Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
loicmagne commited on
Commit
6b16776
·
verified ·
1 Parent(s): 8c99190

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +255 -0
README.md ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - as
4
+ - bn
5
+ - brx
6
+ - doi
7
+ - en
8
+ - gom
9
+ - gu
10
+ - hi
11
+ - kn
12
+ - ks
13
+ - mai
14
+ - ml
15
+ - mr
16
+ - mni
17
+ - ne
18
+ - or
19
+ - pa
20
+ - sa
21
+ - sat
22
+ - sd
23
+ - ta
24
+ - te
25
+ - ur
26
+ language_details: >-
27
+ asm_Beng, ben_Beng, brx_Deva, doi_Deva, eng_Latn, gom_Deva, guj_Gujr,
28
+ hin_Deva, kan_Knda, kas_Arab, mai_Deva, mal_Mlym, mar_Deva, mni_Mtei,
29
+ npi_Deva, ory_Orya, pan_Guru, san_Deva, sat_Olck, snd_Deva, tam_Taml,
30
+ tel_Telu, urd_Arab
31
+ license: cc-by-4.0
32
+ language_creators:
33
+ - expert-generated
34
+ multilinguality:
35
+ - multilingual
36
+ - translation
37
+ pretty_name: in22-gen
38
+ size_categories:
39
+ - 1K<n<10K
40
+ task_categories:
41
+ - translation
42
+ ---
43
+
44
+ # IN22-Gen
45
+
46
+ IN22 is a newly created comprehensive benchmark for evaluating machine translation performance in multi-domain, n-way parallel contexts across 22 Indic languages. IN22-Gen is a general-purpose multi-domain evaluation subset of IN22. It has been created from two sources: Wikipedia and Web Sources offering diverse content spanning news, entertainment, culture, legal, and India-centric topics. The evaluation subset consists of 1024 sentences translated across 22 Indic languages enabling evaluation of MT systems across 506 directions.
47
+
48
+ Here is the domain and source distribution of our IN22-Gen evaluation subset.
49
+
50
+ <table style="width: 40%">
51
+ <tr>
52
+ <td>domain</td>
53
+ <td>web sources</td>
54
+ <td>wikipedia</td>
55
+ </tr>
56
+ <tr>
57
+ <td>culture</td>
58
+ <td>40</td>
59
+ <td>40</td>
60
+ </tr>
61
+ <tr>
62
+ <td>economy</td>
63
+ <td>40</td>
64
+ <td>40</td>
65
+ </tr>
66
+ <tr>
67
+ <td>education</td>
68
+ <td>40</td>
69
+ <td>40</td>
70
+ </tr>
71
+ <tr>
72
+ <td>entertainment</td>
73
+ <td>40</td>
74
+ <td>40</td>
75
+ </tr>
76
+ <tr>
77
+ <td>geography</td>
78
+ <td>40</td>
79
+ <td>40</td>
80
+ </tr>
81
+ <tr>
82
+ <td>governments</td>
83
+ <td>40</td>
84
+ <td>40</td>
85
+ </tr>
86
+ <tr>
87
+ <td>health</td>
88
+ <td>40</td>
89
+ <td>40</td>
90
+ </tr>
91
+ <tr>
92
+ <td>industry</td>
93
+ <td>40</td>
94
+ <td>40</td>
95
+ </tr>
96
+ <tr>
97
+ <td>legal</td>
98
+ <td>40</td>
99
+ <td>40</td>
100
+ </tr>
101
+ <tr>
102
+ <td>news</td>
103
+ <td>32</td>
104
+ <td>32</td>
105
+ </tr>
106
+ <tr>
107
+ <td>religion</td>
108
+ <td>40</td>
109
+ <td>40</td>
110
+ </tr>
111
+ <tr>
112
+ <td>sports</td>
113
+ <td>40</td>
114
+ <td>40</td>
115
+ </tr>
116
+ <tr>
117
+ <td>tourism</td>
118
+ <td>40</td>
119
+ <td>40</td>
120
+ </tr>
121
+ <tr>
122
+ <td>total</td>
123
+ <td>512</td>
124
+ <td>512</td>
125
+ </tr>
126
+ </table>
127
+
128
+ Please refer to the `Appendix E: Dataset Card` of the [preprint](https://arxiv.org/abs/2305.16307) on detailed description of dataset curation, annotation and quality control process.
129
+
130
+
131
+ ### Dataset Structure
132
+
133
+ #### Dataset Fields
134
+
135
+ - `id`: Row number for the data entry, starting at 1.
136
+ - `context`: Context window of 3 sentences, typically includes one sentence before and after the candidate sentence.
137
+ - `source`: The source from which the candidate sentence is considered.
138
+ - `url`: The URL for the English article from which the sentence was extracted. Only available for candidate sentences sourced from Wikipedia
139
+ - `domain`: The domain of the sentence.
140
+ - `num_words`: The number of words in the candidate sentence.
141
+ - `bucket`: Classification of the candidate sentence as per predefined bucket categories.
