File size: 6,330 Bytes
bceceb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Accelerator
The [`Accelerator`] is the main class provided by 🤗 Accelerate.
It serves at the main entry point for the API.
## Quick adaptation of your code
To quickly adapt your script to work on any kind of setup with 🤗 Accelerate just:
1. Initialize an [`Accelerator`] object (that we will call `accelerator` throughout this page) as early as possible in your script.
2. Pass your dataloader(s), model(s), optimizer(s), and scheduler(s) to the [`~Accelerator.prepare`] method.
3. Remove all the `.cuda()` or `.to(device)` from your code and let the `accelerator` handle the device placement for you.
<Tip>
Step three is optional, but considered a best practice.
</Tip>
4. Replace `loss.backward()` in your code with `accelerator.backward(loss)`
5. Gather your predictions and labels before storing them or using them for metric computation using [`~Accelerator.gather`]
<Tip warning={true}>
Step five is mandatory when using distributed evaluation
</Tip>
In most cases this is all that is needed. The next section lists a few more advanced use cases and nice features
you should search for and replace by the corresponding methods of your `accelerator`:
## Advanced recommendations
### Printing
`print` statements should be replaced by [`~Accelerator.print`] to be printed once per process:
```diff
- print("My thing I want to print!")
+ accelerator.print("My thing I want to print!")
```
### Executing processes
#### Once on a single server
For statements that should be executed once per server, use [`~Accelerator.is_local_main_process`]:
```python
if accelerator.is_local_main_process:
do_thing_once_per_server()
```
A function can be wrapped using the [`~Accelerator.on_local_main_process`] function to achieve the same
behavior on a function's execution:
```python
@accelerator.on_local_main_process
def do_my_thing():
"Something done once per server"
do_thing_once_per_server()
```
#### Only ever once across all servers
For statements that should only ever be executed once, use [`~Accelerator.is_main_process`]:
```python
if accelerator.is_main_process:
do_thing_once()
```
A function can be wrapped using the [`~Accelerator.on_main_process`] function to achieve the same
behavior on a function's execution:
```python
@accelerator.on_main_process
def do_my_thing():
"Something done once per server"
do_thing_once()
```
#### On specific processes
If a function should be ran on a specific overall or local process index, there are similar decorators
to achieve this:
```python
@accelerator.on_local_process(local_process_idx=0)
def do_my_thing():
"Something done on process index 0 on each server"
do_thing_on_index_zero_on_each_server()
```
```python
@accelerator.on_process(process_index=0)
def do_my_thing():
"Something done on process index 0"
do_thing_on_index_zero()
```
### Synchronicity control
Use [`~Accelerator.wait_for_everyone`] to make sure all processes join that point before continuing. (Useful before a model save for instance).
### Saving and loading
```python
model = MyModel()
model = accelerator.prepare(model)
```
Use [`~Accelerator.save_model`] instead of `torch.save` to save a model. It will remove all model wrappers added during the distributed process, get the state_dict of the model and save it. The state_dict will be in the same precision as the model being trained.
```diff
- torch.save(state_dict, "my_state.pkl")
+ accelerator.save_model(model, save_directory)
```
[`~Accelerator.save_model`] can also save a model into sharded checkpoints or with safetensors format.
Here is an example:
```python
accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True)
```
#### 🤗 Transformers models
If you are using models from the [🤗 Transformers](https://huggingface.co/docs/transformers/) library, you can use the `.save_pretrained()` method.
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-cased")
model = accelerator.prepare(model)
# ...fine-tune with PyTorch...
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
"path/to/my_model_directory",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
```
This will ensure your model stays compatible with other 🤗 Transformers functionality like the `.from_pretrained()` method.
```python
from transformers import AutoModel
model = AutoModel.from_pretrained("path/to/my_model_directory")
```
### Operations
Use [`~Accelerator.clip_grad_norm_`] instead of ``torch.nn.utils.clip_grad_norm_`` and [`~Accelerator.clip_grad_value_`] instead of ``torch.nn.utils.clip_grad_value``
### Gradient Accumulation
To perform gradient accumulation use [`~Accelerator.accumulate`] and specify a gradient_accumulation_steps.
This will also automatically ensure the gradients are synced or unsynced when on
multi-device training, check if the step should actually be performed, and auto-scale the loss:
```diff
- accelerator = Accelerator()
+ accelerator = Accelerator(gradient_accumulation_steps=2)
for (input, label) in training_dataloader:
+ with accelerator.accumulate(model):
predictions = model(input)
loss = loss_function(predictions, labels)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
#### GradientAccumulationPlugin
[[autodoc]] utils.GradientAccumulationPlugin
Instead of passing `gradient_accumulation_steps` you can instantiate a GradientAccumulationPlugin and pass it to the [`Accelerator`]'s `__init__`
as `gradient_accumulation_plugin`. You can only pass either one of `gradient_accumulation_plugin` or `gradient_accumulation_steps` passing both will raise an error.
```diff
from accelerate.utils import GradientAccumulationPlugin
gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2)
- accelerator = Accelerator()
+ accelerator = Accelerator(gradient_accumulation_plugin=gradient_accumulation_plugin)
```
In addition to the number of steps, this also lets you configure whether or not you adjust your learning rate scheduler to account for the change in steps due to accumulation.
## Overall API documentation:
[[autodoc]] Accelerator
|