mstz commited on
Commit
993e316
·
1 Parent(s): 085f925

Upload segment.py

Browse files
Files changed (1) hide show
  1. segment.py +277 -0
segment.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Segment Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {}
14
+
15
+ DESCRIPTION = "Segment dataset."
16
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
17
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
18
+ _CITATION = """
19
+ @misc{misc_statlog_(image_segmentation)_147,
20
+ title = {{Statlog (Image Segmentation)}},
21
+ year = {1990},
22
+ howpublished = {UCI Machine Learning Repository},
23
+ note = {{DOI}: \\url{10.24432/C5P01G}}
24
+ }
25
+ """
26
+
27
+ # Dataset info
28
+ urls_per_split = {
29
+ "train": "https://huggingface.co/datasets/mstz/segment/raw/main/segment.csv"
30
+ }
31
+ features_types_per_config = {
32
+ "segment": {
33
+ "region_centroid_col": datasets.Value("float64"),
34
+ "region_centroid_row": datasets.Value("float64"),
35
+ "region_centroid_pixel_count": datasets.Value("float64"),
36
+ "short_line_density": datasets.Value("float64"),
37
+ "vedge_mean": datasets.Value("float64"),
38
+ "vedge_std": datasets.Value("float64"),
39
+ "hedge_mean": datasets.Value("float64"),
40
+ "hedge_std": datasets.Value("float64"),
41
+ "intensity_mean": datasets.Value("float64"),
42
+ "rawred_mean": datasets.Value("float64"),
43
+ "rawblue_mean": datasets.Value("float64"),
44
+ "rawgreen_mean": datasets.Value("float64"),
45
+ "exred_mean": datasets.Value("float64"),
46
+ "exblue_mean": datasets.Value("float64"),
47
+ "exgreen_mean": datasets.Value("float64"),
48
+ "value_mean": datasets.Value("float64"),
49
+ "saturation_mean": datasets.Value("float64"),
50
+ "hue_mean": datasets.Value("float64"),
51
+ "class": datasets.ClassLabel(num_classes=7,
52
+ names=("brickface", "sky", "foliage", "cement", "window", "path", "grass")),
53
+ },
54
+ "brickface": {
55
+ "region_centroid_col": datasets.Value("float64"),
56
+ "region_centroid_row": datasets.Value("float64"),
57
+ "region_centroid_pixel_count": datasets.Value("float64"),
58
+ "short_line_density": datasets.Value("float64"),
59
+ "vedge_mean": datasets.Value("float64"),
60
+ "vedge_std": datasets.Value("float64"),
61
+ "hedge_mean": datasets.Value("float64"),
62
+ "hedge_std": datasets.Value("float64"),
63
+ "intensity_mean": datasets.Value("float64"),
64
+ "rawred_mean": datasets.Value("float64"),
65
+ "rawblue_mean": datasets.Value("float64"),
66
+ "rawgreen_mean": datasets.Value("float64"),
67
+ "exred_mean": datasets.Value("float64"),
68
+ "exblue_mean": datasets.Value("float64"),
69
+ "exgreen_mean": datasets.Value("float64"),
70
+ "value_mean": datasets.Value("float64"),
71
+ "saturation_mean": datasets.Value("float64"),
72
+ "hue_mean": datasets.Value("float64"),
73
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
74
+ },
75
+ "sky": {
76
+ "region_centroid_col": datasets.Value("float64"),
77
+ "region_centroid_row": datasets.Value("float64"),
78
+ "region_centroid_pixel_count": datasets.Value("float64"),
79
+ "short_line_density": datasets.Value("float64"),
80
+ "vedge_mean": datasets.Value("float64"),
81
+ "vedge_std": datasets.Value("float64"),
82
+ "hedge_mean": datasets.Value("float64"),
83
+ "hedge_std": datasets.Value("float64"),
84
+ "intensity_mean": datasets.Value("float64"),
85
+ "rawred_mean": datasets.Value("float64"),
86
+ "rawblue_mean": datasets.Value("float64"),
87
+ "rawgreen_mean": datasets.Value("float64"),
88
+ "exred_mean": datasets.Value("float64"),
89
+ "exblue_mean": datasets.Value("float64"),
90
+ "exgreen_mean": datasets.Value("float64"),
91
+ "value_mean": datasets.Value("float64"),
92
+ "saturation_mean": datasets.Value("float64"),
93
+ "hue_mean": datasets.Value("float64"),
94
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
95
+ },
96
+ "foliage": {
97
+ "region_centroid_col": datasets.Value("float64"),
98
+ "region_centroid_row": datasets.Value("float64"),
99
