mstz commited on
Commit
8b31bca
·
1 Parent(s): cd5b2bc

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +73 -1
  2. speeddating.py +10 -25
README.md CHANGED
@@ -14,4 +14,76 @@ configs:
14
  - dating
15
  ---
16
  # Speed dating
17
- The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) is cool.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  - dating
15
  ---
16
  # Speed dating
17
+ The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) from OpenML.
18
+
19
+
20
+ # Configurations and tasks
21
+ - `dating` Predict the success of speed dating.
22
+
23
+ # Features
24
+ |**Features** |**Type** |
25
+ |---------------------------------------------------|---------|
26
+ |`is_dater_male` |`int8` |
27
+ |`dater_age` |`int8` |
28
+ |`dated_age` |`int8` |
29
+ |`age_difference` |`int8` |
30
+ |`dater_race` |`string` |
31
+ |`dated_race` |`string` |
32
+ |`are_same_race` |`int8` |
33
+ |`same_race_importance_for_dater` |`float64`|
34
+ |`same_religion_importance_for_dater` |`float64`|
35
+ |`attractiveness_importance_for_dated` |`float64`|
36
+ |`sincerity_importance_for_dated` |`float64`|
37
+ |`intelligence_importance_for_dated` |`float64`|
38
+ |`humor_importance_for_dated` |`float64`|
39
+ |`ambition_importance_for_dated` |`float64`|
40
+ |`shared_interests_importance_for_dated` |`float64`|
41
+ |`attractiveness_score_of_dater_from_dated` |`float64`|
42
+ |`sincerity_score_of_dater_from_dated` |`float64`|
43
+ |`intelligence_score_of_dater_from_dated` |`float64`|
44
+ |`humor_score_of_dater_from_dated` |`float64`|
45
+ |`ambition_score_of_dater_from_dated` |`float64`|
46
+ |`shared_interests_score_of_dater_from_dated` |`float64`|
47
+ |`attractiveness_importance_for_dater` |`float64`|
48
+ |`sincerity_importance_for_dater` |`float64`|
49
+ |`intelligence_importance_for_dater` |`float64`|
50
+ |`humor_importance_for_dater` |`float64`|
51
+ |`ambition_importance_for_dater` |`float64`|
52
+ |`shared_interests_importance_for_dater` |`float64`|
53
+ |`self_reported_attractiveness_of_dater` |`float64`|
54
+ |`self_reported_sincerity_of_dater` |`float64`|
55
+ |`self_reported_intelligence_of_dater` |`float64`|
56
+ |`self_reported_humor_of_dater` |`float64`|
57
+ |`self_reported_ambition_of_dater` |`float64`|
58
+ |`reported_attractiveness_of_dated_from_dater` |`float64`|
59
+ |`reported_sincerity_of_dated_from_dater` |`float64`|
60
+ |`reported_intelligence_of_dated_from_dater` |`float64`|
61
+ |`reported_humor_of_dated_from_dater` |`float64`|
62
+ |`reported_ambition_of_dated_from_dater` |`float64`|
63
+ |`reported_shared_interests_of_dated_from_dater` |`float64`|
64
+ |`dater_interest_in_sports` |`float64`|
65
+ |`dater_interest_in_tvsports` |`float64`|
66
+ |`dater_interest_in_exercise` |`float64`|
67
+ |`dater_interest_in_dining` |`float64`|
68
+ |`dater_interest_in_museums` |`float64`|
69
+ |`dater_interest_in_art` |`float64`|
70
+ |`dater_interest_in_hiking` |`float64`|
71
+ |`dater_interest_in_gaming` |`float64`|
72
+ |`dater_interest_in_clubbing` |`float64`|
73
+ |`dater_interest_in_reading` |`float64`|
74
+ |`dater_interest_in_tv` |`float64`|
75
+ |`dater_interest_in_theater` |`float64`|
76
+ |`dater_interest_in_movies` |`float64`|
77
+ |`dater_interest_in_concerts` |`float64`|
78
+ |`dater_interest_in_music` |`float64`|
79
+ |`dater_interest_in_shopping` |`float64`|
80
+ |`dater_interest_in_yoga` |`float64`|
81
+ |`interests_correlation` |`float64`|
82
+ |`expected_satisfaction_of_dater` |`float64`|
83
+ |`expected_number_of_likes_of_dater_from_20_people` |`int8` |
84
+ |`expected_number_of_dates_for_dater` |`int8` |
85
+ |`dater_liked_dated` |`float64`|
86
+ |`probability_dated_wants_to_date` |`float64`|
87
+ |`already_met_before` |`int8` |
88
+ |`dater_wants_to_date` |`int8` |
89
+ |`dated_wants_to_date` |`int8` |
speeddating.py CHANGED
@@ -1,7 +1,6 @@
1
  """Speeddating Dataset"""
2
 
