File size: 7,826 Bytes
bceceb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Tracking
There are a large number of experiment tracking API's available, however getting them all to work with in a multi-processing environment can oftentimes be complex.
🤗 Accelerate provides a general tracking API that can be used to log useful items during your script through [`Accelerator.log`]
## Integrated Trackers
Currently `Accelerate` supports seven trackers out-of-the-box:
- TensorBoard
- WandB
- CometML
- Aim
- MLFlow
- ClearML
- DVCLive
To use any of them, pass in the selected type(s) to the `log_with` parameter in [`Accelerate`]:
```python
from accelerate import Accelerator
from accelerate.utils import LoggerType
accelerator = Accelerator(log_with="all") # For all available trackers in the environment
accelerator = Accelerator(log_with="wandb")
accelerator = Accelerator(log_with=["wandb", LoggerType.TENSORBOARD])
```
At the start of your experiment [`Accelerator.init_trackers`] should be used to setup your project, and potentially add any experiment hyperparameters to be logged:
```python
hps = {"num_iterations": 5, "learning_rate": 1e-2}
accelerator.init_trackers("my_project", config=hps)
```
When you are ready to log any data, [`Accelerator.log`] should be used.
A `step` can also be passed in to correlate the data with a particular step in the training loop.
```python
accelerator.log({"train_loss": 1.12, "valid_loss": 0.8}, step=1)
```
Once you've finished training, make sure to run [`Accelerator.end_training`] so that all the trackers can run their finish functionalities if they have any.
```python
accelerator.end_training()
```
A full example is below:
```python
from accelerate import Accelerator
accelerator = Accelerator(log_with="all")
config = {
"num_iterations": 5,
"learning_rate": 1e-2,
"loss_function": str(my_loss_function),
}
accelerator.init_trackers("example_project", config=config)
my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader)
device = accelerator.device
my_model.to(device)
for iteration in config["num_iterations"]:
for step, batch in my_training_dataloader:
my_optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = my_model(inputs)
loss = my_loss_function(outputs, targets)
accelerator.backward(loss)
my_optimizer.step()
accelerator.log({"training_loss": loss}, step=step)
accelerator.end_training()
```
If a tracker requires a directory to save data to, such as `TensorBoard`, then pass the directory path to `project_dir`. The `project_dir` parameter is useful
when there are other configurations to be combined with in the [`~utils.ProjectConfiguration`] data class. For example, you can save the TensorBoard data to `project_dir` and everything else can be logged in the `logging_dir` parameter of [`~utils.ProjectConfiguration`:
```python
accelerator = Accelerator(log_with="tensorboard", project_dir=".")
# use with ProjectConfiguration
config = ProjectConfiguration(project_dir=".", logging_dir="another/directory")
accelerator = Accelerator(log_with="tensorboard", project_config=config)
```
## Implementing Custom Trackers
To implement a new tracker to be used in `Accelerator`, a new one can be made through implementing the [`GeneralTracker`] class.
Every tracker must implement three functions and have three properties:
- `__init__`:
- Should store a `run_name` and initialize the tracker API of the integrated library.
- If a tracker stores their data locally (such as TensorBoard), a `logging_dir` parameter can be added.
- `store_init_configuration`:
- Should take in a `values` dictionary and store them as a one-time experiment configuration
- `log`:
- Should take in a `values` dictionary and a `step`, and should log them to the run
- `name` (`str`):
- A unique string name for the tracker, such as `"wandb"` for the wandb tracker.
- This will be used for interacting with this tracker specifically
- `requires_logging_directory` (`bool`):
- Whether a `logging_dir` is needed for this particular tracker and if it uses one.
- `tracker`:
- This should be implemented as a `@property` function
- Should return the internal tracking mechanism the library uses, such as the `run` object for `wandb`.
Each method should also utilize the [`state.PartialState`] class if the logger should only be executed on the main process for instance.
A brief example can be seen below with an integration with Weights and Biases, containing only the relevant information and logging just on
the main process:
```python
from accelerate.tracking import GeneralTracker, on_main_process
from typing import Optional
import wandb
class MyCustomTracker(GeneralTracker):
name = "wandb"
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str):
self.run_name = run_name
run = wandb.init(self.run_name)
@property
def tracker(self):
return self.run.run
@on_main_process
def store_init_configuration(self, values: dict):
wandb.config(values)
@on_main_process
def log(self, values: dict, step: Optional[int] = None):
wandb.log(values, step=step)
```
When you are ready to build your `Accelerator` object, pass in an **instance** of your tracker to [`Accelerator.log_with`] to have it automatically
be used with the API:
```python
tracker = MyCustomTracker("some_run_name")
accelerator = Accelerator(log_with=tracker)
```
These also can be mixed with existing trackers, including with `"all"`:
```python
tracker = MyCustomTracker("some_run_name")
accelerator = Accelerator(log_with=[tracker, "all"])
```
## Accessing the internal tracker
If some custom interactions with a tracker might be wanted directly, you can quickly access one using the
[`Accelerator.get_tracker`] method. Just pass in the string corresponding to a tracker's `.name` attribute
and it will return that tracker on the main process.
This example shows doing so with wandb:
```python
wandb_tracker = accelerator.get_tracker("wandb")
```
From there you can interact with `wandb`'s `run` object like normal:
```python
wandb_run.log_artifact(some_artifact_to_log)
```
<Tip>
Trackers built in Accelerate will automatically execute on the correct process,
so if a tracker is only meant to be ran on the main process it will do so
automatically.
</Tip>
If you want to truly remove Accelerate's wrapping entirely, you can
achieve the same outcome with:
```python
wandb_tracker = accelerator.get_tracker("wandb", unwrap=True)
with accelerator.on_main_process:
wandb_tracker.log_artifact(some_artifact_to_log)
```
## When a wrapper cannot work
If a library has an API that does not follow a strict `.log` with an overall dictionary such as Neptune.AI, logging can be done manually under an `if accelerator.is_main_process` statement:
```diff
from accelerate import Accelerator
+ import neptune.new as neptune
accelerator = Accelerator()
+ run = neptune.init(...)
my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader)
device = accelerator.device
my_model.to(device)
for iteration in config["num_iterations"]:
for batch in my_training_dataloader:
my_optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = my_model(inputs)
loss = my_loss_function(outputs, targets)
total_loss += loss
accelerator.backward(loss)
my_optimizer.step()
+ if accelerator.is_main_process:
+ run["logs/training/batch/loss"].log(loss)
```
|