- 4,82,?,5,3,1
498
- 4,54,1,1,3,0
499
- 4,50,4,4,3,0
500
- 5,80,4,5,3,1
501
- 5,45,2,4,3,0
502
- 5,59,4,4,?,1
503
- 4,28,2,1,3,0
504
- 4,31,1,1,3,0
505
- 4,41,2,1,3,0
506
- 4,21,3,1,3,0
507
- 5,44,3,4,3,1
508
- 5,49,4,4,3,1
509
- 5,71,4,5,3,1
510
- 5,75,4,5,3,1
511
- 4,38,2,1,3,0
512
- 4,60,1,3,3,0
513
- 5,87,4,5,3,1
514
- 4,70,4,4,3,1
515
- 5,55,4,5,3,1
516
- 3,21,1,1,3,0
517
- 4,50,1,1,3,0
518
- 5,76,4,5,3,1
519
- 4,23,1,1,3,0
520
- 3,68,?,?,3,0
521
- 4,62,4,?,3,1
522
- 5,65,1,?,3,1
523
- 5,73,4,5,3,1
524
- 4,38,2,3,3,0
525
- 2,57,1,1,3,0
526
- 5,65,4,5,3,1
527
- 5,67,2,4,3,1
528
- 5,61,2,4,3,1
529
- 5,56,4,4,3,0
530
- 5,71,2,4,3,1
531
- 4,49,2,2,3,0
532
- 4,55,?,?,3,0
533
- 4,44,2,1,3,0
534
- 0,58,4,4,3,0
535
- 4,27,2,1,3,0
536
- 5,73,4,5,3,1
537
- 4,34,2,1,3,0
538
- 5,63,?,4,3,1
539
- 4,50,2,1,3,1
540
- 4,62,2,1,3,0
541
- 3,21,3,1,3,0
542
- 4,49,2,?,3,0
543
- 4,36,3,1,3,0
544
- 4,45,2,1,3,1
545
- 5,67,4,5,3,1
546
- 4,21,1,1,3,0
547
- 4,57,2,1,3,0
548
- 5,66,4,5,3,1
549
- 4,71,4,4,3,1
550
- 5,69,3,4,3,1
551
- 6,80,4,5,3,1
552
- 3,27,2,1,3,0
553
- 4,38,2,1,3,0
554
- 4,23,2,1,3,0
555
- 5,70,?,5,3,1
556
- 4,46,4,3,3,0
557
- 4,61,2,3,3,0
558
- 5,65,4,5,3,1
559
- 4,60,4,3,3,0
560
- 5,83,4,5,3,1
561
- 5,40,4,4,3,1
562
- 2,59,?,4,3,0
563
- 4,53,3,4,3,0
564
- 4,76,4,4,3,0
565
- 5,79,1,4,3,1
566
- 5,38,2,4,3,1
567
- 4,61,3,4,3,0
568
- 4,56,2,1,3,0
569
- 4,44,2,1,3,0
570
- 4,64,3,4,?,1
571
- 4,66,3,3,3,0
572
- 4,50,3,3,3,0
573
- 4,46,1,1,3,0
574
- 4,39,1,1,3,0
575
- 4,60,3,?,?,0
576
- 5,55,4,5,3,1
577
- 4,40,2,1,3,0
578
- 4,26,1,1,3,0
579
- 5,84,3,2,3,1
580
- 4,41,2,2,3,0
581
- 4,63,1,1,3,0
582
- 2,65,?,1,2,0
583
- 4,49,1,1,3,0
584
- 4,56,2,2,3,1
585
- 5,65,4,4,3,0
586
- 4,54,1,1,3,0
587
- 4,36,1,1,3,0
588
- 5,49,4,4,3,0
589
- 4,59,4,4,3,1
590
- 5,75,4,4,3,1
591
- 5,59,4,2,3,0
592
- 5,59,4,4,3,1
593
- 4,28,4,4,3,1
594
- 5,53,4,5,3,0
595
- 5,57,4,4,3,0
596
- 5,77,4,3,4,0
597
- 5,85,4,3,3,1
598
- 4,59,4,4,3,0
599
- 5,59,1,5,3,1
600
- 4,65,3,3,3,1
601
- 4,54,2,1,3,0
602
- 5,46,4,5,3,1
603
- 4,63,4,4,3,1
604
- 4,53,1,1,3,1
605
- 4,56,1,1,3,0
606
- 5,66,4,4,3,1
607
- 5,66,4,5,3,1
608
- 4,55,1,1,3,0
609
- 4,44,1,1,3,0
610
- 5,86,3,4,3,1
611
- 5,47,4,5,3,1
612
- 5,59,4,5,3,1
613
- 5,66,4,5,3,0
614
- 5,61,4,3,3,1
615
- 3,46,?,5,?,1
616
- 4,69,1,1,3,0
617
- 5,93,1,5,3,1
618
- 4,39,1,3,3,0
619
- 5,44,4,5,3,1
620
- 4,45,2,2,3,0
621
- 4,51,3,4,3,0
622
- 4,56,2,4,3,0
623
- 4,66,4,4,3,0
624
- 5,61,4,5,3,1
625
- 4,64,3,3,3,1
626
- 5,57,2,4,3,0
627
- 5,79,4,4,3,1
628
- 4,57,2,1,?,0
629
- 4,44,4,1,1,0
630
- 4,31,2,1,3,0
631
- 4,63,4,4,3,0
632