142
+ - `sentence`: The full sentence in the specific language (may have _lang for pairings)
143
+
144
+ #### Data Instances
145
+
146
+ A sample from the `gen` split for the English language (`eng_Latn` config) is provided below. All configurations have the same structure, and all sentences are aligned across configurations and splits.
147
+
148
+ ```python
149
+ {
150
+ "id": 1,
151
+ "context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
152
+ "source": "web",
153
+ "url": "",
154
+ "domain": "culture",
155
+ "num_words": 24,
156
+ "bucket": "18 - 25",
157
+ "sentence": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc."
158
+ }
159
+ ```
160
+
161
+ When using a hyphenated pairing or using the `all` function, data will be presented as follows:
162
+
163
+ ```python
164
+ {
165
+ "id": 1,
166
+ "context": "A uniform is often viewed as projecting a positive image of an organisation. Maintaining personal hygiene is also an important aspect of personal appearance and dressing. An appearance is a bunch of attributes related with the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
167
+ "source": "web",
168
+ "url": "",
169
+ "domain": "culture",
170
+ "num_words": 24,
171
+ "bucket": "18 - 25",
172
+ "sentence_eng_Latn": "An appearance is a bunch of attributes related to the service person, like their shoes, clothes, tie, jewellery, hairstyle, make-up, watch, cosmetics, perfume, etc.",
173
+ "sentence_hin_Deva": "सेवा संबंधी लोगों के लिए भेष कई गुणों का संयोजन है, जैसे कि उनके जूते, कपड़े, टाई, आभूषण, केश शैली, मेक-अप, घड़ी, कॉस्मेटिक, इत्र, आदि।"
174
+ }
175
+ ```
176
+
177
+
178
+ ### Usage Instructions
179
+
180
+ ```python
181
+ from datasets import load_dataset
182
+
183
+ # download and load all the pairs
184
+ dataset = load_dataset("ai4bharat/IN22-Gen", "all")
185
+
186
+ # download and load specific pairs
187
+ dataset = load_dataset("ai4bharat/IN22-Gen", "eng_Latn-hin_Deva")
188
+ ```
189
+
190
+ ### Languages Covered
191
+
192
+ <table style="width: 40%">
193
+ <tr>
194
+ <td>Assamese (asm_Beng)</td>
195
+ <td>Kashmiri (Arabic) (kas_Arab)</td>
196
+ <td>Punjabi (pan_Guru)</td>
197
+ </tr>
198
+ <tr>
199
+ <td>Bengali (ben_Beng)</td>
200
+ <td>Kashmiri (Devanagari) (kas_Deva)</td>
201
+ <td>Sanskrit (san_Deva)</td>
202
+ </tr>
203
+ <tr>
204
+ <td>Bodo (brx_Deva)</td>
205
+ <td>Maithili (mai_Deva)</td>
206
+ <td>Santali (sat_Olck)</td>
207
+ </tr>
208
+ <tr>
209
+ <td>Dogri (doi_Deva)</td>
210
+ <td>Malayalam (mal_Mlym)</td>
211
+ <td>Sindhi (Arabic) (snd_Arab)</td>
212
+ </tr>
213
+ <tr>
214
+ <td>English (eng_Latn)</td>
215
+ <td>Marathi (mar_Deva)</td>
216
+ <td>Sindhi (Devanagari) (snd_Deva)</td>
217
+ </tr>
218
+ <tr>
219
+ <td>Konkani (gom_Deva)</td>
220
+ <td>Manipuri (Bengali) (mni_Beng)</td>
221
+ <td>Tamil (tam_Taml)</td>
222
+ </tr>
223
+ <tr>
224
+ <td>Gujarati (guj_Gujr)</td>
225
+ <td>Manipuri (Meitei) (mni_Mtei)</td>
226
+ <td>Telugu (tel_Telu)</td>
227
+ </tr>
228
+ <tr>
229
+ <td>Hindi (hin_Deva)</td>
230
+ <td>Nepali (npi_Deva)</td>
231
+ <td>Urdu (urd_Arab)</td>
232
+ </tr>
233
+ <tr>
234
+ <td>Kannada (kan_Knda)</td>
235
+ <td>Odia (ory_Orya)</td>
236
+ </tr>
237
+ </table>
238
+
239
+
240
+ ### Citation
241
+
242
+ If you consider using our work then please cite using:
243
+
244
+ ```
245
+ @article{gala2023indictrans,
246
+ title={IndicTrans2: Towards High-Quality and Accessible Machine Translation Models for all 22 Scheduled Indian Languages},
247
+ author={Jay Gala and Pranjal A Chitale and A K Raghavan and Varun Gumma and Sumanth Doddapaneni and Aswanth Kumar M and Janki Atul Nawale and Anupama Sujatha and Ratish Puduppully and Vivek Raghavan and Pratyush Kumar and Mitesh M Khapra and Raj Dabre and Anoop Kunchukuttan},
248
+ journal={Transactions on Machine Learning Research},
249
+ issn={2835-8856},
250
+ year={2023},
251
+ url={https://openreview.net/forum?id=vfT4YuzAYA},
252
+ note={}
253
+ }
254
+ ```
255
+