File size: 6,339 Bytes
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
7a76c8f
bceceb3
 
7a76c8f
bceceb3
 
 
 
7a76c8f
bceceb3
 
7a76c8f
bceceb3
 
 
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
 
 
 
7a76c8f
bceceb3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
def move_to_device(state, device):
    if isinstance(state, (list, tuple)):
        return honor_type(state, (move_to_device(t, device) for t in state))
    elif isinstance(state, dict):
        return type(state)({k: move_to_device(v, device) for k, v in state.items()})
    elif isinstance(state, torch.Tensor):
        return state.to(device)
    return state
class AcceleratedOptimizer(torch.optim.Optimizer):
    """
    Internal wrapper around a torch optimizer.
    Conditionally will perform `step` and `zero_grad` if gradients should be synchronized when performing gradient
    accumulation.
    Args:
        optimizer (`torch.optim.optimizer.Optimizer`):
            The optimizer to wrap.
        device_placement (`bool`, *optional*, defaults to `True`):
            Whether or not the optimizer should handle device placement. If so, it will place the state dictionary of
            `optimizer` on the right device.
        scaler (`torch.cuda.amp.grad_scaler.GradScaler`, *optional*):
            The scaler to use in the step function if training with mixed precision.
    """

    def __init__(self, optimizer, device_placement=True, scaler=None):
        self.optimizer = optimizer
        self.scaler = scaler
        self.accelerator_state = AcceleratorState()
        self.gradient_state = GradientState()
        self.device_placement = device_placement
        self._is_overflow = False
        if self.scaler is not None:
            self._accelerate_step_called = False
            self._optimizer_original_step_method = self.optimizer.step
            self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
        # Handle device placement
        if device_placement:
            state_dict = self.optimizer.state_dict()
            if self.accelerator_state.distributed_type == DistributedType.TPU:
                xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
            else:
                state_dict = move_to_device(state_dict, self.accelerator_state.device)
            self.optimizer.load_state_dict(state_dict)
    @property

    def state(self):
        return self.optimizer.state
    @state.setter

    def state(self, state):
        self.optimizer.state = state
    @property

    def param_groups(self):
        return self.optimizer.param_groups
    @param_groups.setter

    def param_groups(self, param_groups):
        self.optimizer.param_groups = param_groups
    @property

    def defaults(self):
        return self.optimizer.defaults
    @defaults.setter

    def defaults(self, defaults):
        self.optimizer.defaults = defaults

    def add_param_group(self, param_group):
        self.optimizer.add_param_group(param_group)

    def load_state_dict(self, state_dict):
        if self.accelerator_state.distributed_type == DistributedType.TPU and self.device_placement:
            xm.send_cpu_data_to_device(state_dict, self.accelerator_state.device)
        self.optimizer.load_state_dict(state_dict)

    def state_dict(self):
        return self.optimizer.state_dict()

    def zero_grad(self, set_to_none=None):
        if self.gradient_state.sync_gradients:
            accept_arg = "set_to_none" in inspect.signature(self.optimizer.zero_grad).parameters
            if accept_arg:
                if set_to_none is None:
                    set_to_none = False
                self.optimizer.zero_grad(set_to_none=set_to_none)
            else:
                if set_to_none is not None:
                    raise ValueError("`set_to_none` for Optimizer.zero_grad` is not supported by this optimizer.")
                self.optimizer.zero_grad()

    def step(self, closure=None):
        if self.gradient_state.sync_gradients:
            if self.accelerator_state.distributed_type == DistributedType.TPU:
                optimizer_args = {"closure": closure} if closure is not None else {}
                xm.optimizer_step(self.optimizer, optimizer_args=optimizer_args)
            elif self.scaler is not None:
                self.optimizer.step = self._optimizer_patched_step_method
                self.scaler.step(self.optimizer, closure)
                self.scaler.update()
                if not self._accelerate_step_called:
                    # If the optimizer step was skipped, gradient overflow was detected.
                    self._is_overflow = True
                else:
                    self._is_overflow = False
                # Reset the step method to the original one
                self.optimizer.step = self._optimizer_original_step_method
                # Reset the indicator
                self._accelerate_step_called = False
            else:
                self.optimizer.step(closure)

    def _switch_parameters(self, parameters_map):
        for param_group in self.optimizer.param_groups:
            param_group["params"] = [parameters_map.get(p, p) for p in param_group["params"]]
    @property

    def is_overflow(self):
        """Whether or not the optimizer step was done, or skipped because of gradient overflow."""
        warnings.warn(
            "The `is_overflow` property is deprecated and will be removed in version 1.0 of Accelerate use "
            "`optimizer.step_was_skipped` instead.",
            FutureWarning,
        )
        return self._is_overflow
    @property

    def step_was_skipped(self):
        """Whether or not the optimizer step was skipped."""
        return self._is_overflow

    def __getstate__(self):
        _ignored_keys = [
            "_accelerate_step_called",
            "_optimizer_original_step_method",
            "_optimizer_patched_step_method",
        ]
        return {k: v for k, v in self.__dict__.items() if k not in _ignored_keys}

    def __setstate__(self, state):
        self.__dict__.update(state)
        if self.scaler is not None:
            self._accelerate_step_called = False
            self._optimizer_original_step_method = self.optimizer.step
            self._optimizer_patched_step_method = patch_optimizer_step(self, self.optimizer.step)
def patch_optimizer_step(accelerated_optimizer: AcceleratedOptimizer, method):

    def patched_step(*args, **kwargs):
        accelerated_optimizer._accelerate_step_called = True
        return method(*args, **kwargs)
    return patched_step