Commit
•
ffd58f5
1
Parent(s):
97beb53
Upload massive.py
Browse files- massive.py +267 -0
massive.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
"""MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
|
4 |
+
|
5 |
+
import json
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
logger = datasets.logging.get_logger(__name__)
|
9 |
+
|
10 |
+
_DESCRIPTION = """\
|
11 |
+
MASSIVE is a parallel dataset of > 1M utterances across 51 languages with annotations
|
12 |
+
for the Natural Language Understanding tasks of intent prediction and slot annotation.
|
13 |
+
Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing
|
14 |
+
the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions.
|
15 |
+
"""
|
16 |
+
_URL = "https://amazon-massive-nlu-dataset.s3.amazonaws.com/amazon-massive-dataset-1.0.tar.gz"
|
17 |
+
|
18 |
+
_LANGUAGES = [
|
19 |
+
"af-ZA",
|
20 |
+
"am-ET",
|
21 |
+
"ar-SA",
|
22 |
+
"az-AZ",
|
23 |
+
"bn-BD",
|
24 |
+
"cy-GB",
|
25 |
+
"da-DK",
|
26 |
+
"de-DE",
|
27 |
+
"el-GR",
|
28 |
+
"en-US",
|
29 |
+
"es-ES",
|
30 |
+
"fa-IR",
|
31 |
+
"fi-FI",
|
32 |
+
"fr-FR",
|
33 |
+
"he-IL",
|
34 |
+
"hi-IN",
|
35 |
+
"hu-HU",
|
36 |
+
"hy-AM",
|
37 |
+
"id-ID",
|
38 |
+
"is-IS",
|
39 |
+
"it-IT",
|
40 |
+
"ja-JP",
|
41 |
+
"jv-ID",
|
42 |
+
"ka-GE",
|
43 |
+
"km-KH",
|
44 |
+
"kn-IN",
|
45 |
+
"ko-KR",
|
46 |
+
"lv-LV",
|
47 |
+
"ml-IN",
|
48 |
+
"mn-MN",
|
49 |
+
"ms-MY",
|
50 |
+
"my-MM",
|
51 |
+
"nb-NO",
|
52 |
+
"nl-NL",
|
53 |
+
"pl-PL",
|
54 |
+
"pt-PT",
|
55 |
+
"ro-RO",
|
56 |
+
"ru-RU",
|
57 |
+
"sl-SL",
|
58 |
+
"sq-AL",
|
59 |
+
"sv-SE",
|
60 |
+
"sw-KE",
|
61 |
+
"ta-IN",
|
62 |
+
"te-IN",
|
63 |
+
"th-TH",
|
64 |
+
"tl-PH",
|
65 |
+
"tr-TR",
|
66 |
+
"ur-PK",
|
67 |
+
"vi-VN",
|
68 |
+
"zh-CN",
|
69 |
+
"zh-TW",
|
70 |
+
]
|
71 |
+
|
72 |
+
_SCENARIOS = [
|
73 |
+
"social",
|
74 |
+
"transport",
|
75 |
+
"calendar",
|
76 |
+
"play",
|
77 |
+
"news",
|
78 |
+
"datetime",
|
79 |
+
"recommendation",
|
80 |
+
"email",
|
81 |
+
"iot",
|
82 |
+
"general",
|
83 |
+
"audio",
|
84 |
+
"lists",
|
85 |
+
"qa",
|
86 |
+
"cooking",
|
87 |
+
"takeaway",
|
88 |
+
"music",
|
89 |
+
"alarm",
|
90 |
+
"weather",
|
91 |
+
]
|
92 |
+
|
93 |
+
_INTENTS = [
|
94 |
+
"datetime_query",
|
95 |
+
"iot_hue_lightchange",
|
96 |
+
"transport_ticket",
|
97 |
+
"takeaway_query",
|
98 |
+
"qa_stock",
|
99 |
+
"general_greet",
|
100 |
+
"recommendation_events",
|
101 |
+
"music_dislikeness",
|
102 |
+
"iot_wemo_off",
|
103 |
+
"cooking_recipe",
|
104 |
+
"qa_currency",
|
105 |
+
"transport_traffic",
|
106 |
+
"general_quirky",
|
107 |
+
"weather_query",
|
108 |
+
"audio_volume_up",
|
109 |
+
"email_addcontact",
|
110 |
+
"takeaway_order",
|
111 |
+
"email_querycontact",
|
112 |
+
"iot_hue_lightup",
|
113 |
+
"recommendation_locations",
|
114 |
+
"play_audiobook",
|
115 |
+
"lists_createoradd",
|
116 |
+
"news_query",
|
117 |
+
"alarm_query",
|
118 |
+
"iot_wemo_on",
|
119 |
+
"general_joke",
|
120 |
+
"qa_definition",
|
121 |
+
"social_query",
|
122 |
+
"music_settings",
|
123 |
+
"audio_volume_other",
|
124 |
+
"calendar_remove",
|
125 |
+
"iot_hue_lightdim",
|
126 |
+
"calendar_query",
|
127 |
+
"email_sendemail",
|
128 |
+
"iot_cleaning",
|
129 |
+
"audio_volume_down",
|
130 |
+
"play_radio",
|
131 |
+
"cooking_query",
|
132 |
+
"datetime_convert",
|
133 |
+
"qa_maths",
|
134 |
+
"iot_hue_lightoff",
|
135 |
+
"iot_hue_lighton",
|
136 |
+
"transport_query",
|
137 |
+
"music_likeness",
|
138 |
+
"email_query",
|
139 |
+
"play_music",
|
140 |
+
"audio_volume_mute",
|
141 |
+
"social_post",
|
142 |
+
"alarm_set",
|
143 |
+
"qa_factoid",
|
144 |
+
"calendar_set",
|
145 |
+
"play_game",
|
146 |
