Datasets:
File size: 4,825 Bytes
606d239 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
"""Pums Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ENCODING_DICS = {
"class": {
"- 50000.": 0,
"50000+.": 1
}
}
DESCRIPTION = "Pums dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990")
_CITATION = """
@misc{misc_us_census_data_(1990)_116,
author = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman},
title = {{US Census Data (1990)}},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5VP42}}
}
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/pums/resolve/main/pums.csv"
}
features_types_per_config = {
"pums": {
"age": datasets.Value("int64"),
"class_of_worker": datasets.Value("string"),
"detailed_industry_recode": datasets.Value("string"),
"detailed_occupation_recode": datasets.Value("string"),
"education": datasets.Value("string"),
"wage_per_hour": datasets.Value("int64"),
"enroll_in_edu_inst_last_wk": datasets.Value("string"),
"marital_stat": datasets.Value("string"),
"major_industry_code": datasets.Value("string"),
"major_occupation_code": datasets.Value("string"),
"race": datasets.Value("string"),
"hispanic_origin": datasets.Value("string"),
"sex": datasets.Value("string"),
"member_of_a_labor_union": datasets.Value("string"),
"reason_for_unemployment": datasets.Value("string"),
"full_or_part_time_employment_stat": datasets.Value("string"),
"capital_gains": datasets.Value("int64"),
"capital_losses": datasets.Value("int64"),
"dividends_from_stocks": datasets.Value("int64"),
"tax_filer_stat": datasets.Value("string"),
"region_of_previous_residence": datasets.Value("string"),
"state_of_previous_residence": datasets.Value("string"),
"detailed_household_and_family_stat": datasets.Value("string"),
"detailed_household_summary_in_household": datasets.Value("string"),
# "instance_weight": datasets.Value("int64"),
"migration_code_change_in_msa": datasets.Value("string"),
"migration_code_change_in_reg": datasets.Value("string"),
"migration_code_move_within_reg": datasets.Value("string"),
"live_in_this_house_1_year_ago": datasets.Value("string"),
"migration_prev_res_in_sunbelt": datasets.Value("string"),
"num_persons_worked_for_employer": datasets.Value("int64"),
"family_members_under_18": datasets.Value("string"),
"country_of_birth_father": datasets.Value("string"),
"country_of_birth_mother": datasets.Value("string"),
"country_of_birth_self": datasets.Value("string"),
"citizenship": datasets.Value("string"),
"own_business_or_self_employed": datasets.Value("string"),
"fill_inc_questionnaire_for_veteran_admin": datasets.Value("string"),
"veterans_benefits": datasets.Value("string"),
"weeks_worked_in_year": datasets.Value("int64"),
"year": datasets.Value("int64"),
"class": datasets.ClassLabel(num_classes=2)
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class PumsConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(PumsConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Pums(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "pums"
BUILDER_CONFIGS = [PumsConfig(name="pums", description="Pums for binary classification.")]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data.drop("instance_weight", axis="columns", inplace=True)
data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"})
return data[list(features_types_per_config[self.config.name].keys())]
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
|