Datasets:
mteb
/

Modalities:
Tabular
Text
Formats:
json
Libraries:
Datasets
Dask
Muennighoff commited on
Commit
f97c272
·
verified ·
1 Parent(s): 8243a1d

Scheduled Commit

Browse files
data/clustering_battle-3403941f-f995-496f-9668-ac196a27ebc6.jsonl CHANGED
@@ -3,3 +3,5 @@
3
  {"tstamp": 1741591256.5178, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "9a0582f68f02446abb0523831e92c143", "0_model_name": "voyage-multilingual-2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "beijing", "china"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "4b5b038b79804bdb823f2789a581003b", "1_model_name": "jinaai/jina-embeddings-v2-base-en", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "beijing", "china"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
4
  {"tstamp": 1741763858.0619, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "463008d983eb46758bb4bfe22cc7ef8f", "0_model_name": "Alibaba-NLP/gte-Qwen2-7B-instruct", "0_prompt": ["apple", "kiwi", "orange", "banana", "grape", "mango", "rowing", "athletics", "archery", "swimming", "cycling"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "f60754abf3f94031b8ff3d38c6cbce3f", "1_model_name": "text-embedding-3-large", "1_prompt": ["apple", "kiwi", "orange", "banana", "grape", "mango", "rowing", "athletics", "archery", "swimming", "cycling"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
5
  {"tstamp": 1741877142.6506, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "163fbef4676f4ef2a83382124c1816f5", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "936550cfc5df4de8b23704e8ea2848ee", "1_model_name": "embed-english-v3.0", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
 
 
 
3
  {"tstamp": 1741591256.5178, "task_type": "clustering", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "9a0582f68f02446abb0523831e92c143", "0_model_name": "voyage-multilingual-2", "0_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "beijing", "china"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "4b5b038b79804bdb823f2789a581003b", "1_model_name": "jinaai/jina-embeddings-v2-base-en", "1_prompt": ["Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco", "beijing", "china"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
4
  {"tstamp": 1741763858.0619, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "463008d983eb46758bb4bfe22cc7ef8f", "0_model_name": "Alibaba-NLP/gte-Qwen2-7B-instruct", "0_prompt": ["apple", "kiwi", "orange", "banana", "grape", "mango", "rowing", "athletics", "archery", "swimming", "cycling"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "f60754abf3f94031b8ff3d38c6cbce3f", "1_model_name": "text-embedding-3-large", "1_prompt": ["apple", "kiwi", "orange", "banana", "grape", "mango", "rowing", "athletics", "archery", "swimming", "cycling"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
5
  {"tstamp": 1741877142.6506, "task_type": "clustering", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "163fbef4676f4ef2a83382124c1816f5", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "0_ncluster": 2, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "936550cfc5df4de8b23704e8ea2848ee", "1_model_name": "embed-english-v3.0", "1_prompt": ["It's official! 1 Bitcoin = $10,000 USD", "Everyone who's trading BTC right now", "Age reversal not only achievable but also possibly imminent: Retro Biosciences", "MicroRNA regrows 90% of lost hair, study finds", "Speech-to-speech translation for a real-world unwritten language", "Seeking the Best Embedding Model: Experiences with the MTEB Arena?", "Shanghai", "Beijing", "Shenzhen", "Hangzhou", "Seattle", "Boston", "New York", "San Francisco"], "1_ncluster": 2, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
6
+ {"tstamp": 1742392830.8061, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "40548b9a40b44fbd8503e875c2666232", "0_model_name": "intfloat/e5-mistral-7b-instruct", "0_prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "0_ncluster": 5, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "c5dcce5b82204fe3a9e82e879ffb0a8d", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "1_ncluster": 5, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
7
+ {"tstamp": 1742392932.2031, "task_type": "clustering", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "e070a3656fae4f42bbbc28f520bc787e", "0_model_name": "sentence-transformers/all-MiniLM-L6-v2", "0_prompt": ["BMW", "Toyota", "Tesla", "GMC", "Nissan", "Volkswagen", "Brave", "Firefox", "basketball", "cricket", "tennis", "swimming", "baseball"], "0_ncluster": 3, "0_output": "", "0_ndim": "3D (press for 2D)", "0_dim_method": "PCA", "0_clustering_method": "KMeans", "1_conv_id": "0935dbb5fbaa4e6e994807945353d246", "1_model_name": "intfloat/multilingual-e5-large-instruct", "1_prompt": ["BMW", "Toyota", "Tesla", "GMC", "Nissan", "Volkswagen", "Brave", "Firefox", "basketball", "cricket", "tennis", "swimming", "baseball"], "1_ncluster": 3, "1_output": "", "1_ndim": "3D (press for 2D)", "1_dim_method": "PCA", "1_clustering_method": "KMeans"}
data/clustering_individual-3403941f-f995-496f-9668-ac196a27ebc6.jsonl CHANGED
@@ -102,3 +102,5 @@
102
  {"tstamp": 1742378210.2952, "task_type": "clustering", "type": "chat", "model": "voyage-multilingual-2", "gen_params": {}, "start": 1742378209.9663, "finish": 1742378210.2952, "ip": "", "conv_id": "4a5b409fc1974941b7e49bc56c760ede", "model_name": "voyage-multilingual-2", "prompt": ["watering can", "trowel", "rake", "shovel", "pruning shears", "basketball", "swimming", "baseball", "tennis", "cricket", "soccer"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
103
  {"tstamp": 1742392821.2509, "task_type": "clustering", "type": "chat", "model": "intfloat/e5-mistral-7b-instruct", "gen_params": {}, "start": 1742392821.0997, "finish": 1742392821.2509, "ip": "", "conv_id": "40548b9a40b44fbd8503e875c2666232", "model_name": "intfloat/e5-mistral-7b-instruct", "prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "ncluster": 5, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
104
  {"tstamp": 1742392821.2509, "task_type": "clustering", "type": "chat", "model": "Salesforce/SFR-Embedding-2_R", "gen_params": {}, "start": 1742392821.0997, "finish": 1742392821.2509, "ip": "", "conv_id": "c5dcce5b82204fe3a9e82e879ffb0a8d", "model_name": "Salesforce/SFR-Embedding-2_R", "prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "ncluster": 5, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
 