+
"alarm_remove",
|
147 |
+
"lists_remove",
|
148 |
+
"transport_taxi",
|
149 |
+
"recommendation_movies",
|
150 |
+
"iot_coffee",
|
151 |
+
"music_query",
|
152 |
+
"play_podcasts",
|
153 |
+
"lists_query",
|
154 |
+
]
|
155 |
+
|
156 |
+
|
157 |
+
class MASSIVE(datasets.GeneratorBasedBuilder):
|
158 |
+
"""MASSIVE: A 1M-Example Multilingual Natural Language Understanding Dataset with 51 Typologically-Diverse Languages"""
|
159 |
+
|
160 |
+
BUILDER_CONFIGS = [
|
161 |
+
datasets.BuilderConfig(
|
162 |
+
name=name,
|
163 |
+
version=datasets.Version("1.0.0"),
|
164 |
+
description=f"The MASSIVE corpora for {name}",
|
165 |
+
)
|
166 |
+
for name in _LANGUAGES
|
167 |
+
]
|
168 |
+
|
169 |
+
DEFAULT_CONFIG_NAME = "en-US"
|
170 |
+
|
171 |
+
def _info(self):
|
172 |
+
return datasets.DatasetInfo(
|
173 |
+
description=_DESCRIPTION,
|
174 |
+
features=datasets.Features(
|
175 |
+
{
|
176 |
+
"id": datasets.Value("string"),
|
177 |
+
"locale": datasets.Value("string"),
|
178 |
+
"partition": datasets.Value("string"),
|
179 |
+
"scenario": datasets.features.ClassLabel(names=_SCENARIOS),
|
180 |
+
"intent": datasets.features.ClassLabel(names=_INTENTS),
|
181 |
+
"utt": datasets.Value("string"),
|
182 |
+
"annot_utt": datasets.Value("string"),
|
183 |
+
"worker_id": datasets.Value("string"),
|
184 |
+
"slot_method": datasets.Sequence(
|
185 |
+
{
|
186 |
+
"slot": datasets.Value("string"),
|
187 |
+
"method": datasets.Value("string"),
|
188 |
+
}
|
189 |
+
),
|
190 |
+
"judgments": datasets.Sequence(
|
191 |
+
{
|
192 |
+
"worker_id": datasets.Value("string"),
|
193 |
+
"intent_score": datasets.Value("int8"),
|
194 |
+
"slots_score": datasets.Value("int8"),
|
195 |
+
"grammar_score": datasets.Value("int8"),
|
196 |
+
"spelling_score": datasets.Value("int8"),
|
197 |
+
"language_identification": datasets.Value("string"),
|
198 |
+
}
|
199 |
+
),
|
200 |
+
},
|
201 |
+
),
|
202 |
+
supervised_keys=None,
|
203 |
+
homepage="https://github.com/alexa/massive",
|
204 |
+
citation="_CITATION",
|
205 |
+
license="_LICENSE",
|
206 |
+
)
|
207 |
+
|
208 |
+
def _split_generators(self, dl_manager):
|
209 |
+
|
210 |
+
# path = dl_manager.download_and_extract(_URL)
|
211 |
+
archive_path = dl_manager.download(_URL)
|
212 |
+
files = dl_manager.iter_archive(archive_path)
|
213 |
+
|
214 |
+
return [
|
215 |
+
datasets.SplitGenerator(
|
216 |
+
name=datasets.Split.TRAIN,
|
217 |
+
gen_kwargs={
|
218 |
+
"files": files,
|
219 |
+
"split": "train",
|
220 |
+
"lang": self.config.name,
|
221 |
+
},
|
222 |
+
),
|
223 |
+
datasets.SplitGenerator(
|
224 |
+
name=datasets.Split.VALIDATION,
|
225 |
+
gen_kwargs={
|
226 |
+
"files": files,
|
227 |
+
"split": "dev",
|
228 |
+
"lang": self.config.name,
|
229 |
+
},
|
230 |
+
),
|
231 |
+
datasets.SplitGenerator(
|
232 |
+
name=datasets.Split.TEST,
|
233 |
+
gen_kwargs={
|
234 |
+
"files": files,
|
235 |
+
"split": "test",
|
236 |
+
"lang": self.config.name,
|
237 |
+
},
|
238 |
+
),
|
239 |
+
]
|
240 |
+
|
241 |
+
def _generate_examples(self, files, split, lang):
|
242 |
+
|
243 |
+
filepath = "1.0/data/" + lang + ".jsonl"
|
244 |
+
|
245 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
246 |
+
|
247 |
+
for path, f in files:
|
248 |
+
if path == filepath:
|
249 |
+
# Read the file
|
250 |
+
lines = f.readlines()
|
251 |
+
|
252 |
+
key_ = 0
|
253 |
+
|
254 |
+
for line in lines:
|
255 |
+
|
256 |
+
data = json.loads(line)
|
257 |
+
|
258 |
+
if data["partition"] != split:
|
259 |
+
continue
|
260 |
+
|
261 |
+
yield key_, {
|
262 |
+
"id": data["id"],
|
263 |
+
"label": data["scenario"],
|
264 |
+
"text": data["utt"],
|
265 |
+
}
|
266 |
+
|
267 |
+
key_ += 1
|