File size: 9,329 Bytes
bceceb3 7a76c8f bceceb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python
def verify_on_hub(repo: str, token: str = None):
"Verifies that the model is on the hub and returns the model info."
try:
return model_info(repo, token=token)
except GatedRepoError:
return "gated"
except RepositoryNotFoundError:
return "repo"
def check_has_model(error):
"""
Checks what library spawned `error` when a model is not found
"""
if is_timm_available() and isinstance(error, RuntimeError) and "Unknown model" in error.args[0]:
return "timm"
elif (
is_transformers_available()
and isinstance(error, OSError)
and "does not appear to have a file named" in error.args[0]
):
return "transformers"
else:
return "unknown"
def create_empty_model(model_name: str, library_name: str, trust_remote_code: bool = False, access_token: str = None):
"""
Creates an empty model from its parent library on the `Hub` to calculate the overall memory consumption.
Args:
model_name (`str`):
The model name on the Hub
library_name (`str`):
The library the model has an integration with, such as `transformers`. Will be used if `model_name` has no
metadata on the Hub to determine the library.
trust_remote_code (`bool`, `optional`, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
access_token (`str`, `optional`, defaults to `None`):
The access token to use to access private or gated models on the Hub. (for use on the Gradio app)
Returns:
`torch.nn.Module`: The torch model that has been initialized on the `meta` device.
"""
model_info = verify_on_hub(model_name, access_token)
# Simplified errors
if model_info == "gated":
raise GatedRepoError(
f"Repo for model `{model_name}` is gated. You must be authenticated to access it. Please run `huggingface-cli login`."
)
elif model_info == "repo":
raise RepositoryNotFoundError(
f"Repo for model `{model_name}` does not exist on the Hub. If you are trying to access a private repo,"
" make sure you are authenticated via `huggingface-cli login` and have access."
)
if library_name is None:
library_name = getattr(model_info, "library_name", False)
if not library_name:
raise ValueError(
f"Model `{model_name}` does not have any library metadata on the Hub, please manually pass in a `--library_name` to use (such as `transformers`)"
)
if library_name == "transformers":
if not is_transformers_available():
raise ImportError(
f"To check `{model_name}`, `transformers` must be installed. Please install it via `pip install transformers`"
)
print(f"Loading pretrained config for `{model_name}` from `transformers`...")
auto_map = model_info.config.get("auto_map", False)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code)
with init_empty_weights():
# remote code could specify a specific `AutoModel` class in the `auto_map`
constructor = AutoModel
if isinstance(auto_map, dict):
value = None
for key in auto_map.keys():
if key.startswith("AutoModelFor"):
value = key
break
if value is not None:
constructor = getattr(transformers, value)
model = constructor.from_config(config, trust_remote_code=trust_remote_code)
elif library_name == "timm":
if not is_timm_available():
raise ImportError(
f"To check `{model_name}`, `timm` must be installed. Please install it via `pip install timm`"
)
print(f"Loading pretrained config for `{model_name}` from `timm`...")
with init_empty_weights():
model = timm.create_model(model_name, pretrained=False)
else:
raise ValueError(
f"Library `{library_name}` is not supported yet, please open an issue on GitHub for us to add support."
)
return model
def create_ascii_table(headers: list, rows: list, title: str):
"Creates a pretty table from a list of rows, minimal version of `tabulate`."
sep_char, in_between = "│", "─"
column_widths = []
for i in range(len(headers)):
column_values = [row[i] for row in rows] + [headers[i]]
max_column_width = max(len(value) for value in column_values)
column_widths.append(max_column_width)
formats = [f"%{column_widths[i]}s" for i in range(len(rows[0]))]
pattern = f"{sep_char}{sep_char.join(formats)}{sep_char}"
diff = 0
def make_row(left_char, middle_char, right_char):
return f"{left_char}{middle_char.join([in_between * n for n in column_widths])}{in_between * diff}{right_char}"
separator = make_row("├", "┼", "┤")
if len(title) > sum(column_widths):
diff = abs(len(title) - len(separator))
column_widths[-1] += diff
# Update with diff
separator = make_row("├", "┼", "┤")
initial_rows = [
make_row("┌", in_between, "┐"),
f"{sep_char}{title.center(len(separator) - 2)}{sep_char}",
make_row("├", "┬", "┤"),
]
table = "\n".join(initial_rows) + "\n"
column_widths[-1] += diff
centered_line = [text.center(column_widths[i]) for i, text in enumerate(headers)]
table += f"{pattern % tuple(centered_line)}\n{separator}\n"
for i, line in enumerate(rows):
centered_line = [t.center(column_widths[i]) for i, t in enumerate(line)]
table += f"{pattern % tuple(centered_line)}\n"
table += f'└{"┴".join([in_between * n for n in column_widths])}┘'
return table
def estimate_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("estimate-memory")
else:
parser = argparse.ArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
parser.add_argument("model_name", type=str, help="The model name on the Hugging Face Hub.")
parser.add_argument(
"--library_name",
type=str,
help="The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub.",
choices=["timm", "transformers"],
)
parser.add_argument(
"--dtypes",
type=str,
nargs="+",
default=["float32", "float16", "int8", "int4"],
help="The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`",
choices=["float32", "float16", "int8", "int4"],
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag
should only be used for repositories you trust and in which you have read the code, as it will execute
code present on the Hub on your local machine.""",
)
if subparsers is not None:
parser.set_defaults(func=estimate_command)
return parser
def gather_data(args):
"Creates an empty model and gathers the data for the sizes"
try:
model = create_empty_model(
args.model_name, library_name=args.library_name, trust_remote_code=args.trust_remote_code
)
except (RuntimeError, OSError) as e:
library = check_has_model(e)
if library != "unknown":
raise RuntimeError(
f"Tried to load `{args.model_name}` with `{library}` but a possible model to load was not found inside the repo."
)
raise e
total_size, largest_layer = calculate_maximum_sizes(model)
data = []
for dtype in args.dtypes:
dtype_total_size = total_size
dtype_largest_layer = largest_layer[0]
if dtype == "float16":
dtype_total_size /= 2
dtype_largest_layer /= 2
elif dtype == "int8":
dtype_total_size /= 4
dtype_largest_layer /= 4
elif dtype == "int4":
dtype_total_size /= 8
dtype_largest_layer /= 8
dtype_training_size = dtype_total_size * 4
data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size])
return data
def estimate_command(args):
data = gather_data(args)
for row in data:
for i, item in enumerate(row):
if isinstance(item, (int, float)):
row[i] = convert_bytes(item)
headers = ["dtype", "Largest Layer", "Total Size", "Training using Adam"]
title = f"Memory Usage for loading `{args.model_name}`"
table = create_ascii_table(headers, data, title)
print(table)
def main():
parser = estimate_command_parser()
args = parser.parse_args()
estimate_command(args)
if __name__ == "__main__":
main()
|