mstz commited on
Commit
22d7564
·
1 Parent(s): 62805e5

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +53 -1
  2. agaricus-lepiota.data +0 -0
  3. mushroom.py +329 -0
README.md CHANGED
@@ -1,3 +1,55 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - adult
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Adult
10
+ size_categories:
11
+ - 10K<n<100K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - encoding
16
+ - income
17
+ - income-no race
18
+ - race
19
  ---
20
+ # Adult
21
+ The [Adult dataset](https://archive.ics.uci.edu/ml/datasets/Adult) from the [UCI ML repository](https://archive.ics.uci.edu/ml/datasets).
22
+ Census dataset including personal characteristic of a person, and their income threshold.
23
+
24
+ # Configurations and tasks
25
+ | **Configuration** | **Task** | **Description** |
26
+ |-------------------|---------------------------|---------------------------------------------------------------|
27
+ | encoding | | Encoding dictionary |
28
+ | income | Binary classification | Classify the person's income as over or under the threshold. |
29
+ | income-no race | Binary classification | As `income`, but the `race` feature is removed. |
30
+ | race | Multiclass classification | Predict the race of the individual. |
31
+
32
+ # Usage
33
+ ```python
34
+ from datasets import load_dataset
35
+
36
+ dataset = load_dataset("mstz/adult", "income")["train"]
37
+ ```
38
+
39
+ # Features
40
+ |**Feature** |**Type** | **Description** |
41
+ |-------------------|-----------|-----------------------------------------------------------|
42
+ |`age` |`[int64]` | Age of the person |
43
+ |`capital_gain` |`[float64]`| Capital gained by the person |
44
+ |`capital_loss` |`[float64]`| Capital lost by the person |
45
+ |`education` |`[int8]` | Education level: the higher, the more educated the person |
46
+ |`final_weight` |`[int64]` | |
47
+ |`hours_per_week` |`[int64]` | Hours worked per week |
48
+ |`marital_status` |`[string]` | Marital status of the person |
49
+ |`native_country` |`[string]` | Native country of the person |
50
+ |`occupation` |`[string]` | Job of the person |
51
+ |`race` |`[string]` | Race of the person |
52
+ |`relationship` |`[string]` | |
53
+ |`sex` |`[int8]` | Sex of the person |
54
+ |`workclass` |`[string]` | Type of job of the person |
55
+ |`over_threshold` |`int8` |`1` for income `>= 50k$`, `0` otherwise |
agaricus-lepiota.data ADDED
The diff for this file is too large to render. See raw diff
 
mushroom.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Mushroom"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas, numpy
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+ _ORIGINAL_FEATURE_NAMES = [
13
+ "is_poisonous",
14
+ "cap_shape",
15
+ "cap_surface",
16
+ "cap_color",
17
+ "has_bruises",
18
+ "odor",
19
+ "gill_attachment",
20
+ "gill_spacing",
21
+ "gill_size",
22
+ "gill_color",
23
+ "stalk_shape",
24
+ "stalk_root",
25
+ "stalk_surface_above_ring",
26
+ "stalk_surface_belows_ring",
27
+ "stalk_color_above_ring",
28
+ "stalk_color_belows_ring",
29
+ "veil_type",
30
+ "veil_color",
31
+ "number_of_rings",
32
+ "ring_type",
33
+ "spore_print_color",
34
+ "population",
35
+ "habitat",
36
+ "is_poisonous"
37
+ ]
38
+ _BASE_FEATURE_NAMES = [
39
+ "cap_shape",
40
+ "cap_surface",
41
+ "cap_color",
42
+ "has_bruises",
43
+ "odor",
44
+ "gill_attachment",
45
+ "gill_spacing",
46
+ "gill_size",
47
+ "gill_color",
48
+ "stalk_shape",
49
+ "stalk_surface_above_ring",
50
+ "stalk_surface_belows_ring",