- 4,64,1,1,3,0
633
- 5,47,4,5,3,0
634
- 5,68,4,5,3,1
635
- 4,30,1,1,3,0
636
- 5,43,4,5,3,1
637
- 4,56,1,1,3,0
638
- 4,46,2,1,3,0
639
- 4,67,2,1,3,0
640
- 5,52,4,5,3,1
641
- 4,67,4,4,3,1
642
- 4,47,2,1,3,0
643
- 5,58,4,5,3,1
644
- 4,28,2,1,3,0
645
- 4,43,1,1,3,0
646
- 4,57,2,4,3,0
647
- 5,68,4,5,3,1
648
- 4,64,2,4,3,0
649
- 4,64,2,4,3,0
650
- 5,62,4,4,3,1
651
- 4,38,4,1,3,0
652
- 5,68,4,4,3,1
653
- 4,41,2,1,3,0
654
- 4,35,2,1,3,1
655
- 4,68,2,1,3,0
656
- 5,55,4,4,3,1
657
- 5,67,4,4,3,1
658
- 4,51,4,3,3,0
659
- 2,40,1,1,3,0
660
- 5,73,4,4,3,1
661
- 4,58,?,4,3,1
662
- 4,51,?,4,3,0
663
- 3,50,?,?,3,1
664
- 5,59,4,3,3,1
665
- 6,60,3,5,3,1
666
- 4,27,2,1,?,0
667
- 5,54,4,3,3,0
668
- 4,56,1,1,3,0
669
- 5,53,4,5,3,1
670
- 4,54,2,4,3,0
671
- 5,79,1,4,3,1
672
- 5,67,4,3,3,1
673
- 5,64,3,3,3,1
674
- 4,70,1,2,3,1
675
- 5,55,4,3,3,1
676
- 5,65,3,3,3,1
677
- 5,45,4,2,3,1
678
- 4,57,4,4,?,1
679
- 5,49,1,1,3,1
680
- 4,24,2,1,3,0
681
- 4,52,1,1,3,0
682
- 4,50,2,1,3,0
683
- 4,35,1,1,3,0
684
- 5,?,3,3,3,1
685
- 5,64,4,3,3,1
686
- 5,40,4,1,1,1
687
- 5,66,4,4,3,1
688
- 4,64,4,4,3,1
689
- 5,52,4,3,3,1
690
- 5,43,1,4,3,1
691
- 4,56,4,4,3,0
692
- 4,72,3,?,3,0
693
- 6,51,4,4,3,1
694
- 4,79,4,4,3,1
695
- 4,22,2,1,3,0
696
- 4,73,2,1,3,0
697
- 4,53,3,4,3,0
698
- 4,59,2,1,3,1
699
- 4,46,4,4,2,0
700
- 5,66,4,4,3,1
701
- 4,50,4,3,3,1
702
- 4,58,1,1,3,1
703
- 4,55,1,1,3,0
704
- 4,62,2,4,3,1
705
- 4,60,1,1,3,0
706
- 5,57,4,3,3,1
707
- 4,57,1,1,3,0
708
- 6,41,2,1,3,0
709
- 4,71,2,1,3,1
710
- 4,32,2,1,3,0
711
- 4,57,2,1,3,0
712
- 4,19,1,1,3,0
713
- 4,62,2,4,3,1
714
- 5,67,4,5,3,1
715
- 4,50,4,5,3,0
716
- 4,65,2,3,2,0
717
- 4,40,2,4,2,0
718
- 6,71,4,4,3,1
719
- 6,68,4,3,3,1
720
- 4,68,1,1,3,0
721
- 4,29,1,1,3,0
722
- 4,53,2,1,3,0
723
- 5,66,4,4,3,1
724
- 4,60,3,?,4,0
725
- 5,76,4,4,3,1
726
- 4,58,2,1,2,0
727
- 5,96,3,4,3,1
728
- 5,70,4,4,3,1
729
- 4,34,2,1,3,0
730
- 4,59,2,1,3,0
731
- 4,45,3,1,3,1
732
- 5,65,4,4,3,1
733
- 4,59,1,1,3,0
734
- 4,21,2,1,3,0
735
- 3,43,2,1,3,0
736
- 4,53,1,1,3,0
737
- 4,65,2,1,3,0
738
- 4,64,2,4,3,1
739
- 4,53,4,4,3,0
740
- 4,51,1,1,3,0
741
- 4,59,2,4,3,0
742
- 4,56,2,1,3,0
743
- 4,60,2,1,3,0
744
- 4,22,1,1,3,0
745
- 4,25,2,1,3,0
746
- 6,76,3,?,3,0
747
- 5,69,4,4,3,1
748
- 4,58,2,1,3,0
749
- 5,62,4,3,3,1
750
- 4,56,4,4,3,0
751
- 4,64,1,1,3,0
752
- 4,32,2,1,3,0
753
- 5,48,?,4,?,1
754
- 5,59,4,4,2,1
755
- 4,52,1,1,3,0
756
- 4,63,4,4,3,0
757
- 5,67,4,4,3,1
758
- 5,61,4,4,3,1
759
- 5,59,4,5,3,1
760
- 5,52,4,3,3,1
761
- 4,35,4,4,3,0
762
- 5,77,3,3,3,1
763
- 5,71,4,3,3,1
764
- 5,63,4,3,3,1
765
- 4,38,2,1,2,0
766
- 5,72,4,3,3,1
767
