Datasets:
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- as
|
4 |
+
- bn
|
5 |
+
- brx
|
6 |
+
- doi
|
7 |
+
- en
|
8 |
+
- gom
|
9 |
+
- gu
|
10 |
+
- hi
|
11 |
+
- kn
|
12 |
+
- ks
|
13 |
+
- mai
|
14 |
+
- ml
|
15 |
+
- mr
|
16 |
+
- mni
|
17 |
+
- ne
|
18 |
+
- or
|
19 |
+
- pa
|
20 |
+
- sa
|
21 |
+
- sat
|
22 |
+
- sd
|
23 |
+
- ta
|
24 |
+
- te
|
25 |
+
- ur
|
26 |
+
language_details: >-
|
27 |
+
asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
|
28 |
+
hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei,
|
29 |
+
npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml,
|
30 |
+
tel_Telu, urd_Arab
|
31 |
+
license: cc-by-4.0
|
32 |
+
language_creators:
|
33 |
+
- expert-generated
|
34 |
+
multilinguality:
|
35 |
+
- multilingual
|
36 |
+
- translation
|
37 |
+
pretty_name: in22-gen
|
38 |
+
size_categories:
|
39 |
+
- 1K<n<10K
|
40 |
+
task_categories:
|
41 |
+
- translation
|
42 |
+
---
|
43 |
+
|
44 |
+
# IN22-Gen
|
45 |
+
|
46 |
+
IN22 is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. IN22-Gen is a general-purpose multi-domain evaluation subset of IN22. It has been created from two sources: Wikipedia and Web Sources offering diverse content spanning news, entertainment, culture, legal, and India-centric topics. The evaluation subset consists of 1024 sentences translated across 22 Indic languages enabling evaluation of MT systems across 506 directions.
|
47 |
+
|
48 |
+
Here is the domain and source distribution of our IN22-Gen evaluation subset.
|
49 |
+
|
50 |
+
<table style="width: 40%">
|
51 |
+
<tr>
|
52 |
+
<td>domain</td>
|
53 |
+
<td>web sources</td>
|
54 |
+
<td>wikipedia</td>
|
55 |
+
</tr>
|
56 |
+
<tr>
|
57 |
+
<td>culture</td>
|
58 |
+
<td>40</td>
|
59 |
+
<td>40</td>
|
60 |
+
</tr>
|
61 |
+
<tr>
|
62 |
+
<td>economy</td>
|
63 |
+
<td>40</td>
|
64 |
+
<td>40</td>
|
65 |
+
</tr>
|
66 |
+
<tr>
|
67 |
+
<td>education</td>
|
68 |
+
<td>40</td>
|
69 |
+
<td>40</td>
|
70 |
+
</tr>
|
71 |
+
<tr>
|
72 |
+
<td>entertainment</td>
|
73 |
+
<td>40</td>
|
74 |
+
<td>40</td>
|
75 |
+
</tr>
|
76 |
+
<tr>
|
77 |
+
<td>geography</td>
|
78 |
+
<td>40</td>
|
79 |
+
<td>40</td>
|
80 |
+
</tr>
|
81 |
+
<tr>
|
82 |
+
<td>governments</td>
|
83 |
+
<td>40</td>
|
84 |
+
<td>40</td>
|
85 |
+
</tr>
|
86 |
+
<tr>
|
87 |
+
<td>health</td>
|
88 |
+
<td>40</td>
|
89 |
+
<td>40</td>
|
90 |
+
</tr>
|
91 |
+
<tr>
|
92 |
+
<td>industry</td>
|
93 |
+
<td>40</td>
|
94 |
+
<td>40</td>
|
95 |
+
</tr>
|
96 |
+
<tr>
|
97 |
+
<td>legal</td>
|
98 |
+
<td>40</td>
|
99 |
+
<td>40</td>
|
100 |
+
</tr>
|
101 |
+
<tr>
|
102 |
+
<td>news</td>
|
103 |
+
<td>32</td>
|
104 |
+
<td>32</td>
|
105 |
+
</tr>
|
106 |
+
<tr>
|
107 |
+
<td>religion</td>
|
108 |
+
<td>40</td>
|
109 |
+
<td>40</td>
|
110 |
+
</tr>
|
111 |
+
<tr>
|
112 |
+
<td>sports</td>
|
113 |
+
<td>40</td>
|
114 |
+
<td>40</td>
|
115 |
+
</tr>
|
116 |
+
<tr>
|
117 |
+
<td>tourism</td>
|
118 |
+
<td>40</td>
|
119 |
+
<td>40</td>
|
120 |
+
</tr>
|
121 |
+
<tr>
|
122 |
+
<td>total</td>
|
123 |
+
<td>512</td>
|
124 |
+
<td>512</td>
|
125 |
+
</tr>
|
126 |
+
</table>
|
127 |
+
|
128 |
+
Please refer to the `Appendix E: Dataset Card` of the [preprint](https://arxiv.org/abs/2305.16307) on detailed description of dataset curation, annotation and quality control process.
|
129 |
+
|
130 |
+
|
131 |
+
### Dataset Structure
|
132 |
+
|
133 |
+
#### Dataset Fields
|
134 |
+
|
135 |
+
- `id`: Row number for the data entry, starting at 1.
|
136 |
+
- `context`: Context window of 3 sentences, typically includes one sentence before and after the candidate sentence.
|
137 |
+
- `source`: The source from which the candidate sentence is considered.
