---
annotations_creators:
- human-annotated
language:
- eng
license: mit
multilinguality: monolingual
task_categories:
- text-classification
task_ids: []
tags:
- mteb
- text
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
- name: label_text
dtype: string
splits:
- name: train
num_bytes: 965368.9548135559
num_examples: 9993
- name: test
num_bytes: 278847.3896103896
num_examples: 3076
download_size: 385744
dataset_size: 1244216.3444239455
---
Banking77Classification
Massive Text Embedding Benchmark
Dataset composed of online banking queries annotated with their corresponding intents.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Written |
| Reference | https://arxiv.org/abs/2003.04807 |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["Banking77Classification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{casanueva-etal-2020-efficient,
address = {Online},
author = {Casanueva, I{\~n}igo and
Tem{\v{c}}inas, Tadas and
Gerz, Daniela and
Henderson, Matthew and
Vuli{\'c}, Ivan},
booktitle = {Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI},
doi = {10.18653/v1/2020.nlp4convai-1.5},
editor = {Wen, Tsung-Hsien and
Celikyilmaz, Asli and
Yu, Zhou and
Papangelis, Alexandros and
Eric, Mihail and
Kumar, Anuj and
Casanueva, I{\~n}igo and
Shah, Rushin},
month = jul,
pages = {38--45},
publisher = {Association for Computational Linguistics},
title = {Efficient Intent Detection with Dual Sentence Encoders},
url = {https://aclanthology.org/2020.nlp4convai-1.5},
year = {2020},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("Banking77Classification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 3080,
"number_of_characters": 167036,
"number_texts_intersect_with_train": 0,
"min_text_length": 13,
"average_text_length": 54.23246753246753,
"max_text_length": 368,
"unique_text": 3080,
"unique_labels": 77,
"labels": {
"11": {
"count": 40
},
"13": {
"count": 40
},
"32": {
"count": 40
},
"17": {
"count": 40
},
"34": {
"count": 40
},
"46": {
"count": 40
},
"36": {
"count": 40
},
"12": {
"count": 40
},
"4": {
"count": 40
},
"14": {
"count": 40
},
"33": {
"count": 40
},
"41": {
"count": 40
},
"1": {
"count": 40
},
"49": {
"count": 40
},
"23": {
"count": 40
},
"56": {
"count": 40
},
"47": {
"count": 40
},
"8": {
"count": 40
},
"60": {
"count": 40
},
"75": {
"count": 40
},
"15": {
"count": 40
},
"66": {
"count": 40
},
"54": {
"count": 40
},
"40": {
"count": 40
},
"10": {
"count": 40
},
"61": {
"count": 40
},
"6": {
"count": 40
},
"16": {
"count": 40
},
"30": {
"count": 40
},
"74": {
"count": 40
},
"68": {
"count": 40
},
"38": {
"count": 40
},
"73": {
"count": 40
},
"62": {
"count": 40
},
"29": {
"count": 40
},
"22": {
"count": 40
},
"3": {
"count": 40
},
"28": {
"count": 40
},
"44": {
"count": 40
},
"26": {
"count": 40
},
"45": {
"count": 40
},
"42": {
"count": 40
},
"52": {
"count": 40
},
"27": {
"count": 40
},
"51": {
"count": 40
},
"25": {
"count": 40
},
"48": {
"count": 40
},
"55": {
"count": 40
},
"18": {
"count": 40
},
"63": {
"count": 40
},
"70": {
"count": 40
},
"67": {
"count": 40
},
"53": {
"count": 40
},
"21": {
"count": 40
},
"7": {
"count": 40
},
"64": {
"count": 40
},
"50": {
"count": 40
},
"35": {
"count": 40
},
"65": {
"count": 40
},
"71": {
"count": 40
},
"39": {
"count": 40
},
"58": {
"count": 40
},
"43": {
"count": 40
},
"72": {
"count": 40
},
"76": {
"count": 40
},
"37": {
"count": 40
},
"59": {
"count": 40
},
"5": {
"count": 40
},
"20": {
"count": 40
},
"31": {
"count": 40
},
"57": {
"count": 40
},
"0": {
"count": 40
},
"19": {
"count": 40
},
"9": {
"count": 40
},
"2": {
"count": 40
},
"69": {
"count": 40
},
"24": {
"count": 40
}
}
},
"train": {
"num_samples": 10003,
"number_of_characters": 594916,
"number_texts_intersect_with_train": null,
"min_text_length": 13,
"average_text_length": 59.47375787263821,
"max_text_length": 433,
"unique_text": 10003,
"unique_labels": 77,
"labels": {
"11": {
"count": 153
},
"13": {
"count": 139
},
"32": {
"count": 112
},
"17": {
"count": 167
},
"34": {
"count": 166
},
"46": {
"count": 143
},
"36": {
"count": 126
},
"12": {
"count": 112
},
"4": {
"count": 127
},
"14": {
"count": 112
},
"33": {
"count": 118
},
"41": {
"count": 82
},
"1": {
"count": 110
},
"49": {
"count": 115
},
"23": {
"count": 35
},
"56": {
"count": 111
},
"47": {
"count": 149
},
"8": {
"count": 157
},
"60": {
"count": 97
},
"75": {
"count": 180
},
"15": {
"count": 187
},
"66": {
"count": 171
},
"54": {
"count": 129
},
"40": {
"count": 98
},
"10": {
"count": 59
},
"61": {
"count": 146
},
"6": {
"count": 181
},
"16": {
"count": 168
},
"30": {
"count": 121
},
"74": {
"count": 121
},
"68": {
"count": 102
},
"38": {
"count": 106
},
"73": {
"count": 135
},
"62": {
"count": 103
},
"29": {
"count": 121
},
"22": {
"count": 86
},
"3": {
"count": 87
},
"28": {
"count": 182
},
"44": {
"count": 105
},
"26": {
"count": 173
},
"45": {
"count": 159
},
"42": {
"count": 121
},
"52": {
"count": 169
},
"27": {
"count": 133
},
"51": {
"count": 162
},
"25": {
"count": 153
},
"48": {
"count": 148
},
"55": {
"count": 108
},
"18": {
"count": 61
},
"63": {
"count": 175
},
"70": {
"count": 113
},
"67": {
"count": 128
},
"53": {
"count": 161
},
"21": {
"count": 122
},
"7": {
"count": 156
},
"64": {
"count": 172
},
"50": {
"count": 95
},
"35": {
"count": 137
},
"65": {
"count": 113
},
"71": {
"count": 126
},
"39": {
"count": 129
},
"58": {
"count": 114
},
"43": {
"count": 120
},
"72": {
"count": 41
},
"76": {
"count": 163
},
"37": {
"count": 97
},
"59": {
"count": 145
},
"5": {
"count": 171
},
"20": {
"count": 160
},
"31": {
"count": 121
},
"57": {
"count": 114
},
"0": {
"count": 159
},
"19": {
"count": 177
},
"9": {
"count": 129
},
"2": {
"count": 126
},
"69": {
"count": 104
},
"24": {
"count": 129
}
}
}
}
```
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*