File size: 5,160 Bytes
b398694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e821496
b8aa4c5
 
 
b398694
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Spect"""

from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

DESCRIPTION = "Spect dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Spect"
_URLS = ("https://archive.ics.uci.edu/ml/datasets/Spect")
_CITATION = """
@misc{misc_spect_heart_95,
  author       = {Cios,Krzysztof, Kurgan,Lukasz & Goodenday,Lucy},
  title        = {{SPECT Heart}},
  year         = {2001},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5P304}}
}"""

# Dataset info
urls_per_split = {
    "spect": {
		"train": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECT.train",
    	"test": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECT.test"
	},
	"spectf": {
		"train": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECTF.train",
    	"test": "https://huggingface.co/datasets/mstz/spect/raw/main/SPECTF.test"
	}
}
features_types_per_config = {
    "spect": {
		"feature_0": datasets.Value("bool"),
		"feature_1": datasets.Value("bool"),
		"feature_2": datasets.Value("bool"),
		"feature_3": datasets.Value("bool"),
		"feature_4": datasets.Value("bool"),
		"feature_5": datasets.Value("bool"),
		"feature_6": datasets.Value("bool"),
		"feature_7": datasets.Value("bool"),
		"feature_8": datasets.Value("bool"),
		"feature_9": datasets.Value("bool"),
		"feature_10": datasets.Value("bool"),
		"feature_11": datasets.Value("bool"),
		"feature_12": datasets.Value("bool"),
		"feature_13": datasets.Value("bool"),
		"feature_14": datasets.Value("bool"),
		"feature_15": datasets.Value("bool"),
		"feature_16": datasets.Value("bool"),
		"feature_17": datasets.Value("bool"),
		"feature_18": datasets.Value("bool"),
		"feature_19": datasets.Value("bool"),
		"feature_20": datasets.Value("bool"),
		"feature_21": datasets.Value("bool"),
		"is_emitted": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
    "spectf": {
		"F1R": datasets.Value("int8"),
		"F1S": datasets.Value("int8"),
		"F2R": datasets.Value("int8"),
		"F2S": datasets.Value("int8"),
		"F3R": datasets.Value("int8"),
		"F3S": datasets.Value("int8"),
		"F4R": datasets.Value("int8"),
		"F4S": datasets.Value("int8"),
		"F5R": datasets.Value("int8"),
		"F5S": datasets.Value("int8"),
		"F6R": datasets.Value("int8"),
		"F6S": datasets.Value("int8"),
		"F7R": datasets.Value("int8"),
		"F7S": datasets.Value("int8"),
		"F8R": datasets.Value("int8"),
		"F8S": datasets.Value("int8"),
		"F9R": datasets.Value("int8"),
		"F9S": datasets.Value("int8"),
		"F10R": datasets.Value("int8"),
		"F10S": datasets.Value("int8"),
		"F11R": datasets.Value("int8"),
		"F11S": datasets.Value("int8"),
		"F12R": datasets.Value("int8"),
		"F12S": datasets.Value("int8"),
		"F13R": datasets.Value("int8"),
		"F13S": datasets.Value("int8"),
		"F14R": datasets.Value("int8"),
		"F14S": datasets.Value("int8"),
		"F15R": datasets.Value("int8"),
		"F15S": datasets.Value("int8"),
		"F16R": datasets.Value("int8"),
		"F16S": datasets.Value("int8"),
		"F17R": datasets.Value("int8"),
		"F17S": datasets.Value("int8"),
		"F18R": datasets.Value("int8"),
		"F18S": datasets.Value("int8"),
		"F19R": datasets.Value("int8"),
		"F19S": datasets.Value("int8"),
		"F20R": datasets.Value("int8"),
		"F20S": datasets.Value("int8"),
		"F21R": datasets.Value("int8"),
		"F21S": datasets.Value("int8"),
		"F22R": datasets.Value("int8"),
		"F22S": datasets.Value("int8"),
	    "is_emitted": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
    
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class SpectConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(SpectConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Spect(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "spect"
    BUILDER_CONFIGS = [
        SpectConfig(name="spect",
                    description="Spect for binary classification."),
        SpectConfig(name="spectf",
                    description="Spectf for binary classification.")
        ]


    def _info(self):       
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath, header=None)
        features = list(features_types_per_config[self.config.name])
        base_features = [features[-1]] + features[:-1]
        data.columns = base_features
        data = data[features]

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row