File size: 9,168 Bytes
bceceb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
#!/usr/bin/env python
def _create_iam_role_for_sagemaker(role_name):
iam_client = boto3.client("iam")
sagemaker_trust_policy = {
"Version": "2012-10-17",
"Statement": [
{"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2)
)
policy_document = {
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"sagemaker:*",
"ecr:GetDownloadUrlForLayer",
"ecr:BatchGetImage",
"ecr:BatchCheckLayerAvailability",
"ecr:GetAuthorizationToken",
"cloudwatch:PutMetricData",
"cloudwatch:GetMetricData",
"cloudwatch:GetMetricStatistics",
"cloudwatch:ListMetrics",
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:DescribeLogStreams",
"logs:PutLogEvents",
"logs:GetLogEvents",
"s3:CreateBucket",
"s3:ListBucket",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:PutObject",
],
"Resource": "*",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=role_name,
PolicyName=f"{role_name}_policy_permission",
PolicyDocument=json.dumps(policy_document, indent=2),
)
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one")
def _get_iam_role_arn(role_name):
iam_client = boto3.client("iam")
return iam_client.get_role(RoleName=role_name)["Role"]["Arn"]
def get_sagemaker_input():
credentials_configuration = _ask_options(
"How do you want to authorize?",
["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "],
int,
)
aws_profile = None
if credentials_configuration == 0:
aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default")
os.environ["AWS_PROFILE"] = aws_profile
else:
print(
"Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"
"`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`"
)
aws_access_key_id = _ask_field("AWS Access Key ID: ")
os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id
aws_secret_access_key = _ask_field("AWS Secret Access Key: ")
os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key
aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1")
os.environ["AWS_DEFAULT_REGION"] = aws_region
role_management = _ask_options(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?",
["Provide IAM Role name", "Create new IAM role using credentials"],
int,
)
if role_management == 0:
iam_role_name = _ask_field("Enter your IAM role name: ")
else:
iam_role_name = "accelerate_sagemaker_execution_role"
print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials')
_create_iam_role_for_sagemaker(iam_role_name)
is_custom_docker_image = _ask_field(
"Do you want to use custom Docker image? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
docker_image = None
if is_custom_docker_image:
docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower())
is_sagemaker_inputs_enabled = _ask_field(
"Do you want to provide SageMaker input channels with data locations? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
sagemaker_inputs_file = None
if is_sagemaker_inputs_enabled:
sagemaker_inputs_file = _ask_field(
"Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ",
lambda x: str(x).lower(),
)
is_sagemaker_metrics_enabled = _ask_field(
"Do you want to enable SageMaker metrics? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
sagemaker_metrics_file = None
if is_sagemaker_metrics_enabled:
sagemaker_metrics_file = _ask_field(
"Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ",
lambda x: str(x).lower(),
)
distributed_type = _ask_options(
"What is the distributed mode?",
["No distributed training", "Data parallelism"],
_convert_sagemaker_distributed_mode,
)
dynamo_config = {}
use_dynamo = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_dynamo:
prefix = "dynamo_"
dynamo_config[prefix + "backend"] = _ask_options(
"Which dynamo backend would you like to use?",
[x.lower() for x in DYNAMO_BACKENDS],
_convert_dynamo_backend,
default=2,
)
use_custom_options = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_custom_options:
dynamo_config[prefix + "mode"] = _ask_options(
"Which mode do you want to use?",
TORCH_DYNAMO_MODES,
lambda x: TORCH_DYNAMO_MODES[int(x)],
default="default",
)
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config[prefix + "use_dynamic"] = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
ec2_instance_query = "Which EC2 instance type you want to use for your training?"
if distributed_type != SageMakerDistributedType.NO:
ec2_instance_type = _ask_options(
ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)]
)
else:
ec2_instance_query += "? [ml.p3.2xlarge]:"
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge")
debug = False
if distributed_type != SageMakerDistributedType.NO:
debug = _ask_field(
"Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
num_machines = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
num_machines = _ask_field(
"How many machines do you want use? [1]: ",
int,
default=1,
)
mixed_precision = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?",
["no", "fp16", "bf16", "fp8"],
_convert_mixed_precision,
)
if use_dynamo and mixed_precision == "no":
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
)
return SageMakerConfig(
image_uri=docker_image,
compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER,
distributed_type=distributed_type,
use_cpu=False,
dynamo_config=dynamo_config,
ec2_instance_type=ec2_instance_type,
profile=aws_profile,
region=aws_region,
iam_role_name=iam_role_name,
mixed_precision=mixed_precision,
num_machines=num_machines,
sagemaker_inputs_file=sagemaker_inputs_file,
sagemaker_metrics_file=sagemaker_metrics_file,
debug=debug,
)
|