- 4,76,4,3,3,1
768
- 4,53,3,3,3,0
769
- 4,67,4,5,3,0
770
- 5,69,2,4,3,1
771
- 4,54,1,1,3,0
772
- 2,35,2,1,2,0
773
- 5,68,4,3,3,1
774
- 4,68,4,4,3,0
775
- 4,67,2,4,3,1
776
- 3,39,1,1,3,0
777
- 4,44,2,1,3,0
778
- 4,33,1,1,3,0
779
- 4,60,?,4,3,0
780
- 4,58,1,1,3,0
781
- 4,31,1,1,3,0
782
- 3,23,1,1,3,0
783
- 5,56,4,5,3,1
784
- 4,69,2,1,3,1
785
- 6,63,1,1,3,0
786
- 4,65,1,1,3,1
787
- 4,44,2,1,2,0
788
- 4,62,3,3,3,1
789
- 4,67,4,4,3,1
790
- 4,56,2,1,3,0
791
- 4,52,3,4,3,0
792
- 4,43,1,1,3,1
793
- 4,41,4,3,2,1
794
- 4,42,3,4,2,0
795
- 3,46,1,1,3,0
796
- 5,55,4,4,3,1
797
- 5,58,4,4,2,1
798
- 5,87,4,4,3,1
799
- 4,66,2,1,3,0
800
- 0,72,4,3,3,1
801
- 5,60,4,3,3,1
802
- 5,83,4,4,2,1
803
- 4,31,2,1,3,0
804
- 4,53,2,1,3,0
805
- 4,64,2,3,3,0
806
- 5,31,4,4,2,1
807
- 5,62,4,4,2,1
808
- 4,56,2,1,3,0
809
- 5,58,4,4,3,1
810
- 4,67,1,4,3,0
811
- 5,75,4,5,3,1
812
- 5,65,3,4,3,1
813
- 5,74,3,2,3,1
814
- 4,59,2,1,3,0
815
- 4,57,4,4,4,1
816
- 4,76,3,2,3,0
817
- 4,63,1,4,3,0
818
- 4,44,1,1,3,0
819
- 4,42,3,1,2,0
820
- 4,35,3,?,2,0
821
- 5,65,4,3,3,1
822
- 4,70,2,1,3,0
823
- 4,48,1,1,3,0
824
- 4,74,1,1,1,1
825
- 6,40,?,3,4,1
826
- 4,63,1,1,3,0
827
- 5,60,4,4,3,1
828
- 5,86,4,3,3,1
829
- 4,27,1,1,3,0
830
- 4,71,4,5,2,1
831
- 5,85,4,4,3,1
832
- 4,51,3,3,3,0
833
- 6,72,4,3,3,1
834
- 5,52,4,4,3,1
835
- 4,66,2,1,3,0
836
- 5,71,4,5,3,1
837
- 4,42,2,1,3,0
838
- 4,64,4,4,2,1
839
- 4,41,2,2,3,0
840
- 4,50,2,1,3,0
841
- 4,30,1,1,3,0
842
- 4,67,1,1,3,0
843
- 5,62,4,4,3,1
844
- 4,46,2,1,2,0
845
- 4,35,1,1,3,0
846
- 4,53,1,1,2,0
847
- 4,59,2,1,3,0
848
- 4,19,3,1,3,0
849
- 5,86,2,1,3,1
850
- 4,72,2,1,3,0
851
- 4,37,2,1,2,0
852
- 4,46,3,1,3,1
853
- 4,45,1,1,3,0
854
- 4,48,4,5,3,0
855
- 4,58,4,4,3,1
856
- 4,42,1,1,3,0
857
- 4,56,2,4,3,1
858
- 4,47,2,1,3,0
859
- 4,49,4,4,3,1
860
- 5,76,2,5,3,1
861
- 5,62,4,5,3,1
862
- 5,64,4,4,3,1
863
- 5,53,4,3,3,1
864
- 4,70,4,2,2,1
865
- 5,55,4,4,3,1
866
- 4,34,4,4,3,0
867
- 5,76,4,4,3,1
868
- 4,39,1,1,3,0
869
- 2,23,1,1,3,0
870
- 4,19,1,1,3,0
871
- 5,65,4,5,3,1
872
- 4,57,2,1,3,0
873
- 5,41,4,4,3,1
874
- 4,36,4,5,3,1
875
- 4,62,3,3,3,0
876
- 4,69,2,1,3,0
877
- 4,41,3,1,3,0
878
- 3,51,2,4,3,0
879
- 5,50,3,2,3,1
880
- 4,47,4,4,3,0
881
- 4,54,4,5,3,1
882
- 5,52,4,4,3,1
883
- 4,30,1,1,3,0
884
- 3,48,4,4,3,1
885
- 5,?,4,4,3,1
886
- 4,65,2,4,3,1
887
- 4,50,1,1,3,0
888
- 5,65,4,5,3,1
889
- 5,66,4,3,3,1
890
- 6,41,3,3,2,1
891
- 5,72,3,2,3,1
892
- 4,42,1,1,1,1
893
- 4,80,4,4,3,1
894
- 0,45,2,4,3,0
895
- 4,41,1,1,3,0
896
- 4,72,3,3,3,1
897
- 4,60,4,5,3,0
898
- 5,67,4,3,3,1
899
- 4,55,2,1,3,0
900
- 4,61,3,4,3,1
901
- 4,55,3,4,3,1
902
- 4,52,4,4,3,1