+ "region_centroid_pixel_count": datasets.Value("float64"),
100
+ "short_line_density": datasets.Value("float64"),
101
+ "vedge_mean": datasets.Value("float64"),
102
+ "vedge_std": datasets.Value("float64"),
103
+ "hedge_mean": datasets.Value("float64"),
104
+ "hedge_std": datasets.Value("float64"),
105
+ "intensity_mean": datasets.Value("float64"),
106
+ "rawred_mean": datasets.Value("float64"),
107
+ "rawblue_mean": datasets.Value("float64"),
108
+ "rawgreen_mean": datasets.Value("float64"),
109
+ "exred_mean": datasets.Value("float64"),
110
+ "exblue_mean": datasets.Value("float64"),
111
+ "exgreen_mean": datasets.Value("float64"),
112
+ "value_mean": datasets.Value("float64"),
113
+ "saturation_mean": datasets.Value("float64"),
114
+ "hue_mean": datasets.Value("float64"),
115
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
116
+ },
117
+ "cement": {
118
+ "region_centroid_col": datasets.Value("float64"),
119
+ "region_centroid_row": datasets.Value("float64"),
120
+ "region_centroid_pixel_count": datasets.Value("float64"),
121
+ "short_line_density": datasets.Value("float64"),
122
+ "vedge_mean": datasets.Value("float64"),
123
+ "vedge_std": datasets.Value("float64"),
124
+ "hedge_mean": datasets.Value("float64"),
125
+ "hedge_std": datasets.Value("float64"),
126
+ "intensity_mean": datasets.Value("float64"),
127
+ "rawred_mean": datasets.Value("float64"),
128
+ "rawblue_mean": datasets.Value("float64"),
129
+ "rawgreen_mean": datasets.Value("float64"),
130
+ "exred_mean": datasets.Value("float64"),
131
+ "exblue_mean": datasets.Value("float64"),
132
+ "exgreen_mean": datasets.Value("float64"),
133
+ "value_mean": datasets.Value("float64"),
134
+ "saturation_mean": datasets.Value("float64"),
135
+ "hue_mean": datasets.Value("float64"),
136
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
137
+ },
138
+ "window": {
139
+ "region_centroid_col": datasets.Value("float64"),
140
+ "region_centroid_row": datasets.Value("float64"),
141
+ "region_centroid_pixel_count": datasets.Value("float64"),
142
+ "short_line_density": datasets.Value("float64"),
143
+ "vedge_mean": datasets.Value("float64"),
144
+ "vedge_std": datasets.Value("float64"),
145
+ "hedge_mean": datasets.Value("float64"),
146
+ "hedge_std": datasets.Value("float64"),
147
+ "intensity_mean": datasets.Value("float64"),
148
+ "rawred_mean": datasets.Value("float64"),
149
+ "rawblue_mean": datasets.Value("float64"),
150
+ "rawgreen_mean": datasets.Value("float64"),
151
+ "exred_mean": datasets.Value("float64"),
152
+ "exblue_mean": datasets.Value("float64"),
153
+ "exgreen_mean": datasets.Value("float64"),
154
+ "value_mean": datasets.Value("float64"),
155
+ "saturation_mean": datasets.Value("float64"),
156
+ "hue_mean": datasets.Value("float64"),
157
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
158
+ },
159
+ "path": {
160
+ "region_centroid_col": datasets.Value("float64"),
161
+ "region_centroid_row": datasets.Value("float64"),
162
+ "region_centroid_pixel_count": datasets.Value("float64"),
163
+ "short_line_density": datasets.Value("float64"),
164
+ "vedge_mean": datasets.Value("float64"),
165
+ "vedge_std": datasets.Value("float64"),
166
+ "hedge_mean": datasets.Value("float64"),
167
+ "hedge_std": datasets.Value("float64"),
168
+ "intensity_mean": datasets.Value("float64"),
169
+ "rawred_mean": datasets.Value("float64"),
170
+ "rawblue_mean": datasets.Value("float64"),
171
+ "rawgreen_mean": datasets.Value("float64"),
172
+ "exred_mean": datasets.Value("float64"),
173
+ "exblue_mean": datasets.Value("float64"),
174
+ "exgreen_mean": datasets.Value("float64"),
175
+ "value_mean": datasets.Value("float64"),
176
+ "saturation_mean": datasets.Value("float64"),
177
+ "hue_mean": datasets.Value("float64"),
178
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
179
+ },
180
+ "grass": {
181
+ "region_centroid_col": datasets.Value("float64"),
182
+ "region_centroid_row": datasets.Value("float64"),
183