51
+ "stalk_color_above_ring",
52
+ "stalk_color_belows_ring",
53
+ "veil_type",
54
+ "veil_color",
55
+ "number_of_rings",
56
+ "ring_type",
57
+ "spore_print_color",
58
+ "population",
59
+ "habitat"
60
+ ]
61
+
62
+ _ENCODING_DICS = {
63
+ "is_poisonous": {
64
+ "p": 1,
65
+ "e": 0
66
+ },
67
+ "cap_shape": {
68
+ "b": "bell",
69
+ "c": "conical",
70
+ "x": "convex",
71
+ "f": "flat",
72
+ "k": "knobbed",
73
+ "s": "sunken",
74
+ },
75
+ "cap_surface": {
76
+ "f": "fibrous",
77
+ "g": "grooves",
78
+ "y": "scaly",
79
+ "s": "smooth"
80
+ },
81
+ "cap_color": {
82
+ "n": "brown",
83
+ "b": "buff",
84
+ "c": "cinnamon",
85
+ "g": "gray",
86
+ "r": "green",
87
+ "p": "pink",
88
+ "u": "purple",
89
+ "e": "red",
90
+ "w": "white",
91
+ "y": "yellow"
92
+ },
93
+ "has_bruises": {
94
+ "f": False,
95
+ "t": True
96
+ },
97
+ "odor": {
98
+ "a": "almond",
99
+ "l": "anise",
100
+ "c": "creosote",
101
+ "y": "fishy",
102
+ "f": "foul",
103
+ "m": "musty",
104
+ "n": "none",
105
+ "p": "pungent",
106
+ "s": "spicy"
107
+ },
108
+ "gill_attachment": {
109
+ "a": "attached",
110
+ "d": "descending",
111
+ "f": "free",
112
+ "n": "notched",
113
+ },
114
+ "gill_spacing": {
115
+ "c": "close",
116
+ "w": "crowded",
117
+ "d": "distant",
118
+ },
119
+ "gill_size": {
120
+ "b": "broad",
121
+ "n": "narrow"
122
+ },
123
+ "gill_color": {
124
+ "k": "black",
125
+ "n": "brown",
126
+ "b": "buff",
127
+ "h": "chocolate",
128
+ "g": "gray",
129
+ "r": "green",
130
+ "o": "orange",
131
+ "p": "pink",
132
+ "u": "purple",
133
+ "e": "red",
134
+ "w": "white",
135
+ "y": "yellow",
136
+ },
137
+ "stalk_shape": {
138
+ "e": "enlarging",
139
+ "t": "tapering",
140
+ },
141
+ "stalk_surface_above_ring": {
142
+ "f": "fibrous",
143
+ "y": "scaly",
144
+ "k": "silky",
145
+ "s": "smooth",
146
+ },
147
+ "stalk_surface_above_ring": {
148
+ "f": "fibrous",
149
+ "y": "scaly",
150
+ "k": "silky",
151
+ "s": "smooth",
152
+ },
153
+ "stalk_color_above_ring": {
154
+ "n": "brown",
155
+ "b": "buff",
156
+ "c": "cinnamon",
157
+ "g": "gray",
158
+ "o": "orange",
159
+ "p": "pink",
160
+ "e": "red",
161
+ "w": "white",
162
+ "y": "yellow",
163
+ },
164
+ "stalk_color_below_ring": {
165
+ "n": "brown",
166
+ "b": "buff",
167
+ "c": "cinnamon",
168
+ "g": "gray",
169
+ "o": "orange",
170
+ "p": "pink",
171
+ "e": "red",
172
+ "w": "white",
173
+ "y": "yellow",
174
+ },
175
+ "veil_type": {
176
+ "p": "partial",
177
+ "u": "universal",
178
+ },
179
+ "veil_color": {
180
+ "n": "brown",
181
+ "o": "orange",
182
+ "w": "white",
183
+ "y": "yellow",
184
+ },
185
+ "ring_number": {
186
+ "n": 0,
187
+ "o": 1,
188
+ "t": 2,
189
+ },
190
+ "ring_type": {
191
+ "c": "cobwebby",
192
+ "e": "evanescent",
193
+ "f": "flaring",
194
+ "l": "large",
195
+ "n": "none",
196
+ "p": "pendant",
197
+ "s": "sheathing",
198
+ "z": "zone",
199
+ },
200
+ "spore_print_color": {
201
+ "k": "black",
202
+ "n": "brown",
203
+ "b": "buff",
204
+ "h": "chocolate",
205
+ "r": "green",
206
+ "o": "orange",
207
+ "u": "purple",
208
+ "w": "white",
209
+ "y": "yellow",
210
+ },
211
+ "population": {
212
+ "a": "abundant",
213
+ "c": "clustered",
214
+ "n": "numerous",
215
+ "s": "scattered",
216
+ "v": "several",
217
+ "y": "solitary",
218
+ },
219
+ "habitat": {
220
+ "g": "grasses",
221
+ "l": "leaves",
222
+ "m": "meadows",
223
+ "p": "paths",
224
+ "u": "urban",
225
+ "w": "waste",
226
+ "d": "woods",
227
+ }
228
+ }
229
+
230
+ DESCRIPTION = "Mushroom dataset from the UCI ML repository."