3
  from typing import List
4
- from functools import partial
5
 
6
  import datasets
7
 
@@ -77,12 +76,6 @@ _BASE_FEATURE_NAMES = [
77
  "is_match"
78
  ]
79
 
80
- _ENCODING_DICS = {
81
- "sex": {
82
- "female": 0,
83
- "male": 1
84
- }
85
- }
86
 
87
  DESCRIPTION = "Speed-dating dataset."
88
  _HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
@@ -95,7 +88,7 @@ urls_per_split = {
95
  }
96
  features_types_per_config = {
97
  "dating": {
98
- "dater_gender": datasets.Value("int8"),
99
  "dater_age": datasets.Value("int8"),
100
  "dated_age": datasets.Value("int8"),
101
  "age_difference": datasets.Value("int8"),
@@ -198,13 +191,16 @@ class Speeddating(datasets.GeneratorBasedBuilder):
198
  ]
199
 
200
  def _generate_examples(self, filepath: str):
201
- data = pandas.read_csv(filepath)
202
- data = self.preprocess(data, config=self.config.name)
 
203
 
204
- for row_id, row in data.iterrows():
205
- data_row = dict(row)
206
 
207
- yield row_id, data_row
 
 
208
 
209
  def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
210
  data.loc[data.race == "?", "race"] = "unknown"
@@ -220,8 +216,6 @@ class Speeddating(datasets.GeneratorBasedBuilder):
220
  data.loc[data.race == "Black/African American", "race"] = "african-american"
221
  data.loc[data.race_o == "Black/African American", "race_o"] = "african-american"
222
 
223
- sex_transform = partial(self.encoding_dics, "sex")
224
- data.loc[:, "gender"] = data.gender.apply(sex_transform)
225
  data = data.rename(columns={"gender": "sex"})
226
 
227
  data.drop("has_null", axis="columns", inplace=True)
@@ -322,13 +316,4 @@ class Speeddating(datasets.GeneratorBasedBuilder):
322
 
323
  data.columns = _BASE_FEATURE_NAMES
324
 
325
- if config == "dating":
326
- return data
327
- else:
328
- raise ValueError(f"Unknown config: {config}")
329
-
330
- def encoding_dics(self, feature, value):
331
- if feature in _ENCODING_DICS:
332
- return _ENCODING_DICS[feature][value]
333
- raise ValueError(f"Unknown feature: {feature}")
334
-
 
1
  """Speeddating Dataset"""
2
 
3
  from typing import List
 
4
 
5
  import datasets
6
 
 
76
  "is_match"
77
  ]
78
 
 
 
 
 
 
 
79
 
80
  DESCRIPTION = "Speed-dating dataset."
81
  _HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
 
88
  }
89
  features_types_per_config = {
90
  "dating": {
91
+ "is_dater_male": datasets.Value("int8"),
92
  "dater_age": datasets.Value("int8"),
93
  "dated_age": datasets.Value("int8"),
94
  "age_difference": datasets.Value("int8"),
 
191
  ]
192
 
193
  def _generate_examples(self, filepath: str):
194
+ if self.config.name == "dating":
195
+ data = pandas.read_csv(filepath)
196
+ data = self.preprocess(data, config=self.config.name)
197
 
198
+ for row_id, row in data.iterrows():
199
+ data_row = dict(row)
200
 
201
+ yield row_id, data_row
202
+ else:
203
+ raise ValueError(f"Unknown config: {self.config.name}")
204
 
205
  def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
206
  data.loc[data.race == "?", "race"] = "unknown"
 
216
  data.loc[data.race == "Black/African American", "race"] = "african-american"
217
  data.loc[data.race_o == "Black/African American", "race_o"] = "african-american"
218
 
 
 
219
  data = data.rename(columns={"gender": "sex"})
220
 
221
  data.drop("has_null", axis="columns", inplace=True)
 
316
 
317
  data.columns = _BASE_FEATURE_NAMES
318
 
319
+ return data