Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed commited on
Commit
04b77ba
·
verified ·
1 Parent(s): 6bd77eb

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +195 -27
README.md CHANGED
@@ -1,29 +1,197 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: text
5
- dtype: string
6
- - name: label
7
- dtype: int64
8
- splits:
9
- - name: train
10
- num_bytes: 466788625
11
- num_examples: 25000
12
- - name: validation
13
- num_bytes: 95315107
14
- num_examples: 5000
15
- - name: test
16
- num_bytes: 38487994
17
- num_examples: 2048
18
- download_size: 249805146
19
- dataset_size: 600591726
20
- configs:
21
- - config_name: default
22
- data_files:
23
- - split: train
24
- path: data/train-*
25
- - split: validation
26
- path: data/validation-*
27
- - split: test
28
- path: data/test-*
29
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - derived
4
+ language:
5
+ - eng
6
+ license: unknown
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-classification
10
+ task_ids:
11
+ - Topic classification
12
+ tags:
13
+ - mteb
14
+ - text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
17
+
18
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
19
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">PatentClassification</h1>
20
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
21
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
22
+ </div>
23
+
24
+ Classification Dataset of Patents and Abstract
25
+
26
+ | | |
27
+ |---------------|---------------------------------------------|
28
+ | Task category | t2c |
29
+ | Domains | Legal, Written |
30
+ | Reference | https://aclanthology.org/P19-1212.pdf |
31
+
32
+
33
+ ## How to evaluate on this task
34
+
35
+ You can evaluate an embedding model on this dataset using the following code:
36
+
37
+ ```python
38
+ import mteb
39
+
40
+ task = mteb.get_tasks(["PatentClassification"])
41
+ evaluator = mteb.MTEB(task)
42
+
43
+ model = mteb.get_model(YOUR_MODEL)
44
+ evaluator.run(model)
45
+ ```
46
+
47
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
48
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
49
+
50
+ ## Citation
51
+
52
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
53
+
54
+ ```bibtex
55
+
56
+ @inproceedings{sharma-etal-2019-bigpatent,
57
+ abstract = {Most existing text summarization datasets are compiled from the news domain, where summaries have a flattened discourse structure. In such datasets, summary-worthy content often appears in the beginning of input articles. Moreover, large segments from input articles are present verbatim in their respective summaries. These issues impede the learning and evaluation of systems that can understand an article{'}s global content structure as well as produce abstractive summaries with high compression ratio. In this work, we present a novel dataset, BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Compared to existing summarization datasets, BIGPATENT has the following properties: i) summaries contain a richer discourse structure with more recurring entities, ii) salient content is evenly distributed in the input, and iii) lesser and shorter extractive fragments are present in the summaries. Finally, we train and evaluate baselines and popular learning models on BIGPATENT to shed light on new challenges and motivate future directions for summarization research.},
58
+ address = {Florence, Italy},
59
+ author = {Sharma, Eva and
60
+ Li, Chen and
61
+ Wang, Lu},
62
+ booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
63
+ doi = {10.18653/v1/P19-1212},
64
+ editor = {Korhonen, Anna and
65
+ Traum, David and
66
+ M{\`a}rquez, Llu{\'\i}s},
67
+ month = jul,
68
+ pages = {2204--2213},
69
+ publisher = {Association for Computational Linguistics},
70
+ title = {{BIGPATENT}: A Large-Scale Dataset for Abstractive and Coherent Summarization},
71
+ url = {https://aclanthology.org/P19-1212},
72
+ year = {2019},
73
+ }
74
+
75
+
76
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
77
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
78
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
79
+ publisher = {arXiv},
80
+ journal={arXiv preprint arXiv:2502.13595},
81
+ year={2025},
82
+ url={https://arxiv.org/abs/2502.13595},
83
+ doi = {10.48550/arXiv.2502.13595},
84
+ }
85
+
86
+ @article{muennighoff2022mteb,
87
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
88
+ title = {MTEB: Massive Text Embedding Benchmark},
89
+ publisher = {arXiv},
90
+ journal={arXiv preprint arXiv:2210.07316},
91
+ year = {2022}
92
+ url = {https://arxiv.org/abs/2210.07316},
93
+ doi = {10.48550/ARXIV.2210.07316},
94
+ }
95
+ ```
96
+
97
+ # Dataset Statistics
98
+ <details>
99
+ <summary> Dataset Statistics</summary>
100
+
101
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
102
+
103
+ ```python
104
+ import mteb
105
+
106
+ task = mteb.get_task("PatentClassification")
107
+
108
+ desc_stats = task.metadata.descriptive_stats
109
+ ```
110
+
111
+ ```json
112
+ {
113
+ "test": {
114
+ "num_samples": 2048,
115
+ "number_of_characters": 38376596,
116
+ "number_texts_intersect_with_train": 9,
117
+ "min_text_length": 2168,
118
+ "average_text_length": 18738.572265625,
119
+ "max_text_length": 226050,
120
+ "unique_text": 2048,
121
+ "unique_labels": 9,
122
+ "labels": {
123
+ "7": {
124
+ "count": 424
125
+ },
126
+ "0": {
127
+ "count": 309
128
+ },
129
+ "6": {
130
+ "count": 453
131
+ },
132
+ "2": {
133
+ "count": 161
134
+ },
135
+ "1": {
136
+ "count": 266
137
+ },
138
+ "8": {
139
+ "count": 206
140
+ },
141
+ "4": {
142
+ "count": 64
143
+ },
144
+ "5": {
145
+ "count": 147
146
+ },
147
+ "3": {
148
+ "count": 18
149
+ }
150
+ }
151
+ },
152
+ "train": {
153
+ "num_samples": 25000,
154
+ "number_of_characters": 465511243,
155
+ "number_texts_intersect_with_train": null,
156
+ "min_text_length": 1551,
157
+ "average_text_length": 18620.44972,
158
+ "max_text_length": 331797,
159
+ "unique_text": 24950,
160
+ "unique_labels": 9,
161
+ "labels": {
162
+ "6": {
163
+ "count": 5408
164
+ },
165
+ "0": {
166
+ "count": 3614
167
+ },
168
+ "7": {
169
+ "count": 5321
170
+ },
171
+ "8": {
172
+ "count": 2562
173
+ },
174
+ "2": {
175
+ "count": 2099
176
+ },
177
+ "4": {
178
+ "count": 705
179
+ },
180
+ "1": {
181
+ "count": 3357
182
+ },
183
+ "3": {
184
+ "count": 204
185
+ },
186
+ "5": {
187
+ "count": 1730
188
+ }
189
+ }
190
+ }
191
+ }
192
+ ```
193
+
194
+ </details>
195
+
196
+ ---
197
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*