+ "region_centroid_pixel_count": datasets.Value("float64"),
184
+ "short_line_density": datasets.Value("float64"),
185
+ "vedge_mean": datasets.Value("float64"),
186
+ "vedge_std": datasets.Value("float64"),
187
+ "hedge_mean": datasets.Value("float64"),
188
+ "hedge_std": datasets.Value("float64"),
189
+ "intensity_mean": datasets.Value("float64"),
190
+ "rawred_mean": datasets.Value("float64"),
191
+ "rawblue_mean": datasets.Value("float64"),
192
+ "rawgreen_mean": datasets.Value("float64"),
193
+ "exred_mean": datasets.Value("float64"),
194
+ "exblue_mean": datasets.Value("float64"),
195
+ "exgreen_mean": datasets.Value("float64"),
196
+ "value_mean": datasets.Value("float64"),
197
+ "saturation_mean": datasets.Value("float64"),
198
+ "hue_mean": datasets.Value("float64"),
199
+ "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
200
+ },
201
+ }
202
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
203
+
204
+
205
+ class SegmentConfig(datasets.BuilderConfig):
206
+ def __init__(self, **kwargs):
207
+ super(SegmentConfig, self).__init__(version=VERSION, **kwargs)
208
+ self.features = features_per_config[kwargs["name"]]
209
+
210
+
211
+ class Segment(datasets.GeneratorBasedBuilder):
212
+ # dataset versions
213
+ DEFAULT_CONFIG = "segment"
214
+ BUILDER_CONFIGS = [
215
+ SegmentConfig(name="segment", description="Segment for multiclass classification."),
216
+ SegmentConfig(name="brickface", description="Segment for binary classification."),
217
+ SegmentConfig(name="sky", description="Segment for binary classification."),
218
+ SegmentConfig(name="foliage", description="Segment for binary classification."),
219
+ SegmentConfig(name="cement", description="Segment for binary classification."),
220
+ SegmentConfig(name="window", description="Segment for binary classification."),
221
+ SegmentConfig(name="path", description="Segment for binary classification."),
222
+ SegmentConfig(name="grass", description="Segment for binary classification.")
223
+ ]
224
+
225
+
226
+ def _info(self):
227
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
228
+ features=features_per_config[self.config.name])
229
+
230
+ return info
231
+
232
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
233
+ downloads = dl_manager.download_and_extract(urls_per_split)
234
+
235
+ return [
236
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
237
+ ]
238
+
239
+ def _generate_examples(self, filepath: str):
240
+ data = pandas.read_csv(filepath)
241
+ data = self.preprocess(data)
242
+
243
+ for row_id, row in data.iterrows():
244
+ data_row = dict(row)
245
+
246
+ yield row_id, data_row
247
+
248
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
249
+ data["class"] = data["class"].apply(lambda x: x - 1)
250
+ data = data.reset_index()
251
+ data.drop("index", axis="columns", inplace=True)
252
+
253
+ if self.config.name == "brickface":
254
+ data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
255
+ if self.config.name == "sky":
256
+ data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
257
+ if self.config.name == "foliage":
258
+ data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
259
+ if self.config.name == "cement":
260
+ data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
261
+ if self.config.name == "window":
262
+ data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
263
+ if self.config.name == "path":
264
+ data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
265
+ if self.config.name == "grass":
266
+ data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
267
+
268
+ for feature in _ENCODING_DICS:
269
+ encoding_function = partial(self.encode, feature)
270
+ data.loc[:, feature] = data[feature].apply(encoding_function)
271
+
272
+ return data[list(features_types_per_config[self.config.name].keys())]
273
+
274
+ def encode(self, feature, value):
275
+ if feature in _ENCODING_DICS:
276
+ return _ENCODING_DICS[feature][value]
277
+ raise ValueError(f"Unknown feature: {feature}")