903
- 4,42,1,1,3,0
904
- 5,63,4,4,3,1
905
- 4,62,4,5,3,1
906
- 4,46,1,1,3,0
907
- 4,65,2,1,3,0
908
- 4,57,3,3,3,1
909
- 4,66,4,5,3,1
910
- 4,45,1,1,3,0
911
- 4,77,4,5,3,1
912
- 4,35,1,1,3,0
913
- 4,50,4,5,3,1
914
- 4,57,4,4,3,0
915
- 4,74,3,1,3,1
916
- 4,59,4,5,3,0
917
- 4,51,1,1,3,0
918
- 4,42,3,4,3,1
919
- 4,35,2,4,3,0
920
- 4,42,1,1,3,0
921
- 4,43,2,1,3,0
922
- 4,62,4,4,3,1
923
- 4,27,2,1,3,0
924
- 5,?,4,3,3,1
925
- 4,57,4,4,3,1
926
- 4,59,2,1,3,0
927
- 5,40,3,2,3,1
928
- 4,20,1,1,3,0
929
- 5,74,4,3,3,1
930
- 4,22,1,1,3,0
931
- 4,57,4,3,3,0
932
- 4,57,4,3,3,1
933
- 4,55,2,1,2,0
934
- 4,62,2,1,3,0
935
- 4,54,1,1,3,0
936
- 4,71,1,1,3,1
937
- 4,65,3,3,3,0
938
- 4,68,4,4,3,0
939
- 4,64,1,1,3,0
940
- 4,54,2,4,3,0
941
- 4,48,4,4,3,1
942
- 4,58,4,3,3,0
943
- 5,58,3,4,3,1
944
- 4,70,1,1,1,0
945
- 5,70,1,4,3,1
946
- 4,59,2,1,3,0
947
- 4,57,2,4,3,0
948
- 4,53,4,5,3,0
949
- 4,54,4,4,3,1
950
- 4,53,2,1,3,0
951
- 0,71,4,4,3,1
952
- 5,67,4,5,3,1
953
- 4,68,4,4,3,1
954
- 4,56,2,4,3,0
955
- 4,35,2,1,3,0
956
- 4,52,4,4,3,1
957
- 4,47,2,1,3,0
958
- 4,56,4,5,3,1
959
- 4,64,4,5,3,0
960
- 5,66,4,5,3,1
961
- 4,62,3,3,3,0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mammography.py DELETED
@@ -1,132 +0,0 @@
1
- """Mammography"""
2
-
3
- from typing import List
4
- from functools import partial
5
-
6
- import datasets
7
-
8
- import pandas
9
-
10
-
11
- VERSION = datasets.Version("1.0.0")
12
- _ORIGINAL_FEATURE_NAMES = [
13
- "rads",
14
- "age",
15
- "lesion_shape",
16
- "margin",
17
- "density",
18
- "is_severe"
19
- ]
20
- _BASE_FEATURE_NAMES = [
21
- "age",
22
- "lesion_shape",
23
- "margin",
24
- "density",
25
- "is_severe"
26
- ]
27
- _ENCODING_DICS = {
28
- "lesion_shape": {
29
- "1": "round",
30
- "2": "oval",
31
- "3": "lobular",
32
- "4": "irregular",
33
- },
34
- "margin": {
35
- "1": "circumbscribed",
36
- "2": "microlobulated",
37
- "3": "obscured",
38
- "4": "ill-defined",
39
- "5": "spiculated",
40
- },
41
- "density": {
42
- "1": "high",
43
- "2": "iso",
44
- "3": "low",
45
- "4": "fat-containing",
46
- "5": "spiculated",
47
- }
48
- }
49
-
50
- DESCRIPTION = "Mammography dataset from the UCI ML repository."
51
- _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Mammography"
52
- _URLS = ("https://huggingface.co/datasets/mstz/mammography/raw/mammography_masses.data")
53
- _CITATION = """
54
- @misc{misc_mammographic_mass_161,
55
- author = {Elter,Matthias},
56
- title = {{Mammographic Mass}},
57
- year = {2007},
58
- howpublished = {UCI Machine Learning Repository},
59
- note = {{DOI}: \\url{10.24432/C53K6Z}}
60
