File size: 10,143 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
logger = get_logger(__name__)
def save_accelerator_state(
    output_dir: str,
    model_states: List[dict],
    optimizers: list,
    schedulers: list,
    dataloaders: list,
    process_index: int,
    scaler: GradScaler = None,
    save_on_each_node: bool = False,
    safe_serialization: bool = True,
):
    """
    Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
    <Tip>
    If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
    `pickle`.
    </Tip>
    Args:
        output_dir (`str` or `os.PathLike`):
            The name of the folder to save all relevant weights and states.
        model_states (`List[torch.nn.Module]`):
            A list of model states
        optimizers (`List[torch.optim.Optimizer]`):
            A list of optimizer instances
        schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
            A list of learning rate schedulers
        dataloaders (`List[torch.utils.data.DataLoader]`):
            A list of dataloader instances to save their sampler states
        process_index (`int`):
            The current process index in the Accelerator state
        scaler (`torch.cuda.amp.GradScaler`, *optional*):
            An optional gradient scaler instance to save
        save_on_each_node (`bool`, *optional*):
            Whether to save on every node, or only the main node.
        safe_serialization (`bool`, *optional*, defaults to `True`):
            Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
    """
    output_dir = Path(output_dir)
    # Model states
    for i, state in enumerate(model_states):
        weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
        if i > 0:
            weights_name = weights_name.replace(".", f"_{i}.")
        output_model_file = output_dir.joinpath(weights_name)
        save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
        logger.info(f"Model weights saved in {output_model_file}")
    # Optimizer states
    for i, opt in enumerate(optimizers):
        state = opt.state_dict()
        optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
        output_optimizer_file = output_dir.joinpath(optimizer_name)
        save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
        logger.info(f"Optimizer state saved in {output_optimizer_file}")
    # Scheduler states
    for i, scheduler in enumerate(schedulers):
        state = scheduler.state_dict()
        scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
        output_scheduler_file = output_dir.joinpath(scheduler_name)
        save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
        logger.info(f"Scheduler state saved in {output_scheduler_file}")
    # DataLoader states
    for i, dataloader in enumerate(dataloaders):
        sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
        output_sampler_file = output_dir.joinpath(sampler_name)
        # Only save if we have our custom sampler
        from .data_loader import IterableDatasetShard, SeedableRandomSampler
        if isinstance(dataloader.dataset, IterableDatasetShard):
            sampler = dataloader.sampler.sampler
            if isinstance(sampler, SeedableRandomSampler):
                save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
        logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
    # GradScaler state
    if scaler is not None:
        state = scaler.state_dict()
        output_scaler_file = output_dir.joinpath(SCALER_NAME)
        torch.save(state, output_scaler_file)
        logger.info(f"Gradient scaler state saved in {output_scaler_file}")
    # Random number generator states
    states = {}
    states_name = f"{RNG_STATE_NAME}_{process_index}.pkl"
    states["random_state"] = random.getstate()
    states["numpy_random_seed"] = np.random.get_state()
    states["torch_manual_seed"] = torch.get_rng_state()
    if is_xpu_available():
        states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all()
    else:
        states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
    if is_tpu_available():
        states["xm_seed"] = xm.get_rng_state()
    output_states_file = output_dir.joinpath(states_name)
    torch.save(states, output_states_file)
    logger.info(f"Random states saved in {output_states_file}")
    return output_dir
def load_accelerator_state(
    input_dir,
    models,
    optimizers,
    schedulers,
    dataloaders,
    process_index,
    scaler=None,
    map_location=None,
    **load_model_func_kwargs,
):
    """
    Loads states of the models, optimizers, scaler, and RNG generators from a given directory.
    Args:
        input_dir (`str` or `os.PathLike`):
            The name of the folder to load all relevant weights and states.
        models (`List[torch.nn.Module]`):
            A list of model instances
        optimizers (`List[torch.optim.Optimizer]`):
            A list of optimizer instances
        schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
            A list of learning rate schedulers
        process_index (`int`):
            The current process index in the Accelerator state
        scaler (`torch.cuda.amp.GradScaler`, *optional*):
            An optional *GradScaler* instance to load
        map_location (`str`, *optional*):
            What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
        load_model_func_kwargs (`dict`, *optional*):
            Additional arguments that can be passed to the model's `load_state_dict` method.
    """
    if map_location not in [None, "cpu", "on_device"]:
        raise TypeError(
            "Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
        )
    if map_location is None:
        map_location = "cpu"
    elif map_location == "on_device":
        map_location = PartialState().device
    input_dir = Path(input_dir)
    # Model states
    for i, model in enumerate(models):
        ending = f"_{i}" if i > 0 else ""
        input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
        if input_model_file.exists():
            state_dict = load_file(input_model_file, device=str(map_location))
        else:
            # Load with torch
            input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
            state_dict = torch.load(input_model_file, map_location=map_location)
        models[i].load_state_dict(state_dict, **load_model_func_kwargs)
    logger.info("All model weights loaded successfully")
    # Optimizer states
    for i, opt in enumerate(optimizers):
        optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
        input_optimizer_file = input_dir.joinpath(optimizer_name)
        optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
        optimizers[i].load_state_dict(optimizer_state)
    logger.info("All optimizer states loaded successfully")
    # Scheduler states
    for i, scheduler in enumerate(schedulers):
        scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
        input_scheduler_file = input_dir.joinpath(scheduler_name)
        scheduler.load_state_dict(torch.load(input_scheduler_file))
    logger.info("All scheduler states loaded successfully")
    for i, dataloader in enumerate(dataloaders):
        sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
        input_sampler_file = input_dir.joinpath(sampler_name)
        # Only load if we have our custom sampler
        from .data_loader import IterableDatasetShard, SeedableRandomSampler
        if isinstance(dataloader.dataset, IterableDatasetShard):
            sampler = dataloader.sampler.sampler
            if isinstance(sampler, SeedableRandomSampler):
                dataloader.sampler.sampler = torch.load(input_sampler_file)
    logger.info("All dataloader sampler states loaded successfully")
    # GradScaler state
    if scaler is not None:
        input_scaler_file = input_dir.joinpath(SCALER_NAME)
        scaler.load_state_dict(torch.load(input_scaler_file))
        logger.info("GradScaler state loaded successfully")
    # Random states
    try:
        states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
        random.setstate(states["random_state"])
        np.random.set_state(states["numpy_random_seed"])
        torch.set_rng_state(states["torch_manual_seed"])
        if is_xpu_available():
            torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"])
        else:
            torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"])
        if is_tpu_available():
            xm.set_rng_state(states["xm_seed"])
        logger.info("All random states loaded successfully")
    except Exception:
        logger.info("Could not load random states")
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
    """
    Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl`
    """
    # Should this be the right way to get a qual_name type value from `obj`?
    save_location = Path(path) / f"custom_checkpoint_{index}.pkl"
    logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}")
    save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
def load_custom_state(obj, path, index: int = 0):
    """
    Loads the state of `obj` at `{path}/custom_checkpoint_{index}.pkl`
    """
    load_location = f"{path}/custom_checkpoint_{index}.pkl"
    logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}")
    obj.load_state_dict(torch.load(load_location, map_location="cpu"))