 
 
102
  {"tstamp": 1742378210.2952, "task_type": "clustering", "type": "chat", "model": "voyage-multilingual-2", "gen_params": {}, "start": 1742378209.9663, "finish": 1742378210.2952, "ip": "", "conv_id": "4a5b409fc1974941b7e49bc56c760ede", "model_name": "voyage-multilingual-2", "prompt": ["watering can", "trowel", "rake", "shovel", "pruning shears", "basketball", "swimming", "baseball", "tennis", "cricket", "soccer"], "ncluster": 2, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
103
  {"tstamp": 1742392821.2509, "task_type": "clustering", "type": "chat", "model": "intfloat/e5-mistral-7b-instruct", "gen_params": {}, "start": 1742392821.0997, "finish": 1742392821.2509, "ip": "", "conv_id": "40548b9a40b44fbd8503e875c2666232", "model_name": "intfloat/e5-mistral-7b-instruct", "prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "ncluster": 5, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
104
  {"tstamp": 1742392821.2509, "task_type": "clustering", "type": "chat", "model": "Salesforce/SFR-Embedding-2_R", "gen_params": {}, "start": 1742392821.0997, "finish": 1742392821.2509, "ip": "", "conv_id": "c5dcce5b82204fe3a9e82e879ffb0a8d", "model_name": "Salesforce/SFR-Embedding-2_R", "prompt": ["maple", "cedar", "pine", "oak", "birch", "surprise", "joy", "happiness", "disgust", "anger", "sadness", "fear", "Hindu", "Roman", "Norse", "Egyptian", "Celtic", "Oracle Cloud", "Google Cloud", "IBM Cloud", "AWS", "semi-arid", "hot and dry", "coastal", "cold", "polar"], "ncluster": 5, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
105
+ {"tstamp": 1742392910.1699, "task_type": "clustering", "type": "chat", "model": "sentence-transformers/all-MiniLM-L6-v2", "gen_params": {}, "start": 1742392910.0878, "finish": 1742392910.1699, "ip": "", "conv_id": "e070a3656fae4f42bbbc28f520bc787e", "model_name": "sentence-transformers/all-MiniLM-L6-v2", "prompt": ["BMW", "Toyota", "Tesla", "GMC", "Nissan", "Volkswagen", "Brave", "Firefox", "basketball", "cricket", "tennis", "swimming", "baseball"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
106
+ {"tstamp": 1742392910.1699, "task_type": "clustering", "type": "chat", "model": "intfloat/multilingual-e5-large-instruct", "gen_params": {}, "start": 1742392910.0878, "finish": 1742392910.1699, "ip": "", "conv_id": "0935dbb5fbaa4e6e994807945353d246", "model_name": "intfloat/multilingual-e5-large-instruct", "prompt": ["BMW", "Toyota", "Tesla", "GMC", "Nissan", "Volkswagen", "Brave", "Firefox", "basketball", "cricket", "tennis", "swimming", "baseball"], "ncluster": 3, "output": "", "ndim": "3D (press for 2D)", "dim_method": "PCA", "clustering_method": "KMeans"}
data/sts_battle-3403941f-f995-496f-9668-ac196a27ebc6.jsonl CHANGED
@@ -24,3 +24,4 @@
24
  {"tstamp": 1741841148.0088, "task_type": "sts", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "ff21f34029884de281ebf1b63b19e93b", "0_model_name": "text-embedding-004", "0_txt0": "She trained a neural network to recognize faces.", "0_txt1": "She developed an AI to identify human features.", "0_txt2": "She trained a new recruit to recognize faces.", "0_output": "", "1_conv_id": "c8c9b51259e44ba2805c959991f7717e", "1_model_name": "jinaai/jina-embeddings-v2-base-en", "1_txt0": "She trained a neural network to recognize faces.", "1_txt1": "She developed an AI to identify human features.", "1_txt2": "She trained a new recruit to recognize faces.", "1_output": ""}
25
  {"tstamp": 1741859509.0779, "task_type": "sts", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "616bd00a299f419abd3a5b5128986a61", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_txt0": "До свидания ", "0_txt1": "Всего доброго ", "0_txt2": "Привет", "0_output": "", "1_conv_id": "ec80d3924e8c472283e079aa617382ef", "1_model_name": "mixedbread-ai/mxbai-embed-large-v1", "1_txt0": "До свидания ", "1_txt1": "Всего доброго ", "1_txt2": "Привет", "1_output": ""}
26
  {"tstamp": 1742336685.4109, "task_type": "sts", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "81b4884ed6954b64a472ccf7a3ad926e", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_txt0": "She saw a bright star in the sky.", "0_txt1": "She saw a bright star at the awards show.", "0_txt2": "She observed a luminous celestial object.", "0_output": "", "1_conv_id": "1f33a5af5fa9488dad5e2b62325c0989", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_txt0": "She saw a bright star in the sky.", "1_txt1": "She saw a bright star at the awards show.", "1_txt2": "She observed a luminous celestial object.", "1_output": ""}
 