- }"""
61
-
62
- # Dataset info
63
- urls_per_split = {
64
- "train": "https://huggingface.co/datasets/mstz/mammography/raw/main/mammographic_masses.data"
65
- }
66
- features_types_per_config = {
67
- "mammography": {
68
- "age": datasets.Value("int8"),
69
- "lesion_shape": datasets.Value("string"),
70
- "margin": datasets.Value("string"),
71
- "density": datasets.Value("string"),
72
- "is_severe": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
73
- }
74
- }
75
- features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
76
-
77
-
78
- class MammographyConfig(datasets.BuilderConfig):
79
- def __init__(self, **kwargs):
80
- super(MammographyConfig, self).__init__(version=VERSION, **kwargs)
81
- self.features = features_per_config[kwargs["name"]]
82
-
83
-
84
- class Mammography(datasets.GeneratorBasedBuilder):
85
- # dataset versions
86
- DEFAULT_CONFIG = "mammography"
87
- BUILDER_CONFIGS = [
88
- MammographyConfig(name="mammography",
89
- description="Mammography for binary classification.")
90
- ]
91
-
92
-
93
- def _info(self):
94
- info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
95
- features=features_per_config[self.config.name])
96
-
97
- return info
98
-
99
- def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
100
- downloads = dl_manager.download_and_extract(urls_per_split)
101
-
102
- return [
103
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
104
- ]
105
-
106
- def _generate_examples(self, filepath: str):
107
- data = pandas.read_csv(filepath, header=None)
108
- data.columns = _ORIGINAL_FEATURE_NAMES
109
-
110
- data.drop("rads", axis="columns", inplace=True)
111
- data = data[data.age != "?"]
112
- data = data[data.lesion_shape != "?"]
113
- data = data[data.margin != "?"]
114
- data = data[data.density != "?"]
115
- data = data.infer_objects()
116
- for feature in _ENCODING_DICS:
117
- print(feature)
118
- print("?" in data[feature])
119
- print(data[feature].unique())
120
- encoding_function = partial(self.encode, feature)
121
- data.loc[:, feature] = data[feature].apply(encoding_function)
122
-
123
- for row_id, row in data.iterrows():
124
- data_row = dict(row)
125
-
126
- yield row_id, data_row
127
-
128
-
129
- def encode(self, feature, value):
130
- if feature in _ENCODING_DICS:
131
- return _ENCODING_DICS[feature][value]
132
- raise ValueError(f"Unknown feature: {feature}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mammography/mammography-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d4afed58fd4120ff611c70602a60beccf64cd9e497ee24bd7df134cea2dd6b4
3
+ size 4647