File size: 4,396 Bytes
0643aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77d8a9f
0643aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a29c826
 
 
0643aba
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
"""PageBlocks Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {
}

DESCRIPTION = "PageBlocks dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
_CITATION = """
@misc{misc_page_blocks_classification_78,
  author       = {Malerba,Donato},
  title        = {{Page Blocks Classification}},
  year         = {1995},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5J590}}
}
"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/page_blocks/raw/main/page_blocks.data"
}
features_types_per_config = {
    "page_blocks": {
		"height": datasets.Value("float64"),
        "lenght": datasets.Value("float64"),
        "area": datasets.Value("float64"),
        "eccentricity": datasets.Value("float64"),
        "percentage_black_pixels": datasets.Value("float64"),
        "percentage_black_pixels_after_rlsa_and": datasets.Value("float64"),
        "mean_numer_of_transitions": datasets.Value("float64"),
        "number_of_black_pixels": datasets.Value("float64"),
        "number_of_black_pixels_after_rlsa": datasets.Value("float64"),
        "number_of_transitions": datasets.Value("int8")
    },
    "page_blocks_binary": {
		"height": datasets.Value("float64"),
        "lenght": datasets.Value("float64"),
        "area": datasets.Value("float64"),
        "eccentricity": datasets.Value("float64"),
        "percentage_black_pixels": datasets.Value("float64"),
        "percentage_black_pixels_after_rlsa_and": datasets.Value("float64"),
        "mean_numer_of_transitions": datasets.Value("float64"),
        "number_of_black_pixels": datasets.Value("float64"),
        "number_of_black_pixels_after_rlsa": datasets.Value("float64"),
        "has_multiple_transitions": datasets.ClassLabel(num_classes=2)
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class PageBlocksConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(PageBlocksConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class PageBlocks(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "page_blocks"
    BUILDER_CONFIGS = [
        PageBlocksConfig(name="page_blocks",
                   description="PageBlocks for regression."),
        PageBlocksConfig(name="page_blocks_binary",
                   description="PageBlocks for binary classification.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
        if self.config.name == "page_blocks_binary":
            data["number_of_transitions"] = data["number_of_transitions"].apply(lambda x: 1 if x > 1 else 0)
            data = data.rename(columns={"number_of_transitions": "has_multiple_transitions"})

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
        
        data = data.reset_index()
        data.drop("index", axis="columns", inplace=True)
                
        return data[list(features_types_per_config[self.config.name].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")