231
+ _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Mushroom"
232
+ _URLS = ("https://huggingface.co/datasets/mstz/mushroom/raw/mushroom.csv")
233
+ _CITATION = """
234
+ @misc{misc_mushroom_73,
235
+ title = {{Mushroom}},
236
+ year = {1987},
237
+ howpublished = {UCI Machine Learning Repository},
238
+ note = {{DOI}: \\url{10.24432/C5959T}}
239
+ }"""
240
+
241
+ # Dataset info
242
+ urls_per_split = {
243
+ "train": "https://huggingface.co/datasets/mstz/mushroom/raw/main/agaricus-lepiota.data"
244
+ }
245
+ features_types_per_config = {
246
+ "mushroom": {
247
+ "cap_shape",
248
+ "cap_surface",
249
+ "cap_color",
250
+ "has_bruises",
251
+ "odor",
252
+ "gill_attachment",
253
+ "gill_spacing",
254
+ "gill_size",
255
+ "gill_color",
256
+ "stalk_shape",
257
+ "stalk_root",
258
+ "stalk_surface_above_ring",
259
+ "stalk_surface_belows_ring",
260
+ "stalk_color_above_ring",
261
+ "stalk_color_belows_ring",
262
+ "veil_type",
263
+ "veil_color",
264
+ "number_of_rings",
265
+ "ring_type",
266
+ "spore_print_color",
267
+ "population",
268
+ "habitat",
269
+ "is_poisonous": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
270
+ }
271
+ }
272
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
273
+
274
+
275
+ class MushroomConfig(datasets.BuilderConfig):
276
+ def __init__(self, **kwargs):
277
+ super(MushroomConfig, self).__init__(version=VERSION, **kwargs)
278
+ self.features = features_per_config[kwargs["name"]]
279
+
280
+
281
+ class Mushroom(datasets.GeneratorBasedBuilder):
282
+ # dataset versions
283
+ DEFAULT_CONFIG = "mushroom"
284
+ BUILDER_CONFIGS = [
285
+ MushroomConfig(name="mushroom",
286
+ description="Mushroom for binary classification."),
287
+ ]
288
+
289
+ def _info(self):
290
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
291
+ features=features_per_config[self.config.name])
292
+
293
+ return info
294
+
295
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
296
+ downloads = dl_manager.download_and_extract(urls_per_split)
297
+
298
+ return [
299
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
300
+ ]
301
+
302
+ def _generate_examples(self, filepath: str):
303
+ data = pandas.read_csv(filepath)
304
+ data = self.preprocess(data, config=self.config.name)
305
+
306
+ for row_id, row in data.iterrows():
307
+ data_row = dict(row)
308
+
309
+ yield row_id, data_row
310
+
311
+
312
+ def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
313
+ data.drop("stalk_root", axis="columns", inplace=True)
314
+ data = data[list(features_types_per_config[config].keys())]
315
+
316
+ for feature in _ENCODING_DICS:
317
+ encoding_function = partial(self.encode, feature)
318
+ data.loc[:, feature] = data[feature].apply(encoding_function)
319
+ data = data.infer_objects()
320
+
321
+ return
322
+
323
+ def encode(self, feature, value):
324
+ if feature in _ENCODING_DICS:
325
+ return _ENCODING_DICS[feature][value]
326
+ raise ValueError(f"Unknown feature: {feature}")
327
+
328
+ def encode_race(self, race):
329
+ return _RACE_ENCODING[race]