Datasets:
mteb
/

Modalities:
Text
Formats:
json
Libraries:
Datasets
Dask
File size: 4,756 Bytes
ffd58f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d571f9
ffd58f5
fdf5bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffd58f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf5bd8
ffd58f5
 
78a3fee
ffd58f5
 
 
 
 
 
 
5c5b425
c0dc056
5c5b425
ffd58f5
 
 
 
 
 
 
 
 
 
 
7d571f9
 
ffd58f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf5bd8
ffd58f5
 
 
 
 
 
 
 
 
 
 
 
ffa08d7
ffd58f5
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8

"""MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""

import json
import datasets

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
        MASSIVE is a parallel dataset of > 1M utterances across 51 languages with annotations
        for the Natural Language Understanding tasks of intent prediction and slot annotation.
        Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing
        the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions.
"""
_URL = "amazon-massive-dataset-1.0.tar.gz"


_LANGUAGES = {
    "af": "af-ZA",
    "am": "am-ET",
    "ar": "ar-SA",
    "az": "az-AZ",
    "bn": "bn-BD",
    "cy": "cy-GB",
    "da": "da-DK",
    "de": "de-DE",
    "el": "el-GR",
    "en": "en-US",
    "es": "es-ES",
    "fa": "fa-IR",
    "fi": "fi-FI",
    "fr": "fr-FR",
    "he": "he-IL",
    "hi": "hi-IN",
    "hu": "hu-HU",
    "hy": "hy-AM",
    "id": "id-ID",
    "is": "is-IS",
    "it": "it-IT",
    "ja": "ja-JP",
    "jv": "jv-ID",
    "ka": "ka-GE",
    "km": "km-KH",
    "kn": "kn-IN",
    "ko": "ko-KR",
    "lv": "lv-LV",
    "ml": "ml-IN",
    "mn": "mn-MN",
    "ms": "ms-MY",
    "my": "my-MM",
    "nb": "nb-NO",
    "nl": "nl-NL",
    "pl": "pl-PL",
    "pt": "pt-PT",
    "ro": "ro-RO",
    "ru": "ru-RU",
    "sl": "sl-SL",
    "sq": "sq-AL",
    "sv": "sv-SE",
    "sw": "sw-KE",
    "ta": "ta-IN",
    "te": "te-IN",
    "th": "th-TH",
    "tl": "tl-PH",
    "tr": "tr-TR",
    "ur": "ur-PK",
    "vi": "vi-VN",
    "zh-CN": "zh-CN",
    "zh-TW": "zh-TW",
}

_SCENARIOS = [
    "social",
    "transport",
    "calendar",
    "play",
    "news",
    "datetime",
    "recommendation",
    "email",
    "iot",
    "general",
    "audio",
    "lists",
    "qa",
    "cooking",
    "takeaway",
    "music",
    "alarm",
    "weather",
]


class MASSIVE(datasets.GeneratorBasedBuilder):
    """MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=name,
            version=datasets.Version("1.0.0"),
            description=f"The MASSIVE corpora for {name}",
        )
        for name in _LANGUAGES.keys()
    ]

    DEFAULT_CONFIG_NAME = "en"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "label": datasets.features.ClassLabel(names=_SCENARIOS),
                    "label_text": datasets.Value("string"),
                    "text": datasets.Value("string"),
                },
            ),
            supervised_keys=None,
            homepage="https://github.com/alexa/massive",
            citation="_CITATION",
            license="_LICENSE",
        )

    def _split_generators(self, dl_manager):

        #   path = dl_manager.download_and_extract(_URL)
        archive_path = dl_manager.download(_URL)
        files = dl_manager.iter_archive(archive_path)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": files,
                    "split": "train",
                    "lang": self.config.name,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "files": files,
                    "split": "dev",
                    "lang": self.config.name,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": files,
                    "split": "test",
                    "lang": self.config.name,
                },
            ),
        ]

    def _generate_examples(self, files, split, lang):
        filepath = "1.0/data/" + _LANGUAGES[lang] + ".jsonl"
        logger.info("⏳ Generating examples from = %s", filepath)
        for path, f in files:
            if path == filepath:
                lines = f.readlines()
                key_ = 0
                for line in lines:
                    data = json.loads(line)
                    if data["partition"] != split:
                        continue
                    yield key_, {
                        "id": data["id"],
                        "label": data["scenario"],
                        "label_text": data["scenario"],
                        "text": data["utt"],
                    }
                    key_ += 1