Datasets:
Upload 2 files
Browse files- README.md +73 -1
- speeddating.py +10 -25
README.md
CHANGED
@@ -14,4 +14,76 @@ configs:
|
|
14 |
- dating
|
15 |
---
|
16 |
# Speed dating
|
17 |
-
The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
- dating
|
15 |
---
|
16 |
# Speed dating
|
17 |
+
The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) from OpenML.
|
18 |
+
|
19 |
+
|
20 |
+
# Configurations and tasks
|
21 |
+
- `dating` Predict the success of speed dating.
|
22 |
+
|
23 |
+
# Features
|
24 |
+
|**Features** |**Type** |
|
25 |
+
|---------------------------------------------------|---------|
|
26 |
+
|`is_dater_male` |`int8` |
|
27 |
+
|`dater_age` |`int8` |
|
28 |
+
|`dated_age` |`int8` |
|
29 |
+
|`age_difference` |`int8` |
|
30 |
+
|`dater_race` |`string` |
|
31 |
+
|`dated_race` |`string` |
|
32 |
+
|`are_same_race` |`int8` |
|
33 |
+
|`same_race_importance_for_dater` |`float64`|
|
34 |
+
|`same_religion_importance_for_dater` |`float64`|
|
35 |
+
|`attractiveness_importance_for_dated` |`float64`|
|
36 |
+
|`sincerity_importance_for_dated` |`float64`|
|
37 |
+
|`intelligence_importance_for_dated` |`float64`|
|
38 |
+
|`humor_importance_for_dated` |`float64`|
|
39 |
+
|`ambition_importance_for_dated` |`float64`|
|
40 |
+
|`shared_interests_importance_for_dated` |`float64`|
|
41 |
+
|`attractiveness_score_of_dater_from_dated` |`float64`|
|
42 |
+
|`sincerity_score_of_dater_from_dated` |`float64`|
|
43 |
+
|`intelligence_score_of_dater_from_dated` |`float64`|
|
44 |
+
|`humor_score_of_dater_from_dated` |`float64`|
|
45 |
+
|`ambition_score_of_dater_from_dated` |`float64`|
|
46 |
+
|`shared_interests_score_of_dater_from_dated` |`float64`|
|
47 |
+
|`attractiveness_importance_for_dater` |`float64`|
|
48 |
+
|`sincerity_importance_for_dater` |`float64`|
|
49 |
+
|`intelligence_importance_for_dater` |`float64`|
|
50 |
+
|`humor_importance_for_dater` |`float64`|
|
51 |
+
|`ambition_importance_for_dater` |`float64`|
|
52 |
+
|`shared_interests_importance_for_dater` |`float64`|
|
53 |
+
|`self_reported_attractiveness_of_dater` |`float64`|
|
54 |
+
|`self_reported_sincerity_of_dater` |`float64`|
|
55 |
+
|`self_reported_intelligence_of_dater` |`float64`|
|
56 |
+
|`self_reported_humor_of_dater` |`float64`|
|
57 |
+
|`self_reported_ambition_of_dater` |`float64`|
|
58 |
+
|`reported_attractiveness_of_dated_from_dater` |`float64`|
|
59 |
+
|`reported_sincerity_of_dated_from_dater` |`float64`|
|
60 |
+
|`reported_intelligence_of_dated_from_dater` |`float64`|
|
61 |
+
|`reported_humor_of_dated_from_dater` |`float64`|
|
62 |
+
|`reported_ambition_of_dated_from_dater` |`float64`|
|
63 |
+
|`reported_shared_interests_of_dated_from_dater` |`float64`|
|
64 |
+
|`dater_interest_in_sports` |`float64`|
|
65 |
+
|`dater_interest_in_tvsports` |`float64`|
|
66 |
+
|`dater_interest_in_exercise` |`float64`|
|
67 |
+
|`dater_interest_in_dining` |`float64`|
|
68 |
+
|`dater_interest_in_museums` |`float64`|
|
69 |
+
|`dater_interest_in_art` |`float64`|
|
70 |
+
|`dater_interest_in_hiking` |`float64`|
|
71 |
+
|`dater_interest_in_gaming` |`float64`|
|
72 |
+
|`dater_interest_in_clubbing` |`float64`|
|
73 |
+
|`dater_interest_in_reading` |`float64`|
|
74 |
+
|`dater_interest_in_tv` |`float64`|
|
75 |
+
|`dater_interest_in_theater` |`float64`|
|
76 |
+
|`dater_interest_in_movies` |`float64`|
|
77 |
+
|`dater_interest_in_concerts` |`float64`|
|
78 |
+
|`dater_interest_in_music` |`float64`|
|
79 |
+
|`dater_interest_in_shopping` |`float64`|
|
80 |
+
|`dater_interest_in_yoga` |`float64`|
|
81 |
+
|`interests_correlation` |`float64`|
|
82 |
+
|`expected_satisfaction_of_dater` |`float64`|
|
83 |
+
|`expected_number_of_likes_of_dater_from_20_people` |`int8` |
|
84 |
+
|`expected_number_of_dates_for_dater` |`int8` |
|
85 |
+
|`dater_liked_dated` |`float64`|
|
86 |
+
|`probability_dated_wants_to_date` |`float64`|
|
87 |
+
|`already_met_before` |`int8` |
|
88 |
+
|`dater_wants_to_date` |`int8` |
|
89 |
+
|`dated_wants_to_date` |`int8` |
|
speeddating.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
"""Speeddating Dataset"""
|
2 |
|
3 |
from typing import List
|
4 |
-
from functools import partial
|
5 |
|
6 |
import datasets
|
7 |
|
@@ -77,12 +76,6 @@ _BASE_FEATURE_NAMES = [
|
|
77 |
"is_match"
|
78 |
]
|
79 |
|
80 |
-
_ENCODING_DICS = {
|
81 |
-
"sex": {
|
82 |
-
"female": 0,
|
83 |
-
"male": 1
|
84 |
-
}
|
85 |
-
}
|
86 |
|
87 |
DESCRIPTION = "Speed-dating dataset."