|
138 |
+
- `url`: The URL for the English article from which the sentence was extracted. Only available for candidate sentences sourced from Wikipedia
|
139 |
+
- `domain`: The domain of the sentence.
|
140 |
+
- `num_words`: The number of words in the candidate sentence.
|
141 |
+
- `bucket`: Classification of the candidate sentence as per predefined bucket categories.
|
142 |
+
- `sentence`: The full sentence in the specific language (may have _lang for pairings)
|
143 |
+
|
144 |
+
#### Data Instances
|
145 |
+
|
146 |
+
A sample from the `gen` split for the English language (`eng_Latn` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.
|
147 |
+
|
148 |
+
```python
|
149 |
+
{
|
150 |
+
"id": 1,
|
151 |
+
"context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
|
152 |
+
"source": "web",
|
153 |
+
"url": "",
|
154 |
+
"domain": "culture",
|
155 |
+
"num_words": 24,
|
156 |
+
"bucket": "18 - 25",
|
157 |
+
"sentence": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc."
|
158 |
+
}
|
159 |
+
```
|
160 |
+
|
161 |
+
When using a hyphenated pairing or using the `all` function, data will be presented as follows:
|
162 |
+
|
163 |
+
```python
|
164 |
+
{
|
165 |
+
"id": 1,
|
166 |
+
"context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
|
167 |
+
"source": "web",
|
168 |
+
"url": "",
|
169 |
+
"domain": "culture",
|
170 |
+
"num_words": 24,
|
171 |
+
"bucket": "18 - 25",
|
172 |
+
"sentence_eng_Latn": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
|
173 |
+
"sentence_hin_Deva": "सेवा संबंधी लोगों के लिए भेष कई गुणों का संयोजन है, जैसे कि उनके जूते, कपड़े, टाई, आभूषण, केश शैली, मेक-अप, घड़ी, कॉस्मेटिक, इत्र, आदि।"
|
174 |
+
}
|
175 |
+
```
|
176 |
+
|
177 |
+
|
178 |
+
### Usage Instructions
|
179 |
+
|
180 |
+
```python
|
181 |
+
from datasets import load_dataset
|
182 |
+
|
183 |
+
# download and load all the pairs
|
184 |
+
dataset = load_dataset("ai4bharat/IN22-Gen", "all")
|
185 |
+
|
186 |
+
# download and load specific pairs
|
187 |
+
dataset = load_dataset("ai4bharat/IN22-Gen", "eng_Latn-hin_Deva")
|
188 |
+
```
|
189 |
+
|
190 |
+
### Languages Covered
|
191 |
+
|
192 |
+
<table style="width: 40%">
|
193 |
+
<tr>
|
194 |
+
<td>Assamese (asm_Beng)</td>
|
195 |
+
<td>Kashmiri (Arabic) (kas_Arab)</td>
|
196 |
+
<td>Punjabi (pan_Guru)</td>
|
197 |
+
</tr>
|
198 |
+
<tr>
|
199 |
+
<td>Bengali (ben_Beng)</td>
|
200 |
+
<td>Kashmiri (Devanagari) (kas_Deva)</td>
|
201 |
+
<td>Sanskrit (san_Deva)</td>
|
202 |
+
</tr>
|
203 |
+
<tr>
|
204 |
+
<td>Bodo (brx_Deva)</td>
|
205 |
+
<td>Maithili (mai_Deva)</td>
|
206 |
+
<td>Santali (sat_Olck)</td>
|
207 |
+
</tr>
|
208 |
+
<tr>
|
209 |
+
<td>Dogri (doi_Deva)</td>
|
210 |
+
<td>Malayalam (mal_Mlym)</td>
|
211 |
+
<td>Sindhi (Arabic) (snd_Arab)</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>English (eng_Latn)</td>
|
215 |
+
<td>Marathi (mar_Deva)</td>
|
216 |
+
<td>Sindhi (Devanagari) (snd_Deva)</td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td>Konkani (gom_Deva)</td>
|
220 |
+
<td>Manipuri (Bengali) (mni_Beng)</td>
|
221 |
+
<td>Tamil (tam_Taml)</td>
|
222 |
+
</tr>
|
223 |
+
<tr>
|
224 |
+
<td>Gujarati (guj_Gujr)</td>
|
225 |
+
<td>Manipuri (Meitei) (mni_Mtei)</td>
|
226 |
+
<td>Telugu (tel_Telu)</td>
|
227 |
+
</tr>
|
228 |
+
<tr>
|
229 |
+
<td>Hindi (hin_Deva)</td>
|
230 |
+
<td>Nepali (npi_Deva)</td>
|
231 |
+
<td>Urdu (urd_Arab)</td>
|
232 |
+
</tr>
|
233 |
+
<tr>
|
234 |
+
<td>Kannada (kan_Knda)</td>
|
235 |
+
<td>Odia (ory_Orya)</td>
|
236 |
+
</tr>
|
237 |
+
</table>
|
238 |
+
|
239 |
+
|
240 |
+
### Citation
|
241 |
+
|
242 |
+
If you consider using our work then please cite using:
|
243 |
+
|
244 |
+
```
|
245 |
+
@article{gala2023indictrans,
|
246 |
+
title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
|
247 |
+
author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
|
248 |
+
journal={Transactions on Machine Learning Research},
|
249 |
+
issn={2835-8856},
|
250 |
+
year={2023},
|
251 |
+
url={https://openreview.net/forum?id=vfT4YuzAYA},
|
252 |
+
note={}
|
253 |
+
}
|
254 |
+
```
|
255 |
+
|