File size: 9,168 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
def _create_iam_role_for_sagemaker(role_name):
    iam_client = boto3.client("iam")
    sagemaker_trust_policy = {
        "Version": "2012-10-17",
        "Statement": [
            {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
        ],
    }
    try:
        # create the role, associated with the chosen trust policy
        iam_client.create_role(
            RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2)
        )
        policy_document = {
            "Version": "2012-10-17",
            "Statement": [
                {
                    "Effect": "Allow",
                    "Action": [
                        "sagemaker:*",
                        "ecr:GetDownloadUrlForLayer",
                        "ecr:BatchGetImage",
                        "ecr:BatchCheckLayerAvailability",
                        "ecr:GetAuthorizationToken",
                        "cloudwatch:PutMetricData",
                        "cloudwatch:GetMetricData",
                        "cloudwatch:GetMetricStatistics",
                        "cloudwatch:ListMetrics",
                        "logs:CreateLogGroup",
                        "logs:CreateLogStream",
                        "logs:DescribeLogStreams",
                        "logs:PutLogEvents",
                        "logs:GetLogEvents",
                        "s3:CreateBucket",
                        "s3:ListBucket",
                        "s3:GetBucketLocation",
                        "s3:GetObject",
                        "s3:PutObject",
                    ],
                    "Resource": "*",
                }
            ],
        }
        # attach policy to role
        iam_client.put_role_policy(
            RoleName=role_name,
            PolicyName=f"{role_name}_policy_permission",
            PolicyDocument=json.dumps(policy_document, indent=2),
        )
    except iam_client.exceptions.EntityAlreadyExistsException:
        print(f"role {role_name} already exists. Using existing one")
def _get_iam_role_arn(role_name):
    iam_client = boto3.client("iam")
    return iam_client.get_role(RoleName=role_name)["Role"]["Arn"]
def get_sagemaker_input():
    credentials_configuration = _ask_options(
        "How do you want to authorize?",
        ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "],
        int,
    )
    aws_profile = None
    if credentials_configuration == 0:
        aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default")
        os.environ["AWS_PROFILE"] = aws_profile
    else:
        print(
            "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
            "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`"
        )
        aws_access_key_id = _ask_field("AWS Access Key ID: ")
        os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
        aws_secret_access_key = _ask_field("AWS Secret Access Key: ")
        os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
    aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1")
    os.environ["AWS_DEFAULT_REGION"] = aws_region
    role_management = _ask_options(
        "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?",
        ["Provide IAM Role name", "Create new IAM role using credentials"],
        int,
    )
    if role_management == 0:
        iam_role_name = _ask_field("Enter your IAM role name: ")
    else:
        iam_role_name = "accelerate_sagemaker_execution_role"
        print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials')
        _create_iam_role_for_sagemaker(iam_role_name)
    is_custom_docker_image = _ask_field(
        "Do you want to use custom Docker image? [yes/NO]: ",
        _convert_yes_no_to_bool,
        default=False,
        error_message="Please enter yes or no.",
    )
    docker_image = None
    if is_custom_docker_image:
        docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower())
    is_sagemaker_inputs_enabled = _ask_field(
        "Do you want to provide SageMaker input channels with data locations? [yes/NO]: ",
        _convert_yes_no_to_bool,
        default=False,
        error_message="Please enter yes or no.",
    )
    sagemaker_inputs_file = None
    if is_sagemaker_inputs_enabled:
        sagemaker_inputs_file = _ask_field(
            "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ",
            lambda x: str(x).lower(),
        )
    is_sagemaker_metrics_enabled = _ask_field(
        "Do you want to enable SageMaker metrics? [yes/NO]: ",
        _convert_yes_no_to_bool,
        default=False,
        error_message="Please enter yes or no.",
    )
    sagemaker_metrics_file = None
    if is_sagemaker_metrics_enabled:
        sagemaker_metrics_file = _ask_field(
            "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ",
            lambda x: str(x).lower(),
        )
    distributed_type = _ask_options(
        "What is the distributed mode?",
        ["No distributed training", "Data parallelism"],
        _convert_sagemaker_distributed_mode,
    )
    dynamo_config = {}
    use_dynamo = _ask_field(
        "Do you wish to optimize your script with torch dynamo?[yes/NO]:",
        _convert_yes_no_to_bool,
        default=False,
        error_message="Please enter yes or no.",
    )
    if use_dynamo:
        prefix = "dynamo_"
        dynamo_config[prefix + "backend"] = _ask_options(
            "Which dynamo backend would you like to use?",
            [x.lower() for x in DYNAMO_BACKENDS],
            _convert_dynamo_backend,
            default=2,
        )
        use_custom_options = _ask_field(
            "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
            _convert_yes_no_to_bool,
            default=False,
            error_message="Please enter yes or no.",
        )
        if use_custom_options:
            dynamo_config[prefix + "mode"] = _ask_options(
                "Which mode do you want to use?",
                TORCH_DYNAMO_MODES,
                lambda x: TORCH_DYNAMO_MODES[int(x)],
                default="default",
            )
            dynamo_config[prefix + "use_fullgraph"] = _ask_field(
                "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
                _convert_yes_no_to_bool,
                default=False,
                error_message="Please enter yes or no.",
            )
            dynamo_config[prefix + "use_dynamic"] = _ask_field(
                "Do you want to enable dynamic shape tracing? [yes/NO]: ",
                _convert_yes_no_to_bool,
                default=False,
                error_message="Please enter yes or no.",
            )
    ec2_instance_query = "Which EC2 instance type you want to use for your training?"
    if distributed_type != SageMakerDistributedType.NO:
        ec2_instance_type = _ask_options(
            ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)]
        )
    else:
        ec2_instance_query += "? [ml.p3.2xlarge]:"
        ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge")
    debug = False
    if distributed_type != SageMakerDistributedType.NO:
        debug = _ask_field(
            "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ",
            _convert_yes_no_to_bool,
            default=False,
            error_message="Please enter yes or no.",
        )
    num_machines = 1
    if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
        num_machines = _ask_field(
            "How many machines do you want use? [1]: ",
            int,
            default=1,
        )
    mixed_precision = _ask_options(
        "Do you wish to use FP16 or BF16 (mixed precision)?",
        ["no", "fp16", "bf16", "fp8"],
        _convert_mixed_precision,
    )
    if use_dynamo and mixed_precision == "no":
        print(
            "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
        )
    return SageMakerConfig(
        image_uri=docker_image,
        compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER,
        distributed_type=distributed_type,
        use_cpu=False,
        dynamo_config=dynamo_config,
        ec2_instance_type=ec2_instance_type,
        profile=aws_profile,
        region=aws_region,
        iam_role_name=iam_role_name,
        mixed_precision=mixed_precision,
        num_machines=num_machines,
        sagemaker_inputs_file=sagemaker_inputs_file,
        sagemaker_metrics_file=sagemaker_metrics_file,
        debug=debug,
    )