|
88 |
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
|
@@ -95,7 +88,7 @@ urls_per_split = {
|
|
95 |
}
|
96 |
features_types_per_config = {
|
97 |
"dating": {
|
98 |
-
"
|
99 |
"dater_age": datasets.Value("int8"),
|
100 |
"dated_age": datasets.Value("int8"),
|
101 |
"age_difference": datasets.Value("int8"),
|
@@ -198,13 +191,16 @@ class Speeddating(datasets.GeneratorBasedBuilder):
|
|
198 |
]
|
199 |
|
200 |
def _generate_examples(self, filepath: str):
|
201 |
-
|
202 |
-
|
|
|
203 |
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
|
|
|
|
208 |
|
209 |
def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
|
210 |
data.loc[data.race == "?", "race"] = "unknown"
|
@@ -220,8 +216,6 @@ class Speeddating(datasets.GeneratorBasedBuilder):
|
|
220 |
data.loc[data.race == "Black/African American", "race"] = "african-american"
|
221 |
data.loc[data.race_o == "Black/African American", "race_o"] = "african-american"
|
222 |
|
223 |
-
sex_transform = partial(self.encoding_dics, "sex")
|
224 |
-
data.loc[:, "gender"] = data.gender.apply(sex_transform)
|
225 |
data = data.rename(columns={"gender": "sex"})
|
226 |
|
227 |
data.drop("has_null", axis="columns", inplace=True)
|
@@ -322,13 +316,4 @@ class Speeddating(datasets.GeneratorBasedBuilder):
|
|
322 |
|
323 |
data.columns = _BASE_FEATURE_NAMES
|
324 |
|
325 |
-
|
326 |
-
return data
|
327 |
-
else:
|
328 |
-
raise ValueError(f"Unknown config: {config}")
|
329 |
-
|
330 |
-
def encoding_dics(self, feature, value):
|
331 |
-
if feature in _ENCODING_DICS:
|
332 |
-
return _ENCODING_DICS[feature][value]
|
333 |
-
raise ValueError(f"Unknown feature: {feature}")
|
334 |
-
|
|
|
1 |
"""Speeddating Dataset"""
|
2 |
|
3 |
from typing import List
|
|
|
4 |
|
5 |
import datasets
|
6 |
|
|
|
76 |
"is_match"
|
77 |
]
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
DESCRIPTION = "Speed-dating dataset."
|
81 |
_HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
|
|
|
88 |
}
|
89 |
features_types_per_config = {
|
90 |
"dating": {
|
91 |
+
"is_dater_male": datasets.Value("int8"),
|
92 |
"dater_age": datasets.Value("int8"),
|
93 |
"dated_age": datasets.Value("int8"),
|
94 |
"age_difference": datasets.Value("int8"),
|
|
|
191 |
]
|
192 |
|
193 |
def _generate_examples(self, filepath: str):
|
194 |
+
if self.config.name == "dating":
|
195 |
+
data = pandas.read_csv(filepath)
|
196 |
+
data = self.preprocess(data, config=self.config.name)
|
197 |
|
198 |
+
for row_id, row in data.iterrows():
|
199 |
+
data_row = dict(row)
|
200 |
|
201 |
+
yield row_id, data_row
|
202 |
+
else:
|
203 |
+
raise ValueError(f"Unknown config: {self.config.name}")
|
204 |
|
205 |
def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
|
206 |
data.loc[data.race == "?", "race"] = "unknown"
|
|
|
216 |
data.loc[data.race == "Black/African American", "race"] = "african-american"
|
217 |
data.loc[data.race_o == "Black/African American", "race_o"] = "african-american"
|
218 |
|
|
|
|
|
219 |
data = data.rename(columns={"gender": "sex"})
|
220 |
|
221 |
data.drop("has_null", axis="columns", inplace=True)
|
|
|
316 |
|
317 |
data.columns = _BASE_FEATURE_NAMES
|
318 |
|
319 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|