 
24
  {"tstamp": 1741841148.0088, "task_type": "sts", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "ff21f34029884de281ebf1b63b19e93b", "0_model_name": "text-embedding-004", "0_txt0": "She trained a neural network to recognize faces.", "0_txt1": "She developed an AI to identify human features.", "0_txt2": "She trained a new recruit to recognize faces.", "0_output": "", "1_conv_id": "c8c9b51259e44ba2805c959991f7717e", "1_model_name": "jinaai/jina-embeddings-v2-base-en", "1_txt0": "She trained a neural network to recognize faces.", "1_txt1": "She developed an AI to identify human features.", "1_txt2": "She trained a new recruit to recognize faces.", "1_output": ""}
25
  {"tstamp": 1741859509.0779, "task_type": "sts", "type": "leftvote", "models": ["", ""], "ip": "", "0_conv_id": "616bd00a299f419abd3a5b5128986a61", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_txt0": "До свидания ", "0_txt1": "Всего доброго ", "0_txt2": "Привет", "0_output": "", "1_conv_id": "ec80d3924e8c472283e079aa617382ef", "1_model_name": "mixedbread-ai/mxbai-embed-large-v1", "1_txt0": "До свидания ", "1_txt1": "Всего доброго ", "1_txt2": "Привет", "1_output": ""}
26
  {"tstamp": 1742336685.4109, "task_type": "sts", "type": "rightvote", "models": ["", ""], "ip": "", "0_conv_id": "81b4884ed6954b64a472ccf7a3ad926e", "0_model_name": "jinaai/jina-embeddings-v2-base-en", "0_txt0": "She saw a bright star in the sky.", "0_txt1": "She saw a bright star at the awards show.", "0_txt2": "She observed a luminous celestial object.", "0_output": "", "1_conv_id": "1f33a5af5fa9488dad5e2b62325c0989", "1_model_name": "Salesforce/SFR-Embedding-2_R", "1_txt0": "She saw a bright star in the sky.", "1_txt1": "She saw a bright star at the awards show.", "1_txt2": "She observed a luminous celestial object.", "1_output": ""}
27
+ {"tstamp": 1742392996.0911, "task_type": "sts", "type": "tievote", "models": ["", ""], "ip": "", "0_conv_id": "6ee613e028184a45ab51426726bdac86", "0_model_name": "Salesforce/SFR-Embedding-2_R", "0_txt0": "I have nothing particularly adverse to say about the book.", "0_txt1": "There is nothing adverse I can say about the book.", "0_txt2": "I have quite a lot of adversities when it comes to the book.", "0_output": "", "1_conv_id": "679ed658e91c4f51821348d6c6976730", "1_model_name": "intfloat/multilingual-e5-large-instruct", "1_txt0": "I have nothing particularly adverse to say about the book.", "1_txt1": "There is nothing adverse I can say about the book.", "1_txt2": "I have quite a lot of adversities when it comes to the book.", "1_output": ""}
data/sts_individual-3403941f-f995-496f-9668-ac196a27ebc6.jsonl CHANGED
@@ -102,3 +102,5 @@
102
  {"tstamp": 1742378072.923, "task_type": "sts", "type": "chat", "model": "intfloat/e5-mistral-7b-instruct", "gen_params": {}, "start": 1742378072.7373, "finish": 1742378072.923, "ip": "", "conv_id": "1af259c7638348cf8fc554f60351085f", "model_name": "intfloat/e5-mistral-7b-instruct", "txt0": "So it's, it's written, as opposed to oral?", "txt1": "The story was written, not passed down only through storytellers?", "txt2": "Its represented only in music.", "output": ""}
103
  {"tstamp": 1742378072.923, "task_type": "sts", "type": "chat", "model": "embed-english-v3.0", "gen_params": {}, "start": 1742378072.7373, "finish": 1742378072.923, "ip": "", "conv_id": "f17462d266564e59a6e42f4593222d8c", "model_name": "embed-english-v3.0", "txt0": "So it's, it's written, as opposed to oral?", "txt1": "The story was written, not passed down only through storytellers?", "txt2": "Its represented only in music.", "output": ""}
104
  {"tstamp": 1742382885.5712, "task_type": "sts", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1742382885.5512, "finish": 1742382885.5712, "ip": "", "conv_id": "d86c7ae4c36040b7ad919021e81d3d8a", "model_name": "jinaai/jina-embeddings-v2-base-en", "txt0": "hello", "txt1": "good morning", "txt2": "早上好", "output": ""}
 
