File size: 2,507 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89


# Installation and Configuration

Before you start, you will need to setup your environment, install the appropriate packages, and configure πŸ€— Accelerate. πŸ€— Accelerate is tested on **Python 3.8+**.

## Installing πŸ€— Accelerate

πŸ€— Accelerate is available on pypi and conda, as well as on GitHub. Details to install from each are below:

### pip 

To install πŸ€— Accelerate from pypi, perform:

```bash
pip install accelerate
```

### conda

πŸ€— Accelerate can also be installed with conda with:

```bash
conda install -c conda-forge accelerate
```

### Source

New features are added every day that haven't been released yet. To try them out yourself, install
from the GitHub repository:

```bash
pip install git+https://github.com/huggingface/accelerate
```

If you're working on contributing to the library or wish to play with the source code and see live 
results as you run the code, an editable version can be installed from a locally-cloned version of the 
repository:

```bash
git clone https://github.com/huggingface/accelerate
cd accelerate
pip install -e .
```

## Configuring πŸ€— Accelerate

After installing, you need to configure πŸ€— Accelerate for how the current system is setup for training. 
To do so run the following and answer the questions prompted to you:

```bash
accelerate config
```

To write a barebones configuration that doesn't include options such as DeepSpeed configuration or running on TPUs, you can quickly run:

```bash
python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='fp16')"
```
πŸ€— Accelerate will automatically utilize the maximum number of GPUs available and set the mixed precision mode.

To check that your configuration looks fine, run:

```bash
accelerate env
```

An example output is shown below, which describes two GPUs on a single machine with no mixed precision being used:

```bash
- `Accelerate` version: 0.11.0.dev0
- Platform: Linux-5.10.0-15-cloud-amd64-x86_64-with-debian-11.3
- Python version: 3.7.12
- Numpy version: 1.19.5
- PyTorch version (GPU?): 1.12.0+cu102 (True)
- `Accelerate` default config:
        - compute_environment: LOCAL_MACHINE
        - distributed_type: MULTI_GPU
        - mixed_precision: no
        - use_cpu: False
        - num_processes: 2
        - machine_rank: 0
        - num_machines: 1
        - main_process_ip: None
        - main_process_port: None
        - main_training_function: main
        - deepspeed_config: {}
        - fsdp_config: {}
```