"""Shuttle Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {}

DESCRIPTION = "Shuttle dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle")
_CITATION = """
@misc{misc_statlog_(shuttle)_148,
  title        = {{Statlog (Shuttle)}},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5WS31}}
}
"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/shuttle/raw/main/shuttle.csv"
}
features_types_per_config = {
    "shuttle": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=7),
    },
    "shuttle_0": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_1": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_2": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_3": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_4": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_5": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
    "shuttle_6": {
        "time": datasets.Value("float64"),
        "rad_flow": datasets.Value("float64"),
        "fpv_close": datasets.Value("float64"),
        "fpv_open": datasets.Value("float64"),
        "high": datasets.Value("float64"),
        "bypass": datasets.Value("float64"),
        "bvp_close": datasets.Value("float64"),
        "bvp_open": datasets.Value("float64"),
        "feature": datasets.Value("float64"),
        "class": datasets.ClassLabel(num_classes=2),
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class ShuttleConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(ShuttleConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Shuttle(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "shuttle"
    BUILDER_CONFIGS = [
        ShuttleConfig(name="shuttle", description="Shuttle for multiclass classification."),
        ShuttleConfig(name="shuttle_0", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_1", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_2", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_3", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_4", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_5", description="Shuttle for binary classification."),
        ShuttleConfig(name="shuttle_6", description="Shuttle for binary classification."),
        
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
        data["class"] = data["class"].apply(lambda x: x - 1)

        if self.config.name == "shuttle_0":
            data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
        elif self.config.name == "shuttle_1":
            data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
        elif self.config.name == "shuttle_2":
            data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
        elif self.config.name == "shuttle_3":
            data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
        elif self.config.name == "shuttle_4":
            data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
        elif self.config.name == "shuttle_5":
            data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
        elif self.config.name == "shuttle_6":
            data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
                
        return data[list(features_types_per_config[self.config.name].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")