 
 
102
  {"tstamp": 1742378072.923, "task_type": "sts", "type": "chat", "model": "intfloat/e5-mistral-7b-instruct", "gen_params": {}, "start": 1742378072.7373, "finish": 1742378072.923, "ip": "", "conv_id": "1af259c7638348cf8fc554f60351085f", "model_name": "intfloat/e5-mistral-7b-instruct", "txt0": "So it's, it's written, as opposed to oral?", "txt1": "The story was written, not passed down only through storytellers?", "txt2": "Its represented only in music.", "output": ""}
103
  {"tstamp": 1742378072.923, "task_type": "sts", "type": "chat", "model": "embed-english-v3.0", "gen_params": {}, "start": 1742378072.7373, "finish": 1742378072.923, "ip": "", "conv_id": "f17462d266564e59a6e42f4593222d8c", "model_name": "embed-english-v3.0", "txt0": "So it's, it's written, as opposed to oral?", "txt1": "The story was written, not passed down only through storytellers?", "txt2": "Its represented only in music.", "output": ""}
104
  {"tstamp": 1742382885.5712, "task_type": "sts", "type": "chat", "model": "jinaai/jina-embeddings-v2-base-en", "gen_params": {}, "start": 1742382885.5512, "finish": 1742382885.5712, "ip": "", "conv_id": "d86c7ae4c36040b7ad919021e81d3d8a", "model_name": "jinaai/jina-embeddings-v2-base-en", "txt0": "hello", "txt1": "good morning", "txt2": "早上好", "output": ""}
105
+ {"tstamp": 1742392960.2349, "task_type": "sts", "type": "chat", "model": "Salesforce/SFR-Embedding-2_R", "gen_params": {}, "start": 1742392960.1895, "finish": 1742392960.2349, "ip": "", "conv_id": "6ee613e028184a45ab51426726bdac86", "model_name": "Salesforce/SFR-Embedding-2_R", "txt0": "I have nothing particularly adverse to say about the book.", "txt1": "There is nothing adverse I can say about the book.", "txt2": "I have quite a lot of adversities when it comes to the book.", "output": ""}
106
+ {"tstamp": 1742392960.2349, "task_type": "sts", "type": "chat", "model": "intfloat/multilingual-e5-large-instruct", "gen_params": {}, "start": 1742392960.1895, "finish": 1742392960.2349, "ip": "", "conv_id": "679ed658e91c4f51821348d6c6976730", "model_name": "intfloat/multilingual-e5-large-instruct", "txt0": "I have nothing particularly adverse to say about the book.", "txt1": "There is nothing adverse I can say about the book.", "txt2": "I have quite a lot of adversities when it comes to the book.", "output": ""}