File size: 5,846 Bytes
606d239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5b9a8
d5654e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5b9a8
606d239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69e549d
606d239
69e549d
606d239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f5b9a8
606d239
 
 
 
 
 
 
 
9f5b9a8
 
606d239
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""Pums Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {
	"class": {
		"- 50000.": 0,
		"50000+.": 1
	}
}
_BASE_FEATURE_NAMES = [
	"age",
	"class_of_worker",
	"detailed_industry_recode",
	"detailed_occupation_recode",
	"education",
	"wage_per_hour",
	"enroll_in_edu_inst_last_wk",
	"marital_stat",
	"major_industry_code",
	"major_occupation_code",
	"race",
	"hispanic_origin",
	"sex",
	"member_of_a_labor_union",
	"reason_for_unemployment",
	"full_or_part_time_employment_stat",
	"capital_gains",
	"capital_losses",
	"dividends_from_stocks",
	"tax_filer_stat",
	"region_of_previous_residence",
	"state_of_previous_residence",
	"detailed_household_and_family_stat",
	"detailed_household_summary_in_household",
	"migration_code_change_in_msa",
	"migration_code_change_in_reg",
	"migration_code_move_within_reg",
	"live_in_this_house_1_year_ago",
	"migration_prev_res_in_sunbelt",
	"num_persons_worked_for_employer",
	"family_members_under_18",
	"country_of_birth_father",
	"country_of_birth_mother",
	"country_of_birth_self",
	"citizenship",
	"own_business_or_self_employed",
	"fill_inc_questionnaire_for_veteran_admin",
	"veterans_benefits",
	"weeks_worked_in_year",
	"year",
	"class",
]

DESCRIPTION = "Pums dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990")
_CITATION = """
@misc{misc_us_census_data_(1990)_116,
  author       = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman},
  title        = {{US Census Data (1990)}},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5VP42}}
}
"""

# Dataset info
urls_per_split = {
	"train": "https://huggingface.co/datasets/mstz/pums/resolve/main/pums.csv"
}
features_types_per_config = {
	"pums": {
		"age": datasets.Value("int64"),
		"class_of_worker": datasets.Value("string"),
		"detailed_industry_recode": datasets.Value("string"),
		"detailed_occupation_recode": datasets.Value("string"),
		"education": datasets.Value("string"),
		"wage_per_hour": datasets.Value("int64"),
		"enroll_in_edu_inst_last_wk": datasets.Value("string"),
		"marital_stat": datasets.Value("string"),
		"major_industry_code": datasets.Value("string"),
		"major_occupation_code": datasets.Value("string"),
		"race": datasets.Value("string"),
		"hispanic_origin": datasets.Value("string"),
		"sex": datasets.Value("string"),
		"member_of_a_labor_union": datasets.Value("string"),
		"reason_for_unemployment": datasets.Value("string"),
		"full_or_part_time_employment_stat": datasets.Value("string"),
		"capital_gains": datasets.Value("int64"),
		"capital_losses": datasets.Value("int64"),
		"dividends_from_stocks": datasets.Value("int64"),
		"tax_filer_stat": datasets.Value("string"),
		"region_of_previous_residence": datasets.Value("string"),
		"state_of_previous_residence": datasets.Value("string"),
		"detailed_household_and_family_stat": datasets.Value("string"),
		"detailed_household_summary_in_household": datasets.Value("string"),
		"migration_code_change_in_msa": datasets.Value("string"),
		"migration_code_change_in_reg": datasets.Value("string"),
		"migration_code_move_within_reg": datasets.Value("string"),
		"live_in_this_house_1_year_ago": datasets.Value("string"),
		"migration_prev_res_in_sunbelt": datasets.Value("string"),
		"num_persons_worked_for_employer": datasets.Value("int64"),
		"family_members_under_18": datasets.Value("string"),
		"country_of_birth_father": datasets.Value("string"),
		"country_of_birth_mother": datasets.Value("string"),
		"country_of_birth_self": datasets.Value("string"),
		"citizenship": datasets.Value("string"),
		"own_business_or_self_employed": datasets.Value("int64"),
		"fill_inc_questionnaire_for_veteran_admin": datasets.Value("string"),
		"veterans_benefits": datasets.Value("int64"),
		"weeks_worked_in_year": datasets.Value("int64"),
		"year": datasets.Value("int64"),
		"class": datasets.ClassLabel(num_classes=2)
	}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class PumsConfig(datasets.BuilderConfig):
	def __init__(self, **kwargs):
		super(PumsConfig, self).__init__(version=VERSION, **kwargs)
		self.features = features_per_config[kwargs["name"]]


class Pums(datasets.GeneratorBasedBuilder):
	# dataset versions
	DEFAULT_CONFIG = "pums"
	BUILDER_CONFIGS = [PumsConfig(name="pums", description="Pums for binary classification.")]


	def _info(self):
		info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
									features=features_per_config[self.config.name])

		return info
	
	def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
		downloads = dl_manager.download_and_extract(urls_per_split)

		return [
			datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
		]
	
	def _generate_examples(self, filepath: str):
		data = pandas.read_csv(filepath, header=None)
		data = self.preprocess(data)

		for row_id, row in data.iterrows():
			data_row = dict(row)

			yield row_id, data_row

	def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
		data.columns = _BASE_FEATURE_NAMES

		for feature in _ENCODING_DICS:
			encoding_function = partial(self.encode, feature)
			data.loc[:, feature] = data[feature].apply(encoding_function)
		
		data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"})
				
		return data[list(features_types_per_config[self.config.name].keys())]

	def encode(self, feature, value):
		if feature in _ENCODING_DICS:
			return _ENCODING_DICS[feature][value]
		raise ValueError(f"Unknown feature: {feature}")